Achieving Linear Convergence in Distributed Asynchronous Multiagent Optimization

This article studies multiagent (convex and nonconvex ) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework whereby 1) agents can update their local variables as well as communicate with their neighbors at any time, without any form of coordination;...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 65; no. 12; pp. 5264 - 5279
Main Authors Tian, Ye, Sun, Ying, Scutari, Gesualdo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2020.2977940

Cover

Loading…
Abstract This article studies multiagent (convex and nonconvex ) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework whereby 1) agents can update their local variables as well as communicate with their neighbors at any time, without any form of coordination; and 2) they can perform their local computations using (possibly) delayed, out-of-sync information from the other agents. Delays need not be known to the agent or obey any specific profile, and can also be time-varying (but bounded). The algorithm builds on a tracking mechanism that is robust against asynchrony (in the above sense), whose goal is to estimate locally the average of agents' gradients. When applied to strongly convex functions, we prove that it converges at an R-linear (geometric) rate as long as the step-size is sufficiently small. A sublinear convergence rate is proved, when nonconvex problems and/or diminishing, uncoordinated step-sizes are considered. To the best of our knowledge, this is the first distributed algorithm with provable geometric convergence rate in such a general asynchronous setting. Preliminary numerical results demonstrate the efficacy of the proposed algorithm and validate our theoretical findings.
AbstractList This article studies multiagent (convex and nonconvex ) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework whereby 1) agents can update their local variables as well as communicate with their neighbors at any time, without any form of coordination; and 2) they can perform their local computations using (possibly) delayed, out-of-sync information from the other agents. Delays need not be known to the agent or obey any specific profile, and can also be time-varying (but bounded). The algorithm builds on a tracking mechanism that is robust against asynchrony (in the above sense), whose goal is to estimate locally the average of agents’ gradients. When applied to strongly convex functions, we prove that it converges at an R-linear (geometric) rate as long as the step-size is sufficiently small. A sublinear convergence rate is proved, when nonconvex problems and/or diminishing, uncoordinated step-sizes are considered. To the best of our knowledge, this is the first distributed algorithm with provable geometric convergence rate in such a general asynchronous setting. Preliminary numerical results demonstrate the efficacy of the proposed algorithm and validate our theoretical findings.
Author Sun, Ying
Scutari, Gesualdo
Tian, Ye
Author_xml – sequence: 1
  givenname: Ye
  orcidid: 0000-0001-9085-6280
  surname: Tian
  fullname: Tian, Ye
  email: tian110@purdue.edu
  organization: School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
– sequence: 2
  givenname: Ying
  orcidid: 0000-0002-9709-6509
  surname: Sun
  fullname: Sun, Ying
  email: sun578@purdue.edu
  organization: School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
– sequence: 3
  givenname: Gesualdo
  orcidid: 0000-0002-6453-6870
  surname: Scutari
  fullname: Scutari, Gesualdo
  email: gscutari@purdue.edu
  organization: School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
BookMark eNp9kEtLAzEURoNUsK3uBTcDrqfmnclyGJ9QqYu6DmMm06a0SU0yhfrrndriwoWry4Xv3I97RmDgvDMAXCM4QQjKu3lZTTDEcIKlEJLCMzBEjBU5ZpgMwBBCVOQSF_wCjGJc9SunFA3BW6mX1uysW2RT60wdssq7nQkL47TJrMvubUzBfnTJNFkZ904vg3e-i9lrt0627nMpm22T3divOlnvLsF5W6-juTrNMXh_fJhXz_l09vRSldNcY4lSzhgSDOlCkLZpNKesZRRrggiSlDeEFqLlmmnUaCMFamULG2Ek1biGnBvKyBjcHu9ug__sTExq5bvg-kqFKS8EkxzJPgWPKR18jMG0ahvspg57haA6eFO9N3Xwpk7eeoT_QbRNP6-lUNv1f-DNEbTGmN8eCTEhkpJvQ9J8VA
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_LCSYS_2021_3084883
crossref_primary_10_1007_s11590_023_02011_x
crossref_primary_10_1109_TAC_2024_3468403
crossref_primary_10_1109_TAC_2024_3441723
crossref_primary_10_1080_00207721_2020_1815098
crossref_primary_10_1109_TAC_2023_3248487
crossref_primary_10_1109_TAC_2024_3454386
crossref_primary_10_1109_TCNS_2022_3188481
crossref_primary_10_1016_j_cjche_2024_11_003
crossref_primary_10_1109_TCNS_2024_3354875
crossref_primary_10_1109_TNSE_2023_3329832
crossref_primary_10_1016_j_automatica_2021_110092
crossref_primary_10_1016_j_automatica_2023_111088
crossref_primary_10_1109_TSIPN_2024_3402430
crossref_primary_10_1137_22M148570X
crossref_primary_10_1109_TAC_2020_3033490
crossref_primary_10_1109_TAC_2024_3439652
crossref_primary_10_1137_19M1259973
crossref_primary_10_1002_rnc_7926
crossref_primary_10_1007_s10107_023_01997_7
crossref_primary_10_1016_j_ijepes_2022_108601
crossref_primary_10_1016_j_automatica_2023_110869
crossref_primary_10_1109_TAC_2020_3010264
crossref_primary_10_1109_TSIPN_2022_3203860
crossref_primary_10_1109_TSMC_2024_3516936
crossref_primary_10_1007_s10898_022_01221_4
crossref_primary_10_1109_TNNLS_2020_3027381
crossref_primary_10_1109_TAC_2023_3261465
crossref_primary_10_1109_TSIPN_2024_3444484
crossref_primary_10_1109_TPDS_2021_3072373
crossref_primary_10_1109_TAC_2024_3449140
crossref_primary_10_1109_TCNS_2023_3242043
crossref_primary_10_1109_TAC_2021_3116116
crossref_primary_10_1109_TSMC_2023_3331334
crossref_primary_10_3934_mbe_2023916
crossref_primary_10_1016_j_ifacol_2022_07_264
crossref_primary_10_1002_rnc_6048
crossref_primary_10_1109_TNNLS_2021_3110295
crossref_primary_10_1109_TAC_2020_2981035
Cites_doi 10.1109/ICDMW.2010.57
10.1109/TAC.2016.2607023
10.1109/TSMC.2014.2332306
10.1109/CDC.2015.7402509
10.1109/Allerton.2011.6120272
10.1016/j.neucom.2015.12.017
10.1109/TSP.2014.2385046
10.1007/s10107-018-01357-w
10.1109/TSIPN.2017.2695121
10.1109/TSIPN.2016.2524588
10.1109/TAC.2015.2471695
10.1109/TSIPN.2016.2593896
10.1109/ACC.2012.6315289
10.1109/GlobalSIP.2013.6736937
10.1007/s10898-008-9370-2
10.1109/TAC.2018.2874748
10.1016/j.automatica.2015.11.014
10.1016/j.ifacol.2017.08.093
10.1109/TAC.2013.2275671
10.1109/CAMSAP.2015.7383778
10.1109/ALLERTON.2018.8636055
10.1137/140961134
10.1137/15M1024950
10.1109/ACSSC.2016.7869154
10.1137/16M1084316
10.1109/TAC.2015.2512043
10.1109/TAC.2017.2730481
10.1109/TAC.2010.2079650
10.1109/TAC.1986.1104412
10.1145/3219617.3219654
10.1109/CAMSAP.2017.8313161
10.1109/TSP.2017.2666776
10.1007/s10107-019-01408-w
10.1109/CDC.2013.6760448
10.1109/SFCS.2003.1238221
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2020.2977940
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 5279
ExternalDocumentID 10_1109_TAC_2020_2977940
9023394
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N00014-16-1-2244
  funderid: 10.13039/100000006
– fundername: Army Research Office
  grantid: W911NF1810238
  funderid: 10.13039/100000183
– fundername: National Science Foundation
  grantid: CIF 1632599; CIF 1719205
  funderid: 10.13039/501100008982
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-551751c873fddc645f542c3131946d3487f6c5c1dce971f9f0d7e94c2a066e453
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:19:20 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
Tue Jul 01 03:36:34 EDT 2025
Wed Aug 27 02:32:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-551751c873fddc645f542c3131946d3487f6c5c1dce971f9f0d7e94c2a066e453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6453-6870
0000-0001-9085-6280
0000-0002-9709-6509
PQID 2468759619
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_2468759619
crossref_citationtrail_10_1109_TAC_2020_2977940
crossref_primary_10_1109_TAC_2020_2977940
ieee_primary_9023394
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref31
ref30
ref33
ref11
ref32
ref10
ref1
ref17
bertsekas (ref3) 1989
ref38
ref16
ref19
sun (ref36) 2019
ref18
horn (ref46) 1990
rappaport (ref39) 2002
zhang (ref45) 2019
assran (ref44) 2018
ref24
ref23
ref26
lian (ref15) 0
ref25
ref20
ref42
ref41
niu (ref14) 0
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref6
ref5
tian (ref2) 2018
dua (ref43) 2017
nedi? (ref4) 2011; 56
kay (ref40) 1993
References_xml – year: 1993
  ident: ref40
  publication-title: Fundamentals of Statistical Signal Processing
– ident: ref42
  doi: 10.1109/ICDMW.2010.57
– ident: ref16
  doi: 10.1109/TAC.2016.2607023
– ident: ref21
  doi: 10.1109/TSMC.2014.2332306
– ident: ref28
  doi: 10.1109/CDC.2015.7402509
– ident: ref24
  doi: 10.1109/Allerton.2011.6120272
– ident: ref22
  doi: 10.1016/j.neucom.2015.12.017
– start-page: 2719
  year: 0
  ident: ref15
  article-title: Asynchronous parallel stochastic gradient for nonconvex optimization
  publication-title: Proc Neural Inf Process Syst
– ident: ref5
  doi: 10.1109/TSP.2014.2385046
– year: 1990
  ident: ref46
  publication-title: Matrix Analysis
– ident: ref35
  doi: 10.1007/s10107-018-01357-w
– ident: ref10
  doi: 10.1109/TSIPN.2017.2695121
– year: 2019
  ident: ref36
  article-title: Convergence rate of distributed optimization algorithms based on gradient tracking
  publication-title: arXiv 1905 02637
– ident: ref29
  doi: 10.1109/TSIPN.2016.2524588
– ident: ref30
  doi: 10.1109/TAC.2015.2471695
– ident: ref6
  doi: 10.1109/TSIPN.2016.2593896
– ident: ref23
  doi: 10.1109/ACC.2012.6315289
– ident: ref19
  doi: 10.1109/GlobalSIP.2013.6736937
– year: 1989
  ident: ref3
  publication-title: Parallel and Distributed Computation Numerical Methods
– ident: ref31
  doi: 10.1007/s10898-008-9370-2
– ident: ref8
  doi: 10.1109/TAC.2018.2874748
– ident: ref25
  doi: 10.1016/j.automatica.2015.11.014
– ident: ref38
  doi: 10.1016/j.ifacol.2017.08.093
– year: 2017
  ident: ref43
  article-title: UCI machine learning repository
– ident: ref32
  doi: 10.1109/TAC.2013.2275671
– ident: ref27
  doi: 10.1109/CAMSAP.2015.7383778
– ident: ref1
  doi: 10.1109/ALLERTON.2018.8636055
– ident: ref12
  doi: 10.1137/140961134
– ident: ref9
  doi: 10.1137/15M1024950
– ident: ref34
  doi: 10.1109/ACSSC.2016.7869154
– year: 2019
  ident: ref45
  article-title: Asyspa: An exact asynchronous algorithm for convex optimization over digraphs
  publication-title: IEEE Trans Autom Control
– ident: ref33
  doi: 10.1137/16M1084316
– ident: ref20
  doi: 10.1109/TAC.2015.2512043
– start-page: 693
  year: 0
  ident: ref14
  article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent
  publication-title: Proc 24th Int Conf Neural Inf Process Syst
– ident: ref17
  doi: 10.1109/TAC.2017.2730481
– volume: 56
  start-page: 1337
  year: 2011
  ident: ref4
  article-title: Asynchronous broadcast-based convex optimization over a network
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2010.2079650
– year: 2002
  ident: ref39
  publication-title: Wireless Communications Principles & Practice
– ident: ref11
  doi: 10.1109/TAC.1986.1104412
– ident: ref26
  doi: 10.1145/3219617.3219654
– ident: ref41
  doi: 10.1109/CAMSAP.2017.8313161
– ident: ref7
  doi: 10.1109/TSP.2017.2666776
– ident: ref13
  doi: 10.1007/s10107-019-01408-w
– year: 2018
  ident: ref2
  article-title: Achieving linear convergence in distributed asynchronous multi-agent optimization
  publication-title: arXiv 1803 10359
– ident: ref18
  doi: 10.1109/CDC.2013.6760448
– year: 2018
  ident: ref44
  article-title: Asynchronous subgradient-push
  publication-title: arXiv 1803 08950
– ident: ref37
  doi: 10.1109/SFCS.2003.1238221
SSID ssj0016441
Score 2.6032455
Snippet This article studies multiagent (convex and nonconvex ) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5264
SubjectTerms Algorithms
Asynchrony
Convergence
Convex functions
delay
Delays
Directed graphs
Distributed algorithms
distributed optimization
Graph theory
linear convergence
Multiagent systems
nonconvex optimization
Optimization
Robustness (mathematics)
Title Achieving Linear Convergence in Distributed Asynchronous Multiagent Optimization
URI https://ieeexplore.ieee.org/document/9023394
https://www.proquest.com/docview/2468759619
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4I8ZLOXBBolubpm1ynAZoQhpwAIlb1TquQECH2HaAX4_TdhUChLj1kFRRnMT-bH82wHGkszzxLXlI6HtKBrmnlfE9G0ZY5AlhQI7vPLqKh3fq8j66X4DTlgtDRFXyGXXdZxXLt2OcOVdZz7CCCY1ahEUGbjVXq40YOL1ev7p8gaVuQ5K-6d32BwwEpd-VbOwY5-b4ooKqnio_HuJKu1yswWi-rjqp5Kk7m-Zd_PhWsvG_C1-H1cbMFP36XGzAApWbsPKl-OAW3PTx4ZGcP0EwIOUDLwYuA70iY5J4LMWZq6nr2mGRFf3Je4muju54NhEVaTdznCxxzS_OS0Pl3Ia7i_PbwdBr-it4KE0w9dhYSqIAdRIW1mKsoiJSEsOAb6WKbchQpogxwsAimSQoTOHbhIxCmbGdQioKd2CpHJe0C4I0Wtb8yoQmVLKgLElIa6UzpBh9bTvQm295ik3xcdcD4zmtQIhvUhZS6oSUNkLqwEk747UuvPHH2C235-24Zrs7cDCXatrczEkqVcwQzTBu3Pt91j4su3_XKSsHsDR9m9EhGx7T_Kg6cZ88j9Ts
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BPZQeSgtFBGjZQy9IdWKvd-3dY5QWpYXQHoLEzbJnxyJqcSqSHODXd9Z2LARV1ZsPu_JqZnbn-c0AfNQmL9LQUYCEYaBkVARG2TBwscaySAkj8njnyWUyvlLfrvX1BnzqsDBEVBefUd9_1rl8N8eVD5UNLCuY2KpNeMF6X0cNWqvLGXjN3ry7fIWl6ZKSoR1MhyN2BWXYl2zuWB_oeKSE6qkqz57iWr-c7cBkfbKmrORnf7Us-vjwpGnj_x79DbxuDU0xbCTjLWxQtQuvHrUf3IMfQ7yZkY8oCHZJWeTFyNeg13BMErNKfPZddf1ALHJiuLiv0HfSna8Woobt5h6VJb7zm3PbgjnfwdXZl-loHLQTFgKUNloGTMRUR2jSuHQOE6VLrSTGEd9LlbiYnZkyQY2RQ7JpVNoydClZhTJnS4WUjvdhq5pXdACCDDrW_crGNlaypDxNyRhlcqQEQ-N6MFiTPMO2_bifgvErq92Q0GbMpMwzKWuZ1IPTbsfvpvXGP9bueZp361py9-B4zdWsvZuLTKqEnTTLnuPh33edwMvxdHKRXXy9PD-Cbf-fpoDlGLaWdyt6z2bIsvhQS98fg6DYNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Linear+Convergence+in+Distributed+Asynchronous+Multiagent+Optimization&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Tian%2C+Ye&rft.au=Sun%2C+Ying&rft.au=Scutari%2C+Gesualdo&rft.date=2020-12-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=65&rft.issue=12&rft.spage=5264&rft.epage=5279&rft_id=info:doi/10.1109%2FTAC.2020.2977940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_2977940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon