Achieving Linear Convergence in Distributed Asynchronous Multiagent Optimization
This article studies multiagent (convex and nonconvex ) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework whereby 1) agents can update their local variables as well as communicate with their neighbors at any time, without any form of coordination;...
Saved in:
Published in | IEEE transactions on automatic control Vol. 65; no. 12; pp. 5264 - 5279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2020.2977940 |
Cover
Loading…
Abstract | This article studies multiagent (convex and nonconvex ) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework whereby 1) agents can update their local variables as well as communicate with their neighbors at any time, without any form of coordination; and 2) they can perform their local computations using (possibly) delayed, out-of-sync information from the other agents. Delays need not be known to the agent or obey any specific profile, and can also be time-varying (but bounded). The algorithm builds on a tracking mechanism that is robust against asynchrony (in the above sense), whose goal is to estimate locally the average of agents' gradients. When applied to strongly convex functions, we prove that it converges at an R-linear (geometric) rate as long as the step-size is sufficiently small. A sublinear convergence rate is proved, when nonconvex problems and/or diminishing, uncoordinated step-sizes are considered. To the best of our knowledge, this is the first distributed algorithm with provable geometric convergence rate in such a general asynchronous setting. Preliminary numerical results demonstrate the efficacy of the proposed algorithm and validate our theoretical findings. |
---|---|
AbstractList | This article studies multiagent (convex and nonconvex ) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework whereby 1) agents can update their local variables as well as communicate with their neighbors at any time, without any form of coordination; and 2) they can perform their local computations using (possibly) delayed, out-of-sync information from the other agents. Delays need not be known to the agent or obey any specific profile, and can also be time-varying (but bounded). The algorithm builds on a tracking mechanism that is robust against asynchrony (in the above sense), whose goal is to estimate locally the average of agents’ gradients. When applied to strongly convex functions, we prove that it converges at an R-linear (geometric) rate as long as the step-size is sufficiently small. A sublinear convergence rate is proved, when nonconvex problems and/or diminishing, uncoordinated step-sizes are considered. To the best of our knowledge, this is the first distributed algorithm with provable geometric convergence rate in such a general asynchronous setting. Preliminary numerical results demonstrate the efficacy of the proposed algorithm and validate our theoretical findings. |
Author | Sun, Ying Scutari, Gesualdo Tian, Ye |
Author_xml | – sequence: 1 givenname: Ye orcidid: 0000-0001-9085-6280 surname: Tian fullname: Tian, Ye email: tian110@purdue.edu organization: School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA – sequence: 2 givenname: Ying orcidid: 0000-0002-9709-6509 surname: Sun fullname: Sun, Ying email: sun578@purdue.edu organization: School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA – sequence: 3 givenname: Gesualdo orcidid: 0000-0002-6453-6870 surname: Scutari fullname: Scutari, Gesualdo email: gscutari@purdue.edu organization: School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA |
BookMark | eNp9kEtLAzEURoNUsK3uBTcDrqfmnclyGJ9QqYu6DmMm06a0SU0yhfrrndriwoWry4Xv3I97RmDgvDMAXCM4QQjKu3lZTTDEcIKlEJLCMzBEjBU5ZpgMwBBCVOQSF_wCjGJc9SunFA3BW6mX1uysW2RT60wdssq7nQkL47TJrMvubUzBfnTJNFkZ904vg3e-i9lrt0627nMpm22T3divOlnvLsF5W6-juTrNMXh_fJhXz_l09vRSldNcY4lSzhgSDOlCkLZpNKesZRRrggiSlDeEFqLlmmnUaCMFamULG2Ek1biGnBvKyBjcHu9ug__sTExq5bvg-kqFKS8EkxzJPgWPKR18jMG0ahvspg57haA6eFO9N3Xwpk7eeoT_QbRNP6-lUNv1f-DNEbTGmN8eCTEhkpJvQ9J8VA |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1109_LCSYS_2021_3084883 crossref_primary_10_1007_s11590_023_02011_x crossref_primary_10_1109_TAC_2024_3468403 crossref_primary_10_1109_TAC_2024_3441723 crossref_primary_10_1080_00207721_2020_1815098 crossref_primary_10_1109_TAC_2023_3248487 crossref_primary_10_1109_TAC_2024_3454386 crossref_primary_10_1109_TCNS_2022_3188481 crossref_primary_10_1016_j_cjche_2024_11_003 crossref_primary_10_1109_TCNS_2024_3354875 crossref_primary_10_1109_TNSE_2023_3329832 crossref_primary_10_1016_j_automatica_2021_110092 crossref_primary_10_1016_j_automatica_2023_111088 crossref_primary_10_1109_TSIPN_2024_3402430 crossref_primary_10_1137_22M148570X crossref_primary_10_1109_TAC_2020_3033490 crossref_primary_10_1109_TAC_2024_3439652 crossref_primary_10_1137_19M1259973 crossref_primary_10_1002_rnc_7926 crossref_primary_10_1007_s10107_023_01997_7 crossref_primary_10_1016_j_ijepes_2022_108601 crossref_primary_10_1016_j_automatica_2023_110869 crossref_primary_10_1109_TAC_2020_3010264 crossref_primary_10_1109_TSIPN_2022_3203860 crossref_primary_10_1109_TSMC_2024_3516936 crossref_primary_10_1007_s10898_022_01221_4 crossref_primary_10_1109_TNNLS_2020_3027381 crossref_primary_10_1109_TAC_2023_3261465 crossref_primary_10_1109_TSIPN_2024_3444484 crossref_primary_10_1109_TPDS_2021_3072373 crossref_primary_10_1109_TAC_2024_3449140 crossref_primary_10_1109_TCNS_2023_3242043 crossref_primary_10_1109_TAC_2021_3116116 crossref_primary_10_1109_TSMC_2023_3331334 crossref_primary_10_3934_mbe_2023916 crossref_primary_10_1016_j_ifacol_2022_07_264 crossref_primary_10_1002_rnc_6048 crossref_primary_10_1109_TNNLS_2021_3110295 crossref_primary_10_1109_TAC_2020_2981035 |
Cites_doi | 10.1109/ICDMW.2010.57 10.1109/TAC.2016.2607023 10.1109/TSMC.2014.2332306 10.1109/CDC.2015.7402509 10.1109/Allerton.2011.6120272 10.1016/j.neucom.2015.12.017 10.1109/TSP.2014.2385046 10.1007/s10107-018-01357-w 10.1109/TSIPN.2017.2695121 10.1109/TSIPN.2016.2524588 10.1109/TAC.2015.2471695 10.1109/TSIPN.2016.2593896 10.1109/ACC.2012.6315289 10.1109/GlobalSIP.2013.6736937 10.1007/s10898-008-9370-2 10.1109/TAC.2018.2874748 10.1016/j.automatica.2015.11.014 10.1016/j.ifacol.2017.08.093 10.1109/TAC.2013.2275671 10.1109/CAMSAP.2015.7383778 10.1109/ALLERTON.2018.8636055 10.1137/140961134 10.1137/15M1024950 10.1109/ACSSC.2016.7869154 10.1137/16M1084316 10.1109/TAC.2015.2512043 10.1109/TAC.2017.2730481 10.1109/TAC.2010.2079650 10.1109/TAC.1986.1104412 10.1145/3219617.3219654 10.1109/CAMSAP.2017.8313161 10.1109/TSP.2017.2666776 10.1007/s10107-019-01408-w 10.1109/CDC.2013.6760448 10.1109/SFCS.2003.1238221 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2020.2977940 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 5279 |
ExternalDocumentID | 10_1109_TAC_2020_2977940 9023394 |
Genre | orig-research |
GrantInformation_xml | – fundername: Office of Naval Research grantid: N00014-16-1-2244 funderid: 10.13039/100000006 – fundername: Army Research Office grantid: W911NF1810238 funderid: 10.13039/100000183 – fundername: National Science Foundation grantid: CIF 1632599; CIF 1719205 funderid: 10.13039/501100008982 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-551751c873fddc645f542c3131946d3487f6c5c1dce971f9f0d7e94c2a066e453 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:19:20 EDT 2025 Thu Apr 24 23:12:20 EDT 2025 Tue Jul 01 03:36:34 EDT 2025 Wed Aug 27 02:32:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-551751c873fddc645f542c3131946d3487f6c5c1dce971f9f0d7e94c2a066e453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6453-6870 0000-0001-9085-6280 0000-0002-9709-6509 |
PQID | 2468759619 |
PQPubID | 85475 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2468759619 crossref_citationtrail_10_1109_TAC_2020_2977940 crossref_primary_10_1109_TAC_2020_2977940 ieee_primary_9023394 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref31 ref30 ref33 ref11 ref32 ref10 ref1 ref17 bertsekas (ref3) 1989 ref38 ref16 ref19 sun (ref36) 2019 ref18 horn (ref46) 1990 rappaport (ref39) 2002 zhang (ref45) 2019 assran (ref44) 2018 ref24 ref23 ref26 lian (ref15) 0 ref25 ref20 ref42 ref41 niu (ref14) 0 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref6 ref5 tian (ref2) 2018 dua (ref43) 2017 nedi? (ref4) 2011; 56 kay (ref40) 1993 |
References_xml | – year: 1993 ident: ref40 publication-title: Fundamentals of Statistical Signal Processing – ident: ref42 doi: 10.1109/ICDMW.2010.57 – ident: ref16 doi: 10.1109/TAC.2016.2607023 – ident: ref21 doi: 10.1109/TSMC.2014.2332306 – ident: ref28 doi: 10.1109/CDC.2015.7402509 – ident: ref24 doi: 10.1109/Allerton.2011.6120272 – ident: ref22 doi: 10.1016/j.neucom.2015.12.017 – start-page: 2719 year: 0 ident: ref15 article-title: Asynchronous parallel stochastic gradient for nonconvex optimization publication-title: Proc Neural Inf Process Syst – ident: ref5 doi: 10.1109/TSP.2014.2385046 – year: 1990 ident: ref46 publication-title: Matrix Analysis – ident: ref35 doi: 10.1007/s10107-018-01357-w – ident: ref10 doi: 10.1109/TSIPN.2017.2695121 – year: 2019 ident: ref36 article-title: Convergence rate of distributed optimization algorithms based on gradient tracking publication-title: arXiv 1905 02637 – ident: ref29 doi: 10.1109/TSIPN.2016.2524588 – ident: ref30 doi: 10.1109/TAC.2015.2471695 – ident: ref6 doi: 10.1109/TSIPN.2016.2593896 – ident: ref23 doi: 10.1109/ACC.2012.6315289 – ident: ref19 doi: 10.1109/GlobalSIP.2013.6736937 – year: 1989 ident: ref3 publication-title: Parallel and Distributed Computation Numerical Methods – ident: ref31 doi: 10.1007/s10898-008-9370-2 – ident: ref8 doi: 10.1109/TAC.2018.2874748 – ident: ref25 doi: 10.1016/j.automatica.2015.11.014 – ident: ref38 doi: 10.1016/j.ifacol.2017.08.093 – year: 2017 ident: ref43 article-title: UCI machine learning repository – ident: ref32 doi: 10.1109/TAC.2013.2275671 – ident: ref27 doi: 10.1109/CAMSAP.2015.7383778 – ident: ref1 doi: 10.1109/ALLERTON.2018.8636055 – ident: ref12 doi: 10.1137/140961134 – ident: ref9 doi: 10.1137/15M1024950 – ident: ref34 doi: 10.1109/ACSSC.2016.7869154 – year: 2019 ident: ref45 article-title: Asyspa: An exact asynchronous algorithm for convex optimization over digraphs publication-title: IEEE Trans Autom Control – ident: ref33 doi: 10.1137/16M1084316 – ident: ref20 doi: 10.1109/TAC.2015.2512043 – start-page: 693 year: 0 ident: ref14 article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent publication-title: Proc 24th Int Conf Neural Inf Process Syst – ident: ref17 doi: 10.1109/TAC.2017.2730481 – volume: 56 start-page: 1337 year: 2011 ident: ref4 article-title: Asynchronous broadcast-based convex optimization over a network publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2010.2079650 – year: 2002 ident: ref39 publication-title: Wireless Communications Principles & Practice – ident: ref11 doi: 10.1109/TAC.1986.1104412 – ident: ref26 doi: 10.1145/3219617.3219654 – ident: ref41 doi: 10.1109/CAMSAP.2017.8313161 – ident: ref7 doi: 10.1109/TSP.2017.2666776 – ident: ref13 doi: 10.1007/s10107-019-01408-w – year: 2018 ident: ref2 article-title: Achieving linear convergence in distributed asynchronous multi-agent optimization publication-title: arXiv 1803 10359 – ident: ref18 doi: 10.1109/CDC.2013.6760448 – year: 2018 ident: ref44 article-title: Asynchronous subgradient-push publication-title: arXiv 1803 08950 – ident: ref37 doi: 10.1109/SFCS.2003.1238221 |
SSID | ssj0016441 |
Score | 2.6032455 |
Snippet | This article studies multiagent (convex and nonconvex ) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5264 |
SubjectTerms | Algorithms Asynchrony Convergence Convex functions delay Delays Directed graphs Distributed algorithms distributed optimization Graph theory linear convergence Multiagent systems nonconvex optimization Optimization Robustness (mathematics) |
Title | Achieving Linear Convergence in Distributed Asynchronous Multiagent Optimization |
URI | https://ieeexplore.ieee.org/document/9023394 https://www.proquest.com/docview/2468759619 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4I8ZLOXBBolubpm1ynAZoQhpwAIlb1TquQECH2HaAX4_TdhUChLj1kFRRnMT-bH82wHGkszzxLXlI6HtKBrmnlfE9G0ZY5AlhQI7vPLqKh3fq8j66X4DTlgtDRFXyGXXdZxXLt2OcOVdZz7CCCY1ahEUGbjVXq40YOL1ev7p8gaVuQ5K-6d32BwwEpd-VbOwY5-b4ooKqnio_HuJKu1yswWi-rjqp5Kk7m-Zd_PhWsvG_C1-H1cbMFP36XGzAApWbsPKl-OAW3PTx4ZGcP0EwIOUDLwYuA70iY5J4LMWZq6nr2mGRFf3Je4muju54NhEVaTdznCxxzS_OS0Pl3Ia7i_PbwdBr-it4KE0w9dhYSqIAdRIW1mKsoiJSEsOAb6WKbchQpogxwsAimSQoTOHbhIxCmbGdQioKd2CpHJe0C4I0Wtb8yoQmVLKgLElIa6UzpBh9bTvQm295ik3xcdcD4zmtQIhvUhZS6oSUNkLqwEk747UuvPHH2C235-24Zrs7cDCXatrczEkqVcwQzTBu3Pt91j4su3_XKSsHsDR9m9EhGx7T_Kg6cZ88j9Ts |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BPZQeSgtFBGjZQy9IdWKvd-3dY5QWpYXQHoLEzbJnxyJqcSqSHODXd9Z2LARV1ZsPu_JqZnbn-c0AfNQmL9LQUYCEYaBkVARG2TBwscaySAkj8njnyWUyvlLfrvX1BnzqsDBEVBefUd9_1rl8N8eVD5UNLCuY2KpNeMF6X0cNWqvLGXjN3ry7fIWl6ZKSoR1MhyN2BWXYl2zuWB_oeKSE6qkqz57iWr-c7cBkfbKmrORnf7Us-vjwpGnj_x79DbxuDU0xbCTjLWxQtQuvHrUf3IMfQ7yZkY8oCHZJWeTFyNeg13BMErNKfPZddf1ALHJiuLiv0HfSna8Woobt5h6VJb7zm3PbgjnfwdXZl-loHLQTFgKUNloGTMRUR2jSuHQOE6VLrSTGEd9LlbiYnZkyQY2RQ7JpVNoydClZhTJnS4WUjvdhq5pXdACCDDrW_crGNlaypDxNyRhlcqQEQ-N6MFiTPMO2_bifgvErq92Q0GbMpMwzKWuZ1IPTbsfvpvXGP9bueZp361py9-B4zdWsvZuLTKqEnTTLnuPh33edwMvxdHKRXXy9PD-Cbf-fpoDlGLaWdyt6z2bIsvhQS98fg6DYNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Linear+Convergence+in+Distributed+Asynchronous+Multiagent+Optimization&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Tian%2C+Ye&rft.au=Sun%2C+Ying&rft.au=Scutari%2C+Gesualdo&rft.date=2020-12-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=65&rft.issue=12&rft.spage=5264&rft.epage=5279&rft_id=info:doi/10.1109%2FTAC.2020.2977940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_2977940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |