Securing Deep Learning Based Edge Finger Vein Biometrics With Binary Decision Diagram
With built-in artificial intelligence (AI), edge devices, e.g., smart cameras, can perform tasks like detecting and tracking individuals, which is referred to as edge biometrics. As a driving force for AI, machine/deep learning plays a critical role in edge biometrics. Machine/deep learning based ed...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 15; no. 7; pp. 4244 - 4253 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With built-in artificial intelligence (AI), edge devices, e.g., smart cameras, can perform tasks like detecting and tracking individuals, which is referred to as edge biometrics. As a driving force for AI, machine/deep learning plays a critical role in edge biometrics. Machine/deep learning based edge biometric systems outperform their nonmachine learning counterpart. However, research shows that artificial neural networks, e.g., convolutional neural networks, are invertible such that adversaries can obtain a certain amount of information about the original inputs/templates. This information leakage is not tolerable for biometric systems because biometric data in the original (raw) templates cannot be reset or replaced. Once compromised, they are lost forever. Therefore, how to prevent original biometric templates from being attacked through inverting deep neural networks is a pressing, but unsolved issue, for deep learning based biometric recognition. To address the issue, in this paper, we develop a novel biometric template protection algorithm using the binary decision diagram (BDD) for deep learning based finger-vein biometric systems. The proposed algorithm is capable of creating a new noninvertible version of the original finger-vein template, which is stacked with an artificial neural network-the multilayer extreme learning machine (ML-ELM) to generate a privacy-preserving finger-vein recognition system, named BDD-ML-ELM. The proposed BDD-ML-ELM ensures the safety of the original finger-vein template even if its transformed version is compromised. The transformed template, if compromised, can be revoked and replaced with another new version by simply changing the user-specific keys. Therefore, the BDD-ML-ELM has a clear advantage over the existing machine/deep learning based biometric systems, whose raw biometric templates are vulnerable when the artificial neural network suffers an inversion attack. |
---|---|
AbstractList | With built-in artificial intelligence (AI), edge devices, e.g., smart cameras, can perform tasks like detecting and tracking individuals, which is referred to as edge biometrics. As a driving force for AI, machine/deep learning plays a critical role in edge biometrics. Machine/deep learning based edge biometric systems outperform their nonmachine learning counterpart. However, research shows that artificial neural networks, e.g., convolutional neural networks, are invertible such that adversaries can obtain a certain amount of information about the original inputs/templates. This information leakage is not tolerable for biometric systems because biometric data in the original (raw) templates cannot be reset or replaced. Once compromised, they are lost forever. Therefore, how to prevent original biometric templates from being attacked through inverting deep neural networks is a pressing, but unsolved issue, for deep learning based biometric recognition. To address the issue, in this paper, we develop a novel biometric template protection algorithm using the binary decision diagram (BDD) for deep learning based finger-vein biometric systems. The proposed algorithm is capable of creating a new noninvertible version of the original finger-vein template, which is stacked with an artificial neural network-the multilayer extreme learning machine (ML-ELM) to generate a privacy-preserving finger-vein recognition system, named BDD-ML-ELM. The proposed BDD-ML-ELM ensures the safety of the original finger-vein template even if its transformed version is compromised. The transformed template, if compromised, can be revoked and replaced with another new version by simply changing the user-specific keys. Therefore, the BDD-ML-ELM has a clear advantage over the existing machine/deep learning based biometric systems, whose raw biometric templates are vulnerable when the artificial neural network suffers an inversion attack. |
Author | Wang, Song Valli, Craig Zheng, Guanglou Yang, Wencheng Hu, Jiankun Yang, Jucheng |
Author_xml | – sequence: 1 givenname: Wencheng orcidid: 0000-0001-7800-2215 surname: Yang fullname: Yang, Wencheng email: w.yang@ecu.edu.au organization: Security Research Institute, School of Science, Edith Cowan University, WA, Australia – sequence: 2 givenname: Song orcidid: 0000-0002-0239-7991 surname: Wang fullname: Wang, Song email: song.wang@latrobe.edu.au organization: School of Engineering and Mathematical Sciences, La Trobe University, VIC, Australia – sequence: 3 givenname: Jiankun orcidid: 0000-0003-0230-1432 surname: Hu fullname: Hu, Jiankun email: j.hu@adfa.edu.au organization: School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy (UNSW@ADFA), Canberra, ACT, Australia – sequence: 4 givenname: Guanglou orcidid: 0000-0002-2307-9562 surname: Zheng fullname: Zheng, Guanglou email: g.zheng@ecu.edu.au organization: Security Research Institute, School of Science, Edith Cowan University, WA, Australia – sequence: 5 givenname: Jucheng surname: Yang fullname: Yang, Jucheng email: jcyang@tust.edu.cn organization: College of Computer Science and Information Engineering, Tianjin University of Science and Technology, Tianjin, China – sequence: 6 givenname: Craig surname: Valli fullname: Valli, Craig email: c.valli@ecu.edu.au organization: Security Research Institute, School of Science, Edith Cowan University, WA, Australia |
BookMark | eNp9kM1PAjEQxRuDiYDeTbw08bw43W677VHADxISD4Iem9qdxRLYxXY5-N9bAvHgwdPMS95vPt6A9Jq2QUKuGYwYA323mM1GOTA9yjWAlOKM9JkuWAYgoJd6IVjGc-AXZBDjGoCXwHWfLF_R7YNvVnSKuKNztKE5qLGNWNGHaoX0MWkM9A19Q8e-3WIXvIv03XefSTc2fCfW-ejbhk69XQW7vSTntd1EvDrVIVk-Piwmz9n85Wk2uZ9nLtesywTkyIVApRmXSkqOABZROlU6XlYWBXMfWlcIquJF6mslmZNWiVqXhaj5kNwe5-5C-7XH2Jl1uw9NWmnyXPBC6lLy5JJHlwttjAFr43xnu3RvF6zfGAbmEKFJEZpDhOYUYQLhD7gLfpse_g-5OSIeEX_tShYqV4L_AAk2fJI |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1109_TEVC_2022_3170212 crossref_primary_10_1016_j_patcog_2023_109643 crossref_primary_10_1007_s40031_024_01073_4 crossref_primary_10_1002_widm_1521 crossref_primary_10_1007_s10489_022_04153_4 crossref_primary_10_1109_TIFS_2023_3243782 crossref_primary_10_1109_TIFS_2024_3436528 crossref_primary_10_1109_TII_2021_3101208 crossref_primary_10_1016_j_ins_2020_09_045 crossref_primary_10_3934_mbe_2023490 crossref_primary_10_1007_s11227_023_05143_0 crossref_primary_10_1016_j_cose_2022_102750 crossref_primary_10_3390_s21186163 crossref_primary_10_1109_TII_2020_3001612 crossref_primary_10_1109_TIM_2021_3132332 crossref_primary_10_1016_j_engappai_2025_110586 crossref_primary_10_1049_bme2_12068 crossref_primary_10_1016_j_eswa_2022_116603 crossref_primary_10_1109_COMST_2020_3011561 crossref_primary_10_1109_TIFS_2021_3128826 crossref_primary_10_1109_TBIOM_2021_3076444 crossref_primary_10_1109_JPROC_2021_3119950 crossref_primary_10_1007_s11042_023_14634_4 crossref_primary_10_1016_j_matpr_2020_08_742 crossref_primary_10_1109_TBIOM_2022_3152345 crossref_primary_10_1016_j_knosys_2021_107159 crossref_primary_10_1109_TII_2022_3195938 crossref_primary_10_1007_s00530_021_00810_9 crossref_primary_10_1016_j_dcan_2022_10_006 crossref_primary_10_1016_j_infrared_2020_103221 crossref_primary_10_1109_TBIOM_2024_3364021 crossref_primary_10_1007_s11042_024_20102_4 crossref_primary_10_1016_j_patcog_2020_107735 crossref_primary_10_1007_s10462_021_09976_0 crossref_primary_10_1049_cit2_12283 crossref_primary_10_1007_s42979_024_03148_x crossref_primary_10_1002_tee_23490 crossref_primary_10_1007_s11042_020_09303_9 crossref_primary_10_1007_s11831_021_09560_3 crossref_primary_10_1016_j_inffus_2024_102716 crossref_primary_10_2478_jsiot_2024_0007 crossref_primary_10_3233_JIFS_212095 crossref_primary_10_1016_j_adhoc_2021_102607 |
Cites_doi | 10.1109/TC.1978.1675141 10.1109/CCST.2006.313444 10.1007/s11042-017-4501-8 10.1007/978-3-319-03584-0_7 10.1007/s12559-014-9254-3 10.1016/j.neucom.2005.12.126 10.1109/BTAS.2017.8272760 10.1016/j.patcog.2016.11.002 10.1109/ICIP.2016.7532938 10.1109/TNNLS.2015.2424995 10.1109/TCSVT.2017.2684833 10.1016/j.patcog.2004.04.011 10.3906/elk-1311-43 10.1109/TIFS.2017.2689724 10.1109/ICB.2013.6612966 10.1155/2018/7107295 10.1016/j.dsp.2014.12.003 10.1109/KSE.2015.12 10.1109/TIFS.2018.2850320 10.24963/ijcai.2017/236 10.1109/BIOSIG.2016.7736908 10.1016/j.patcog.2018.01.026 10.1007/978-3-642-25449-9_33 10.3390/s17061297 10.1016/j.neucom.2018.02.042 10.1007/s00138-004-0149-2 10.1038/nature14539 10.1109/CISP.2013.6744030 10.1109/JIOT.2016.2579198 10.1007/978-3-642-38631-2_71 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2019.2900665 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 4253 |
ExternalDocumentID | 10_1109_TII_2019_2900665 8648285 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-502e355e891368663e00aee6c87c37dae51cb99de08d341cbf861c6a85f9745f3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:26:40 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Tue Jul 01 03:00:04 EDT 2025 Wed Aug 27 05:52:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-502e355e891368663e00aee6c87c37dae51cb99de08d341cbf861c6a85f9745f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0230-1432 0000-0001-7800-2215 0000-0002-0239-7991 0000-0002-2307-9562 |
PQID | 2253469763 |
PQPubID | 85507 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8648285 crossref_citationtrail_10_1109_TII_2019_2900665 crossref_primary_10_1109_TII_2019_2900665 proquest_journals_2253469763 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref33 ref11 ref32 ref10 ref1 ref17 lecun (ref2) 2015; 521 ref16 ref19 ref18 kasun (ref25) 2013; 28 ref24 ref26 ref20 ref22 ref21 (ref30) 2018 ref28 ref27 ref29 vitomir (ref23) 2010; 2010 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – volume: 28 start-page: 31 year: 2013 ident: ref25 article-title: Representational learning with extreme learning machine for big data publication-title: IEEE Intell Syst – ident: ref4 doi: 10.1109/TC.1978.1675141 – ident: ref33 doi: 10.1109/CCST.2006.313444 – ident: ref11 doi: 10.1007/s11042-017-4501-8 – ident: ref22 doi: 10.1007/978-3-319-03584-0_7 – ident: ref18 doi: 10.1007/s12559-014-9254-3 – ident: ref17 doi: 10.1016/j.neucom.2005.12.126 – ident: ref32 doi: 10.1109/BTAS.2017.8272760 – ident: ref6 doi: 10.1016/j.patcog.2016.11.002 – ident: ref9 doi: 10.1109/ICIP.2016.7532938 – ident: ref26 doi: 10.1109/TNNLS.2015.2424995 – ident: ref7 doi: 10.1109/TCSVT.2017.2684833 – ident: ref24 doi: 10.1016/j.patcog.2004.04.011 – ident: ref12 doi: 10.3906/elk-1311-43 – ident: ref14 doi: 10.1109/TIFS.2017.2689724 – ident: ref29 doi: 10.1109/ICB.2013.6612966 – ident: ref31 doi: 10.1155/2018/7107295 – ident: ref5 doi: 10.1016/j.dsp.2014.12.003 – ident: ref10 doi: 10.1109/KSE.2015.12 – ident: ref15 doi: 10.1109/TIFS.2018.2850320 – ident: ref19 doi: 10.24963/ijcai.2017/236 – ident: ref8 doi: 10.1109/BIOSIG.2016.7736908 – ident: ref21 doi: 10.1016/j.patcog.2018.01.026 – year: 2018 ident: ref30 publication-title: Source Codes of ML-ELM – ident: ref27 doi: 10.1007/978-3-642-25449-9_33 – volume: 2010 year: 2010 ident: ref23 article-title: The complete Gabor-Fisher classifier for robust face recognition publication-title: EURASIP J Advances Signal Process – ident: ref13 doi: 10.3390/s17061297 – ident: ref16 doi: 10.1016/j.neucom.2018.02.042 – ident: ref3 doi: 10.1007/s00138-004-0149-2 – volume: 521 start-page: 436 year: 2015 ident: ref2 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref28 doi: 10.1109/CISP.2013.6744030 – ident: ref1 doi: 10.1109/JIOT.2016.2579198 – ident: ref20 doi: 10.1007/978-3-642-38631-2_71 |
SSID | ssj0037039 |
Score | 2.4236255 |
Snippet | With built-in artificial intelligence (AI), edge devices, e.g., smart cameras, can perform tasks like detecting and tracking individuals, which is referred to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4244 |
SubjectTerms | Algorithms Artificial intelligence Artificial intelligence (AI) Artificial neural networks binary decision diagram (BDD) biometric template protection Biometrics Biometrics (access control) Deep learning edge biometrics edge computing Feature extraction finger vein Machine learning machine/deep learning Multilayers Neural networks Recognition Security |
Title | Securing Deep Learning Based Edge Finger Vein Biometrics With Binary Decision Diagram |
URI | https://ieeexplore.ieee.org/document/8648285 https://www.proquest.com/docview/2253469763 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzjwGojxUg5ckOiWvrLkyIBpQ4LTBtyqNXHHBNom6C78epy0nXgJcWuluIpi14_Y_gxwKqQvlGgrL8Mo8OyIQk-ZWHupNGT-kDjObe_w7Z3oDaObx_hxBc6XvTCI6IrPsGkfXS7fzPTCXpW1pIgs4NoqrFLgVvRqVVo3JMlVDhs19r0w4GGVkuSqNej3bQ2XagbKZRq-mCA3U-WHInbWpbsJt9W-iqKS5-YiT5v6_Rtk4383vgUbpZvJLgq52IYVnO7A-ifwwToMy6v2MbtCnLMSaHXMOmTXDLs2Y2Rdd-fH7nEyZR3bp2_h_N_YwyR_onfbyEu0xYwedjUZ2UKvXRh2rweXPa8csuDpQPm5F_MAyedAm64UkvwP5HyEKLRs67BtRhj7OlXKIJeGLJ5OMyl8LUYyzigUibNwD2rT2RT3gfFUGRWaLPMljzBKbRdvTO5E2wQZRb-iAa3q3BNdIpDbQRgviYtEuEqIU4nlVFJyqgFnS4p5gb7xx9q6PfjluvLMG3BUsTYpf8-3hPYVklySbj34neoQ1uy3i7rcI6jlrws8Ju8jT0-c2H0AgVLTag |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxsxDLcKewAeYAwQZWzkYS9IXJv7SJo80kHVAuWpBd5OvcRXqk0tgusLf_2c3F01NjTt7U6KdVbss53Y_hngm1Sh1LKjgxyTKHAjCgNthQkyZcn9IUmcu97h4a3sj5OrB_HQgLNVLwwi-uIzbLlHn8u3C7N0V2VtJRMHuLYGH8jvi6js1qrtbky6qz06qgiDOOJxnZTkuj0aDFwVl25F2uca3jghP1XlL1Ps_UtvB4Y1Z2VZyY_Wssha5vUP0Mb_Zf0jbFeBJjsvNWMXGjj_BFu_wQ_uwbi6bJ-yC8QnVkGtTlmXPJtll3aKrOdv_dgdzuas6zr1HaD_C7ufFY_07lp5ibac0sMuZhNX6rUP497l6Hs_qMYsBCbSYREIHiFFHegSllJRBIKcTxClUR0Td-wERWgyrS1yZcnnmSxXMjRyokROhxGRxwewPl_M8RAYz7TVsc3zUPEEk8z18QoKKDo2yun8K5vQrvc9NRUGuRuF8TP1ZxGuU5JU6iSVVpJqwumK4qnE3_jH2j238at11Z434bgWbVr9oC8p8RWTZpJ1PXqf6gQ2-qPhTXozuL3-DJvuO2WV7jGsF89L_EKxSJF99Sr4C7eY1rQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Securing+Deep+Learning+Based+Edge+Finger+Vein+Biometrics+With+Binary+Decision+Diagram&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Yang%2C+Wencheng&rft.au=Wang%2C+Song&rft.au=Hu%2C+Jiankun&rft.au=Zheng%2C+Guanglou&rft.date=2019-07-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=15&rft.issue=7&rft.spage=4244&rft.epage=4253&rft_id=info:doi/10.1109%2FTII.2019.2900665&rft.externalDocID=8648285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |