Online Robot Teaching With Natural Human-Robot Interaction
With the development of Industry 4.0, robots tend to be intelligent and collaborative. For one, robots can interact naturally with humans. For another, robots can work collaboratively with humans in a common area. The traditional teaching method is no longer suitable for the production mode with hum...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 65; no. 12; pp. 9571 - 9581 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of Industry 4.0, robots tend to be intelligent and collaborative. For one, robots can interact naturally with humans. For another, robots can work collaboratively with humans in a common area. The traditional teaching method is no longer suitable for the production mode with human-robot collaboration. Since the traditional teaching processes are complicated, they need highly skilled staffs. This paper focuses on the natural way of online teaching, which can be applied to the tasks such as welding, painting, and stamping. This paper presents an online teaching method with the fusion of speech and gesture. A depth camera (Kinect) and an inertial measurement unit are used to capture the speech and gesture of the human. Interval Kalman filter and improved particle filter are employed to estimate the gesture. To integrate speech and gesture information more deeply, a novel method of audio-visual fusion based on text is proposed, which can extract the most useful information from the speech and gestures by transforming them into text. Finally, a maximum entropy algorithm is employed to deal with the fusion text into the corresponding robot instructions. The practicality and effectiveness of the proposed approach were validated by five subjects without robot teaching skills. The results indicate that the online robot teaching system can successfully teach robot manipulators. |
---|---|
AbstractList | With the development of Industry 4.0, robots tend to be intelligent and collaborative. For one, robots can interact naturally with humans. For another, robots can work collaboratively with humans in a common area. The traditional teaching method is no longer suitable for the production mode with human-robot collaboration. Since the traditional teaching processes are complicated, they need highly skilled staffs. This paper focuses on the natural way of online teaching, which can be applied to the tasks such as welding, painting, and stamping. This paper presents an online teaching method with the fusion of speech and gesture. A depth camera (Kinect) and an inertial measurement unit are used to capture the speech and gesture of the human. Interval Kalman filter and improved particle filter are employed to estimate the gesture. To integrate speech and gesture information more deeply, a novel method of audio-visual fusion based on text is proposed, which can extract the most useful information from the speech and gestures by transforming them into text. Finally, a maximum entropy algorithm is employed to deal with the fusion text into the corresponding robot instructions. The practicality and effectiveness of the proposed approach were validated by five subjects without robot teaching skills. The results indicate that the online robot teaching system can successfully teach robot manipulators. |
Author | Chen, Mingxuan Du, Guanglong Liu, Caibing Zhang, Ping Zhang, Bo |
Author_xml | – sequence: 1 givenname: Guanglong orcidid: 0000-0001-9425-843X surname: Du fullname: Du, Guanglong email: csgldu@scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Mingxuan surname: Chen fullname: Chen, Mingxuan email: 317460580@qq.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Caibing surname: Liu fullname: Liu, Caibing email: 1044083971@qq.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Bo surname: Zhang fullname: Zhang, Bo email: 550510024@qq.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 5 givenname: Ping surname: Zhang fullname: Zhang, Ping email: pzhang@scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
BookMark | eNp9kE1LAzEQhoNUsK3eBS8LnrfmY7NJvEmptlAsSMVjSNNZm7JNajZ78N-7ZYsHD57m8j7zzjwjNPDBA0K3BE8IwephvZhNKCZyQiVlZSku0JBwLnKlCjlAQ0yFzDEuyis0apo9xqTghA_R48rXzkP2FjYhZWswduf8Z_bh0i57NamNps7m7cH4vE8sfIJobHLBX6PLytQN3JznGL0_z9bTeb5cvSymT8vcUkVSzik3YBiRSnZ3sa0lsqiEwYIxbMEKRW1VboCbLaeAqQIhgW1ZobCpKstKNkb3_d5jDF8tNEnvQxt9V6kplkRxQZToUrhP2RiaJkKlj9EdTPzWBOuTId0Z0idD-myoQ8o_iHXJnF5L0bj6P_CuBx0A_PZI1j3JOfsB_nZzmQ |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1109_TIE_2021_3073310 crossref_primary_10_1108_IR_09_2019_0180 crossref_primary_10_1109_ACCESS_2019_2948880 crossref_primary_10_1109_TIE_2022_3159913 crossref_primary_10_1109_TMECH_2023_3241302 crossref_primary_10_1016_j_rcim_2022_102484 crossref_primary_10_1007_s12206_023_0639_7 crossref_primary_10_4018_IJOPCD_302082 crossref_primary_10_1109_TIE_2020_3013791 crossref_primary_10_1145_3570731 crossref_primary_10_3390_bioengineering10030326 crossref_primary_10_1016_j_rcim_2023_102643 crossref_primary_10_1109_TIE_2022_3196372 crossref_primary_10_1016_j_matpr_2021_03_503 crossref_primary_10_35234_fumbd_557590 crossref_primary_10_1109_TASE_2023_3345868 crossref_primary_10_1109_TIE_2022_3150097 crossref_primary_10_1109_TMECH_2021_3112722 crossref_primary_10_1016_j_rcim_2023_102596 crossref_primary_10_1115_1_4053806 crossref_primary_10_1007_s00146_024_01889_0 crossref_primary_10_1016_j_rcim_2021_102238 crossref_primary_10_1109_TMECH_2019_2945135 crossref_primary_10_1142_S0219843621500079 crossref_primary_10_25100_iyc_v25iSuplemento_13133 crossref_primary_10_3390_electronics12163380 crossref_primary_10_3390_s21175871 crossref_primary_10_1108_IR_02_2020_0039 crossref_primary_10_3390_machines10020134 crossref_primary_10_1155_2021_6457317 crossref_primary_10_1109_TII_2019_2917392 crossref_primary_10_1007_s00500_023_08346_y crossref_primary_10_1016_j_vrih_2020_05_006 crossref_primary_10_1109_TMECH_2024_3382984 crossref_primary_10_3390_s21041209 crossref_primary_10_1007_s00170_024_13208_4 crossref_primary_10_3390_machines12110756 crossref_primary_10_3390_app11219789 crossref_primary_10_1016_j_ergon_2022_103376 crossref_primary_10_1109_TASE_2019_2895507 crossref_primary_10_1007_s00170_024_13045_5 crossref_primary_10_1080_19368623_2024_2337798 crossref_primary_10_1002_advs_202100230 crossref_primary_10_1109_TMECH_2021_3064581 crossref_primary_10_1109_TIE_2020_2973893 crossref_primary_10_1109_TIE_2024_3395792 crossref_primary_10_1016_j_bspc_2025_107632 crossref_primary_10_1016_j_engappai_2020_103903 crossref_primary_10_3390_app12157600 crossref_primary_10_1038_s41467_022_32702_5 crossref_primary_10_1007_s11432_019_2749_0 crossref_primary_10_2478_amns_2024_0557 crossref_primary_10_1109_TIE_2022_3232669 |
Cites_doi | 10.1007/s11431-010-4054-9 10.3390/s140406012 10.1177/0278364915627291 10.1109/TAC.2017.2720970 10.1109/TII.2016.2526674 10.1109/TFUZZ.2017.2710952 10.1109/TIE.2014.2301728 10.1016/j.cviu.2016.03.015 10.1109/LRA.2017.2678546 10.4028/www.scientific.net/AMM.330.648 10.3390/s120608301 10.1007/s40430-016-0662-z 10.1016/j.robot.2015.03.002 10.1016/j.robot.2016.08.012 10.1016/j.patrec.2014.11.010 10.1002/asjc.1052 10.1109/TBME.2014.2303052 10.1109/TSMC.2017.2720968 10.3115/990820.990874 10.1109/TCYB.2016.2581220 10.1109/LRA.2016.2531124 10.1109/TFUZZ.2017.2686352 10.1108/IR-04-2015-0065 10.1016/j.robot.2015.08.005 10.1108/01439911011018911 10.1109/HUMANOIDS.2014.7041495 10.1007/s11771-012-1033-2 10.1109/TIE.2009.2032431 10.1109/TSMC.2015.2461186 10.1109/TFUZZ.2016.2617378 10.1109/TIE.2008.2010166 10.1109/TIM.2007.911646 10.1109/MAES.2013.6642828 10.1109/ISIE.2007.4374828 10.1016/j.csl.2015.11.002 10.1016/j.ins.2013.12.042 10.1016/j.eswa.2015.01.016 10.1016/j.jvcir.2016.05.020 10.3390/s130912406 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2018.2823667 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Education |
EISSN | 1557-9948 |
EndPage | 9581 |
ExternalDocumentID | 10_1109_TIE_2018_2823667 8331855 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Special Projects grantid: 2016TQ03X824 – fundername: National Natural Science Foundation of China grantid: 61602182 – fundername: Pearl River S&T Nova Program of Guangzhou grantid: 201710010059 – fundername: Guangdong Natural Science Funds for Distinguished Young Scholar grantid: 2017A030306015 – fundername: Fundamental Research Funds for the Central Universities grantid: 2017JQ009 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-525aea318983663dc184f7a07330cec792cf6be5ad52e029e78e3d3490affc363 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:10:48 EDT 2025 Thu Apr 24 23:07:12 EDT 2025 Tue Jul 01 00:16:26 EDT 2025 Wed Aug 27 02:59:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-525aea318983663dc184f7a07330cec792cf6be5ad52e029e78e3d3490affc363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9425-843X |
PQID | 2081957197 |
PQPubID | 85464 |
PageCount | 11 |
ParticipantIDs | ieee_primary_8331855 crossref_citationtrail_10_1109_TIE_2018_2823667 crossref_primary_10_1109_TIE_2018_2823667 proquest_journals_2081957197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 yun (ref32) 2008; 57 ref10 ref2 ref39 ref17 ref38 ref19 ref18 wang (ref34) 2015; 31 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 wang (ref1) 2015; 8 ref9 ref4 ref3 ref6 maric (ref16) 2017; 39 ref5 ref40 |
References_xml | – ident: ref35 doi: 10.1007/s11431-010-4054-9 – ident: ref14 doi: 10.3390/s140406012 – ident: ref17 doi: 10.1177/0278364915627291 – ident: ref39 doi: 10.1109/TAC.2017.2720970 – ident: ref33 doi: 10.1109/TII.2016.2526674 – ident: ref40 doi: 10.1109/TFUZZ.2017.2710952 – ident: ref15 doi: 10.1109/TIE.2014.2301728 – ident: ref22 doi: 10.1016/j.cviu.2016.03.015 – ident: ref11 doi: 10.1109/LRA.2017.2678546 – volume: 31 start-page: 45 year: 2015 ident: ref34 article-title: Research of natural language understanding in human-service robot interaction publication-title: Microcomput Appl – ident: ref3 doi: 10.4028/www.scientific.net/AMM.330.648 – ident: ref5 doi: 10.3390/s120608301 – volume: 39 start-page: 2659 year: 2017 ident: ref16 article-title: Kinematics-based approach for robot programming via human arm motion publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-016-0662-z – ident: ref21 doi: 10.1016/j.robot.2015.03.002 – ident: ref19 doi: 10.1016/j.robot.2016.08.012 – ident: ref4 doi: 10.1016/j.patrec.2014.11.010 – ident: ref27 doi: 10.1002/asjc.1052 – ident: ref10 doi: 10.1109/TBME.2014.2303052 – ident: ref41 doi: 10.1109/TSMC.2017.2720968 – ident: ref20 doi: 10.3115/990820.990874 – ident: ref37 doi: 10.1109/TCYB.2016.2581220 – ident: ref2 doi: 10.1109/LRA.2016.2531124 – ident: ref29 doi: 10.1109/TFUZZ.2017.2686352 – ident: ref31 doi: 10.1108/IR-04-2015-0065 – ident: ref36 doi: 10.1016/j.robot.2015.08.005 – ident: ref13 doi: 10.1108/01439911011018911 – ident: ref9 doi: 10.1109/HUMANOIDS.2014.7041495 – ident: ref7 doi: 10.1007/s11771-012-1033-2 – ident: ref26 doi: 10.1109/TIE.2009.2032431 – ident: ref6 doi: 10.1109/TSMC.2015.2461186 – ident: ref38 doi: 10.1109/TFUZZ.2016.2617378 – ident: ref24 doi: 10.1109/TIE.2008.2010166 – volume: 57 start-page: 638 year: 2008 ident: ref32 article-title: A simplified quaternion based algorithm for orientation estimation from Earth gravity and magnetic field measurements publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2007.911646 – volume: 8 start-page: 107 year: 2015 ident: ref1 article-title: Industrial robot components assembly based on machine vision technology publication-title: Modular Mach Tool Autom Manuf Techn – ident: ref30 doi: 10.1109/MAES.2013.6642828 – ident: ref25 doi: 10.1109/ISIE.2007.4374828 – ident: ref8 doi: 10.1016/j.csl.2015.11.002 – ident: ref28 doi: 10.1016/j.ins.2013.12.042 – ident: ref18 doi: 10.1016/j.eswa.2015.01.016 – ident: ref23 doi: 10.1016/j.jvcir.2016.05.020 – ident: ref12 doi: 10.3390/s130912406 |
SSID | ssj0014515 |
Score | 2.5338552 |
Snippet | With the development of Industry 4.0, robots tend to be intelligent and collaborative. For one, robots can interact naturally with humans. For another, robots... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9571 |
SubjectTerms | Audio data CAI Collaboration Computer assisted instruction Distance learning Education Gesture human–robot interaction Industrial development Kalman filters Maximum entropy natural natural speech understanding On-line systems online robot teaching Robot arms Robot kinematics Robot sensing systems Robots Service robots Speech Task analysis Teaching methods |
Title | Online Robot Teaching With Natural Human-Robot Interaction |
URI | https://ieeexplore.ieee.org/document/8331855 https://www.proquest.com/docview/2081957197 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDg0YIoFJSBBYmmSew8zIYQVUFqB9SKbpHtXAQCNQjShV-PH0lAgBBLlMEXWXeOfee7-z6AU658etQ5w8jP-JBmqPZBGasHkVGQa8i4SPcOT2fRZEFvl-GyBedNLwwimuIzdPWryeVnhVzrq7JRQnSvb9iGtgrcbK9WkzGgoWUrCDRirAr66pSkx0bzm2tdw5W4gWb3Nozyn0eQ4VT5sRGb02W8DdN6Xrao5Mldl8KV798gG_878R3YqtxM59Kui11o4aqrGZqrao4ubH4BIuzBhUUcde4KUZTOvKqwdO4fywdnxg00h2Ou-4d2hLlHtC0Re7AYX8-vJsOKVWEoA-aXKvIMOXI1H5YoZZBMqhgvj7kmb_QkypgFMo8EhjwLA_QChnGCJCOUeTzPJYnIPnRWxQoPwEkSISjyKKGEK0fEF56IkRGKIqZM-LIPo1rRqawgxzXzxXNqQg-Ppco0qTZNWpmmD2eNxIuF2_hjbE9ruhlXKbkPg9qWafU_vik5nS-MfRYf_i51BBv627ZQZQCd8nWNx8rdKMWJWWcftSnOwg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADjxZEoUAGFiTaJnFeZkOIqoW2A0pFt8h2LgKBWgTpwq_HjyQgQIglyuBTrDvHvvPdfR_AKZM-PaqcYeCkrOOlKPdBEcoHEYGbKci4QPUOjyfBYOrdzPxZDc6rXhhE1MVn2FWvOpefLsRSXZX1IqJ6ff0VWJXnvu-Ybq0qZ-D5hq_AVZixMuwrk5I27cXDa1XFFXVdxe-tOeU_DyHNqvJjK9bnS38LxuXMTFnJU3eZ8654_wba-N-pb8Nm4Whal2Zl7EAN5w3F0VzUczRg4wsUYRMuDOaodbfgi9yKixpL6_4xf7AmTINzWPrCv2NG6JtE0xSxC9P-dXw16BS8Ch3hUieXsafPkMn50Egqg6RCRnlZyBR9oy1QhNQVWcDRZ6nvou1SDCMkKfGozbJMkIDsQX2-mOM-WFHEuYcsiDzCpCvicJuHSImHPPQod0QLeqWiE1GAjivui-dEBx82TaRpEmWapDBNC84qiRcDuPHH2KbSdDWuUHIL2qUtk-KPfJNyKmMYOjQ8-F3qBNYG8XiUjIaT20NYV98xZSttqOevSzySzkfOj_Wa-wCsMNIL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Robot+Teaching+With+Natural+Human%E2%80%93Robot+Interaction&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Du%2C+Guanglong&rft.au=Chen%2C+Mingxuan&rft.au=Liu%2C+Caibing&rft.au=Zhang%2C+Bo&rft.date=2018-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=65&rft.issue=12&rft.spage=9571&rft_id=info:doi/10.1109%2FTIE.2018.2823667&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |