Securing Deep Learning Based Edge Finger Vein Biometrics With Binary Decision Diagram

With built-in artificial intelligence (AI), edge devices, e.g., smart cameras, can perform tasks like detecting and tracking individuals, which is referred to as edge biometrics. As a driving force for AI, machine/deep learning plays a critical role in edge biometrics. Machine/deep learning based ed...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 15; no. 7; pp. 4244 - 4253
Main Authors Yang, Wencheng, Wang, Song, Hu, Jiankun, Zheng, Guanglou, Yang, Jucheng, Valli, Craig
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With built-in artificial intelligence (AI), edge devices, e.g., smart cameras, can perform tasks like detecting and tracking individuals, which is referred to as edge biometrics. As a driving force for AI, machine/deep learning plays a critical role in edge biometrics. Machine/deep learning based edge biometric systems outperform their nonmachine learning counterpart. However, research shows that artificial neural networks, e.g., convolutional neural networks, are invertible such that adversaries can obtain a certain amount of information about the original inputs/templates. This information leakage is not tolerable for biometric systems because biometric data in the original (raw) templates cannot be reset or replaced. Once compromised, they are lost forever. Therefore, how to prevent original biometric templates from being attacked through inverting deep neural networks is a pressing, but unsolved issue, for deep learning based biometric recognition. To address the issue, in this paper, we develop a novel biometric template protection algorithm using the binary decision diagram (BDD) for deep learning based finger-vein biometric systems. The proposed algorithm is capable of creating a new noninvertible version of the original finger-vein template, which is stacked with an artificial neural network-the multilayer extreme learning machine (ML-ELM) to generate a privacy-preserving finger-vein recognition system, named BDD-ML-ELM. The proposed BDD-ML-ELM ensures the safety of the original finger-vein template even if its transformed version is compromised. The transformed template, if compromised, can be revoked and replaced with another new version by simply changing the user-specific keys. Therefore, the BDD-ML-ELM has a clear advantage over the existing machine/deep learning based biometric systems, whose raw biometric templates are vulnerable when the artificial neural network suffers an inversion attack.
AbstractList With built-in artificial intelligence (AI), edge devices, e.g., smart cameras, can perform tasks like detecting and tracking individuals, which is referred to as edge biometrics. As a driving force for AI, machine/deep learning plays a critical role in edge biometrics. Machine/deep learning based edge biometric systems outperform their nonmachine learning counterpart. However, research shows that artificial neural networks, e.g., convolutional neural networks, are invertible such that adversaries can obtain a certain amount of information about the original inputs/templates. This information leakage is not tolerable for biometric systems because biometric data in the original (raw) templates cannot be reset or replaced. Once compromised, they are lost forever. Therefore, how to prevent original biometric templates from being attacked through inverting deep neural networks is a pressing, but unsolved issue, for deep learning based biometric recognition. To address the issue, in this paper, we develop a novel biometric template protection algorithm using the binary decision diagram (BDD) for deep learning based finger-vein biometric systems. The proposed algorithm is capable of creating a new noninvertible version of the original finger-vein template, which is stacked with an artificial neural network-the multilayer extreme learning machine (ML-ELM) to generate a privacy-preserving finger-vein recognition system, named BDD-ML-ELM. The proposed BDD-ML-ELM ensures the safety of the original finger-vein template even if its transformed version is compromised. The transformed template, if compromised, can be revoked and replaced with another new version by simply changing the user-specific keys. Therefore, the BDD-ML-ELM has a clear advantage over the existing machine/deep learning based biometric systems, whose raw biometric templates are vulnerable when the artificial neural network suffers an inversion attack.
Author Wang, Song
Valli, Craig
Zheng, Guanglou
Yang, Wencheng
Hu, Jiankun
Yang, Jucheng
Author_xml – sequence: 1
  givenname: Wencheng
  orcidid: 0000-0001-7800-2215
  surname: Yang
  fullname: Yang, Wencheng
  email: w.yang@ecu.edu.au
  organization: Security Research Institute, School of Science, Edith Cowan University, WA, Australia
– sequence: 2
  givenname: Song
  orcidid: 0000-0002-0239-7991
  surname: Wang
  fullname: Wang, Song
  email: song.wang@latrobe.edu.au
  organization: School of Engineering and Mathematical Sciences, La Trobe University, VIC, Australia
– sequence: 3
  givenname: Jiankun
  orcidid: 0000-0003-0230-1432
  surname: Hu
  fullname: Hu, Jiankun
  email: j.hu@adfa.edu.au
  organization: School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy (UNSW@ADFA), Canberra, ACT, Australia
– sequence: 4
  givenname: Guanglou
  orcidid: 0000-0002-2307-9562
  surname: Zheng
  fullname: Zheng, Guanglou
  email: g.zheng@ecu.edu.au
  organization: Security Research Institute, School of Science, Edith Cowan University, WA, Australia
– sequence: 5
  givenname: Jucheng
  surname: Yang
  fullname: Yang, Jucheng
  email: jcyang@tust.edu.cn
  organization: College of Computer Science and Information Engineering, Tianjin University of Science and Technology, Tianjin, China
– sequence: 6
  givenname: Craig
  surname: Valli
  fullname: Valli, Craig
  email: c.valli@ecu.edu.au
  organization: Security Research Institute, School of Science, Edith Cowan University, WA, Australia
BookMark eNp9kM1PAjEQxRuDiYDeTbw08bw43W677VHADxISD4Iem9qdxRLYxXY5-N9bAvHgwdPMS95vPt6A9Jq2QUKuGYwYA323mM1GOTA9yjWAlOKM9JkuWAYgoJd6IVjGc-AXZBDjGoCXwHWfLF_R7YNvVnSKuKNztKE5qLGNWNGHaoX0MWkM9A19Q8e-3WIXvIv03XefSTc2fCfW-ejbhk69XQW7vSTntd1EvDrVIVk-Piwmz9n85Wk2uZ9nLtesywTkyIVApRmXSkqOABZROlU6XlYWBXMfWlcIquJF6mslmZNWiVqXhaj5kNwe5-5C-7XH2Jl1uw9NWmnyXPBC6lLy5JJHlwttjAFr43xnu3RvF6zfGAbmEKFJEZpDhOYUYQLhD7gLfpse_g-5OSIeEX_tShYqV4L_AAk2fJI
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TEVC_2022_3170212
crossref_primary_10_1016_j_patcog_2023_109643
crossref_primary_10_1007_s40031_024_01073_4
crossref_primary_10_1002_widm_1521
crossref_primary_10_1007_s10489_022_04153_4
crossref_primary_10_1109_TIFS_2023_3243782
crossref_primary_10_1109_TIFS_2024_3436528
crossref_primary_10_1109_TII_2021_3101208
crossref_primary_10_1016_j_ins_2020_09_045
crossref_primary_10_3934_mbe_2023490
crossref_primary_10_1007_s11227_023_05143_0
crossref_primary_10_1016_j_cose_2022_102750
crossref_primary_10_3390_s21186163
crossref_primary_10_1109_TII_2020_3001612
crossref_primary_10_1109_TIM_2021_3132332
crossref_primary_10_1016_j_engappai_2025_110586
crossref_primary_10_1049_bme2_12068
crossref_primary_10_1016_j_eswa_2022_116603
crossref_primary_10_1109_COMST_2020_3011561
crossref_primary_10_1109_TIFS_2021_3128826
crossref_primary_10_1109_TBIOM_2021_3076444
crossref_primary_10_1109_JPROC_2021_3119950
crossref_primary_10_1007_s11042_023_14634_4
crossref_primary_10_1016_j_matpr_2020_08_742
crossref_primary_10_1109_TBIOM_2022_3152345
crossref_primary_10_1016_j_knosys_2021_107159
crossref_primary_10_1109_TII_2022_3195938
crossref_primary_10_1007_s00530_021_00810_9
crossref_primary_10_1016_j_dcan_2022_10_006
crossref_primary_10_1016_j_infrared_2020_103221
crossref_primary_10_1109_TBIOM_2024_3364021
crossref_primary_10_1007_s11042_024_20102_4
crossref_primary_10_1016_j_patcog_2020_107735
crossref_primary_10_1007_s10462_021_09976_0
crossref_primary_10_1049_cit2_12283
crossref_primary_10_1007_s42979_024_03148_x
crossref_primary_10_1002_tee_23490
crossref_primary_10_1007_s11042_020_09303_9
crossref_primary_10_1007_s11831_021_09560_3
crossref_primary_10_1016_j_inffus_2024_102716
crossref_primary_10_2478_jsiot_2024_0007
crossref_primary_10_3233_JIFS_212095
crossref_primary_10_1016_j_adhoc_2021_102607
Cites_doi 10.1109/TC.1978.1675141
10.1109/CCST.2006.313444
10.1007/s11042-017-4501-8
10.1007/978-3-319-03584-0_7
10.1007/s12559-014-9254-3
10.1016/j.neucom.2005.12.126
10.1109/BTAS.2017.8272760
10.1016/j.patcog.2016.11.002
10.1109/ICIP.2016.7532938
10.1109/TNNLS.2015.2424995
10.1109/TCSVT.2017.2684833
10.1016/j.patcog.2004.04.011
10.3906/elk-1311-43
10.1109/TIFS.2017.2689724
10.1109/ICB.2013.6612966
10.1155/2018/7107295
10.1016/j.dsp.2014.12.003
10.1109/KSE.2015.12
10.1109/TIFS.2018.2850320
10.24963/ijcai.2017/236
10.1109/BIOSIG.2016.7736908
10.1016/j.patcog.2018.01.026
10.1007/978-3-642-25449-9_33
10.3390/s17061297
10.1016/j.neucom.2018.02.042
10.1007/s00138-004-0149-2
10.1038/nature14539
10.1109/CISP.2013.6744030
10.1109/JIOT.2016.2579198
10.1007/978-3-642-38631-2_71
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2019.2900665
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 4253
ExternalDocumentID 10_1109_TII_2019_2900665
8648285
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-502e355e891368663e00aee6c87c37dae51cb99de08d341cbf861c6a85f9745f3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:26:40 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Tue Jul 01 03:00:04 EDT 2025
Wed Aug 27 05:52:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-502e355e891368663e00aee6c87c37dae51cb99de08d341cbf861c6a85f9745f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0230-1432
0000-0001-7800-2215
0000-0002-0239-7991
0000-0002-2307-9562
PQID 2253469763
PQPubID 85507
PageCount 10
ParticipantIDs ieee_primary_8648285
crossref_citationtrail_10_1109_TII_2019_2900665
crossref_primary_10_1109_TII_2019_2900665
proquest_journals_2253469763
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref33
ref11
ref32
ref10
ref1
ref17
lecun (ref2) 2015; 521
ref16
ref19
ref18
kasun (ref25) 2013; 28
ref24
ref26
ref20
ref22
ref21
(ref30) 2018
ref28
ref27
ref29
vitomir (ref23) 2010; 2010
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 28
  start-page: 31
  year: 2013
  ident: ref25
  article-title: Representational learning with extreme learning machine for big data
  publication-title: IEEE Intell Syst
– ident: ref4
  doi: 10.1109/TC.1978.1675141
– ident: ref33
  doi: 10.1109/CCST.2006.313444
– ident: ref11
  doi: 10.1007/s11042-017-4501-8
– ident: ref22
  doi: 10.1007/978-3-319-03584-0_7
– ident: ref18
  doi: 10.1007/s12559-014-9254-3
– ident: ref17
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref32
  doi: 10.1109/BTAS.2017.8272760
– ident: ref6
  doi: 10.1016/j.patcog.2016.11.002
– ident: ref9
  doi: 10.1109/ICIP.2016.7532938
– ident: ref26
  doi: 10.1109/TNNLS.2015.2424995
– ident: ref7
  doi: 10.1109/TCSVT.2017.2684833
– ident: ref24
  doi: 10.1016/j.patcog.2004.04.011
– ident: ref12
  doi: 10.3906/elk-1311-43
– ident: ref14
  doi: 10.1109/TIFS.2017.2689724
– ident: ref29
  doi: 10.1109/ICB.2013.6612966
– ident: ref31
  doi: 10.1155/2018/7107295
– ident: ref5
  doi: 10.1016/j.dsp.2014.12.003
– ident: ref10
  doi: 10.1109/KSE.2015.12
– ident: ref15
  doi: 10.1109/TIFS.2018.2850320
– ident: ref19
  doi: 10.24963/ijcai.2017/236
– ident: ref8
  doi: 10.1109/BIOSIG.2016.7736908
– ident: ref21
  doi: 10.1016/j.patcog.2018.01.026
– year: 2018
  ident: ref30
  publication-title: Source Codes of ML-ELM
– ident: ref27
  doi: 10.1007/978-3-642-25449-9_33
– volume: 2010
  year: 2010
  ident: ref23
  article-title: The complete Gabor-Fisher classifier for robust face recognition
  publication-title: EURASIP J Advances Signal Process
– ident: ref13
  doi: 10.3390/s17061297
– ident: ref16
  doi: 10.1016/j.neucom.2018.02.042
– ident: ref3
  doi: 10.1007/s00138-004-0149-2
– volume: 521
  start-page: 436
  year: 2015
  ident: ref2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref28
  doi: 10.1109/CISP.2013.6744030
– ident: ref1
  doi: 10.1109/JIOT.2016.2579198
– ident: ref20
  doi: 10.1007/978-3-642-38631-2_71
SSID ssj0037039
Score 2.4236255
Snippet With built-in artificial intelligence (AI), edge devices, e.g., smart cameras, can perform tasks like detecting and tracking individuals, which is referred to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4244
SubjectTerms Algorithms
Artificial intelligence
Artificial intelligence (AI)
Artificial neural networks
binary decision diagram (BDD)
biometric template protection
Biometrics
Biometrics (access control)
Deep learning
edge biometrics
edge computing
Feature extraction
finger vein
Machine learning
machine/deep learning
Multilayers
Neural networks
Recognition
Security
Title Securing Deep Learning Based Edge Finger Vein Biometrics With Binary Decision Diagram
URI https://ieeexplore.ieee.org/document/8648285
https://www.proquest.com/docview/2253469763
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzjwGojxUg5ckOiWvrLkyIBpQ4LTBtyqNXHHBNom6C78epy0nXgJcWuluIpi14_Y_gxwKqQvlGgrL8Mo8OyIQk-ZWHupNGT-kDjObe_w7Z3oDaObx_hxBc6XvTCI6IrPsGkfXS7fzPTCXpW1pIgs4NoqrFLgVvRqVVo3JMlVDhs19r0w4GGVkuSqNej3bQ2XagbKZRq-mCA3U-WHInbWpbsJt9W-iqKS5-YiT5v6_Rtk4383vgUbpZvJLgq52IYVnO7A-ifwwToMy6v2MbtCnLMSaHXMOmTXDLs2Y2Rdd-fH7nEyZR3bp2_h_N_YwyR_onfbyEu0xYwedjUZ2UKvXRh2rweXPa8csuDpQPm5F_MAyedAm64UkvwP5HyEKLRs67BtRhj7OlXKIJeGLJ5OMyl8LUYyzigUibNwD2rT2RT3gfFUGRWaLPMljzBKbRdvTO5E2wQZRb-iAa3q3BNdIpDbQRgviYtEuEqIU4nlVFJyqgFnS4p5gb7xx9q6PfjluvLMG3BUsTYpf8-3hPYVklySbj34neoQ1uy3i7rcI6jlrws8Ju8jT0-c2H0AgVLTag
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxsxDLcKewAeYAwQZWzkYS9IXJv7SJo80kHVAuWpBd5OvcRXqk0tgusLf_2c3F01NjTt7U6KdVbss53Y_hngm1Sh1LKjgxyTKHAjCgNthQkyZcn9IUmcu97h4a3sj5OrB_HQgLNVLwwi-uIzbLlHn8u3C7N0V2VtJRMHuLYGH8jvi6js1qrtbky6qz06qgiDOOJxnZTkuj0aDFwVl25F2uca3jghP1XlL1Ps_UtvB4Y1Z2VZyY_Wssha5vUP0Mb_Zf0jbFeBJjsvNWMXGjj_BFu_wQ_uwbi6bJ-yC8QnVkGtTlmXPJtll3aKrOdv_dgdzuas6zr1HaD_C7ufFY_07lp5ibac0sMuZhNX6rUP497l6Hs_qMYsBCbSYREIHiFFHegSllJRBIKcTxClUR0Td-wERWgyrS1yZcnnmSxXMjRyokROhxGRxwewPl_M8RAYz7TVsc3zUPEEk8z18QoKKDo2yun8K5vQrvc9NRUGuRuF8TP1ZxGuU5JU6iSVVpJqwumK4qnE3_jH2j238at11Z434bgWbVr9oC8p8RWTZpJ1PXqf6gQ2-qPhTXozuL3-DJvuO2WV7jGsF89L_EKxSJF99Sr4C7eY1rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Securing+Deep+Learning+Based+Edge+Finger+Vein+Biometrics+With+Binary+Decision+Diagram&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Yang%2C+Wencheng&rft.au=Wang%2C+Song&rft.au=Hu%2C+Jiankun&rft.au=Zheng%2C+Guanglou&rft.date=2019-07-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=15&rft.issue=7&rft.spage=4244&rft.epage=4253&rft_id=info:doi/10.1109%2FTII.2019.2900665&rft.externalDocID=8648285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon