SynergyChain: Blockchain-Assisted Adaptive Cyber-Physical P2P Energy Trading
Industrial investments into distributed energy resource technologies are increasing and playing a pivotal role in the global transactive energy, as part of a wider drive to provide a clean and stable source of energy. The management of prosumers, which consume and as well as generate energy, with he...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 17; no. 8; pp. 5769 - 5778 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Industrial investments into distributed energy resource technologies are increasing and playing a pivotal role in the global transactive energy, as part of a wider drive to provide a clean and stable source of energy. The management of prosumers, which consume and as well as generate energy, with heterogeneous energy sources is critical for sustainable and efficient energy trading procedures. This article proposes a blockchain-assisted adaptive model, namely SynergyChain, for improving the scalability and decentralization of the prosumer grouping mechanism in the context of peer-to-peer energy trading. Smart contracts are used for storing the transaction information and for the creation of the prosumer groups. SynergyChain integrates a reinforcement learning module to further improve the overall system performance and profitability by creating a self-adaptive grouping technique. The proposed SynergyChain is developed using Python and Solidity and has been tested using Ethereum test nets. The comprehensive analysis using the hourly energy consumption dataset shows a 39.7% improvement in the performance and scalability of the system as compared to the centralized systems. The evaluation results confirm that SynergyChain can reduce the request completion time along with an 18.3% improvement in the overall profitability of the system as compared to its counterparts. |
---|---|
AbstractList | Industrial investments into distributed energy resource technologies are increasing and playing a pivotal role in the global transactive energy, as part of a wider drive to provide a clean and stable source of energy. The management of prosumers, which consume and as well as generate energy, with heterogeneous energy sources is critical for sustainable and efficient energy trading procedures. This article proposes a blockchain-assisted adaptive model, namely SynergyChain, for improving the scalability and decentralization of the prosumer grouping mechanism in the context of peer-to-peer energy trading. Smart contracts are used for storing the transaction information and for the creation of the prosumer groups. SynergyChain integrates a reinforcement learning module to further improve the overall system performance and profitability by creating a self-adaptive grouping technique. The proposed SynergyChain is developed using Python and Solidity and has been tested using Ethereum test nets. The comprehensive analysis using the hourly energy consumption dataset shows a 39.7% improvement in the performance and scalability of the system as compared to the centralized systems. The evaluation results confirm that SynergyChain can reduce the request completion time along with an 18.3% improvement in the overall profitability of the system as compared to its counterparts. |
Author | Ozkasap, Oznur Ali, Faizan Safdar Aloqaily, Moayad Bouachir, Ouns |
Author_xml | – sequence: 1 givenname: Faizan Safdar surname: Ali fullname: Ali, Faizan Safdar email: fali18@ku.edu.tr organization: Department of Computer Engineering, Koç University, Istanbul, Turkey – sequence: 2 givenname: Ouns orcidid: 0000-0001-9616-4488 surname: Bouachir fullname: Bouachir, Ouns email: ouns.bouachir@zu.ac.ae organization: Zayed University, Abu Dhabi, United Arab Emirates – sequence: 3 givenname: Oznur orcidid: 0000-0003-4343-0986 surname: Ozkasap fullname: Ozkasap, Oznur email: oozkasap@ku.edu.tr organization: Department of Computer Engineering, Koç University, Istanbul, Turkey – sequence: 4 givenname: Moayad orcidid: 0000-0003-2443-7234 surname: Aloqaily fullname: Aloqaily, Moayad email: maloqaily@ieee.org organization: Faculty of Engineering, Al Ain University, Al Ain, United Arab Emirates |
BookMark | eNp9kM9LwzAYhoNMcJveBS8Fz51fkv6Kt1mmDgYOnOeQpF-3zNrOpBP639u54cGDp-89vM_3wjMig7qpkZBrChNKQdyt5vMJAwYTDlGSRtEZGVIR0RAghkGf45iGnAG_ICPvtwA8BS6GZPHa1ejWXb5Rtr4PHqrGvJtDDqfeW99iEUwLtWvtFwZ5p9GFy03nrVFVsGTLYPYDByunCluvL8l5qSqPV6c7Jm-Ps1X-HC5enub5dBEaJmgbRsqkheKpZjqJFWihIkgY6swUOk1RlGWmhFFKZFjGmERZYqJCI-iyBECM-ZjcHv_uXPO5R9_KbbN3dT8pWcwYowlLad-CY8u4xnuHpdw5-6FcJynIgzPZO5MHZ_LkrEeSP4ixrWptU7dO2eo_8OYIWkT83REcYpZx_g3bAXtZ |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1109_JIOT_2022_3140430 crossref_primary_10_1049_rpg2_12349 crossref_primary_10_3390_electronics11234033 crossref_primary_10_1016_j_ijepes_2023_108997 crossref_primary_10_1016_j_energy_2023_130110 crossref_primary_10_1109_JIOT_2023_3311103 crossref_primary_10_1109_MWC_018_2100194 crossref_primary_10_1109_COMST_2022_3141490 crossref_primary_10_1016_j_rser_2022_112848 crossref_primary_10_1007_s12083_023_01599_2 crossref_primary_10_1016_j_compeleceng_2024_109437 crossref_primary_10_1002_er_7398 crossref_primary_10_1109_ACCESS_2022_3194161 crossref_primary_10_1109_MWC_011_2000431 crossref_primary_10_1007_s12083_021_01199_y crossref_primary_10_1109_ACCESS_2021_3132962 crossref_primary_10_1016_j_egyr_2023_04_020 crossref_primary_10_1016_j_comcom_2024_108009 crossref_primary_10_2139_ssrn_4200144 crossref_primary_10_1007_s10586_021_03435_9 crossref_primary_10_1016_j_jclepro_2022_135441 crossref_primary_10_1109_MWC_017_2100187 crossref_primary_10_1109_TITS_2024_3435001 crossref_primary_10_3390_su151310552 crossref_primary_10_4018_IJITWE_306915 crossref_primary_10_3390_su152115248 crossref_primary_10_1007_s10922_021_09610_y crossref_primary_10_1016_j_eswa_2024_124759 crossref_primary_10_3390_en14102818 crossref_primary_10_3390_s23104640 crossref_primary_10_1016_j_adhoc_2023_103243 crossref_primary_10_3390_fi16050162 crossref_primary_10_1016_j_engappai_2024_107847 crossref_primary_10_1109_ACCESS_2022_3143307 crossref_primary_10_1016_j_apenergy_2022_120085 crossref_primary_10_1016_j_spc_2025_03_002 crossref_primary_10_3390_su14137609 crossref_primary_10_1109_ACCESS_2024_3367999 crossref_primary_10_1016_j_rser_2022_112999 crossref_primary_10_1109_TGCN_2022_3140978 crossref_primary_10_1109_JPROC_2022_3181528 crossref_primary_10_1109_ACCESS_2021_3065087 crossref_primary_10_1109_MWC_015_2100177 crossref_primary_10_1016_j_rser_2023_113170 crossref_primary_10_23939_csn2024_02_001 crossref_primary_10_1109_TII_2022_3185661 crossref_primary_10_3934_mbe_2021138 |
Cites_doi | 10.1109/SSCI.2016.7849837 10.1109/TII.2019.2950809 10.1109/MNET.011.1900573 10.1016/j.apenergy.2017.06.054 10.5210/fm.v2i9.548 10.1109/ICCE.2016.7430742 10.1109/PES.2011.6039737 10.1016/j.rser.2018.10.014 10.1109/WoWMoM49955.2020.00071 10.1109/MTS.2014.2301859 10.1109/ACCESS.2019.2896108 10.1109/EUROCON.2013.6625174 10.1109/TII.2019.2893433 10.1038/nenergy.2016.32 10.1109/MC.2020.2991453 10.1109/HPCC/SmartCity/DSS.2018.00222 10.1016/j.ijepes.2015.05.008 10.1109/AFRCON.2013.6757761 10.1109/EI2.2017.8245449 10.3390/s18010162 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2020.3046744 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 5778 |
ExternalDocumentID | 10_1109_TII_2020_3046744 9305283 |
Genre | orig-research |
GrantInformation_xml | – fundername: Faculty of Engineering, Al Ain University grantid: ERF-20 – fundername: CTI Zayed University grantid: R19095 – fundername: Koç University - Tupras Energy Research Center |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-4ac7da37b2b65a0b9a4062eb8cdb77e9ff8a9caa98ef5e6486c4dbe0bff00ee53 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:23:45 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Jul 01 03:00:12 EDT 2025 Wed Aug 27 02:30:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-4ac7da37b2b65a0b9a4062eb8cdb77e9ff8a9caa98ef5e6486c4dbe0bff00ee53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9616-4488 0000-0003-2443-7234 0000-0003-4343-0986 |
PQID | 2522216271 |
PQPubID | 85507 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9305283 crossref_primary_10_1109_TII_2020_3046744 proquest_journals_2522216271 crossref_citationtrail_10_1109_TII_2020_3046744 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref23 ref15 ref14 ref20 hester (ref22) 0; 32 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref18 ref8 ref7 da silva (ref12) 2014; 5 ref9 ref4 ref3 ref6 ref5 sutton (ref19) 2011 |
References_xml | – ident: ref21 doi: 10.1109/SSCI.2016.7849837 – ident: ref20 doi: 10.1109/TII.2019.2950809 – ident: ref14 doi: 10.1109/MNET.011.1900573 – volume: 5 start-page: 402?410 year: 2014 ident: ref12 article-title: The impact of smart grid prosumer grouping on forecasting accuracy and its benefits for local electricity market trading publication-title: IEEE Trans Smart Grid – ident: ref4 doi: 10.1016/j.apenergy.2017.06.054 – ident: ref18 doi: 10.5210/fm.v2i9.548 – ident: ref10 doi: 10.1109/ICCE.2016.7430742 – ident: ref5 doi: 10.1109/PES.2011.6039737 – ident: ref1 doi: 10.1016/j.rser.2018.10.014 – ident: ref13 doi: 10.1109/WoWMoM49955.2020.00071 – ident: ref8 doi: 10.1109/MTS.2014.2301859 – ident: ref3 doi: 10.1109/ACCESS.2019.2896108 – ident: ref9 doi: 10.1109/EUROCON.2013.6625174 – ident: ref15 doi: 10.1109/TII.2019.2893433 – ident: ref17 doi: 10.1038/nenergy.2016.32 – year: 2011 ident: ref19 publication-title: Reinforcement Learning An Introduction – ident: ref2 doi: 10.1109/MC.2020.2991453 – ident: ref23 doi: 10.1109/HPCC/SmartCity/DSS.2018.00222 – ident: ref7 doi: 10.1016/j.ijepes.2015.05.008 – ident: ref11 doi: 10.1109/AFRCON.2013.6757761 – volume: 32 start-page: 3223 year: 0 ident: ref22 article-title: Deep Q-learning from demonstrations publication-title: Proc 32nd AAAI Conf Artif Intell – ident: ref6 doi: 10.1109/EI2.2017.8245449 – ident: ref16 doi: 10.3390/s18010162 |
SSID | ssj0037039 |
Score | 2.5196486 |
Snippet | Industrial investments into distributed energy resource technologies are increasing and playing a pivotal role in the global transactive energy, as part of a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5769 |
SubjectTerms | Adaptive systems Blockchain Clean energy Completion time Cryptography distributed energy resources Energy Energy consumption Energy management Energy sources Microgrids peer-to-peer (P2P) energy trading Profitability prosumers Scalability self-adaptive grouping Smart contracts Smart grids Smart meters Systems analysis |
Title | SynergyChain: Blockchain-Assisted Adaptive Cyber-Physical P2P Energy Trading |
URI | https://ieeexplore.ieee.org/document/9305283 https://www.proquest.com/docview/2522216271 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ootLTqAq1y6KVSvevYjhNzgxUIKlqtVJC4RX6MVUS1ILp7gF_P2ElWfanqzQdbsuabzDcTzwPgPXnFtmyMZjpixZSXyEwTJeOhKWOIVVBdlu8XfXqpPl1VV2vwcVULg4g5-QzHaZnf8sOtX6ZfZRNDykl0uA7rFLh1tVqD1ZWkuSb3Rq1KJgWXw5MkN5OLszMKBAXFpzzN1lC_UFCeqfKHIc7scrIFn4d7dUklN-Plwo39428tG__34tvwvHczi8NOL17AGs5fwrOfmg_uwPnXh1z3N_1mr-cHxRGx2o1Pa0aQJfBDcRjsXTKHxfTB4T2b9ZgWMzErjvPhgrgusd8ruDw5vpiesn62AvPClAumrK-DlbUTTleWO2OJ2QW6xgdX12hibKzx1poGY4VaNdqr4JC7GDlHrORr2JjfzvENFDxKLzVZimhQ-bpyQUntCeuaYinnmxFMBnG3vm88nuZffG9zAMJNSwC1CaC2B2gEH1Yn7rqmG__Yu5PkvdrXi3oE-wOibf9V_mgFOZui1KIud_9-ag82RcpZyQl--7CxuF_iW3I6Fu5d1rYnOifS9w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcgAOvAoipYU9cEHCidevXXMrUasE0ioSqdTbyo-xiorSqiSH9tdje3cjoAhx88GWrPlm55tZzwPgXfSKTVlrRVRASYTjSHQdOKG-LoMP0os2y_dETU7F5zN5tgUfNrUwiJiTz3CYlvkt31-6dfpVNtJROSMd3oP7kfdl2VZr9XaXR93VuTuqLAlnlPePklSPFtNpDAVZjFBpmq4hfiOhPFXljinO_HL0BI77m7VpJRfD9coO3e0fTRv_9-pP4XHnaBYHrWY8gy1cPodHv7Qf3IHZ15tc-Tc-N9-WH4tPkdcuXFqTCFqC3xcH3lwlg1iMbyxek3mHajFn8-IwHy4i2yX-ewGnR4eL8YR00xWIY7pcEWFc5Q2vLLNKGmq1idzO0NbO26pCHUJttDNG1xgkKlErJ7xFakOgFFHyl7C9vFziKyho4I6raCuCRuEqab3gykW0qxhNWVcPYNSLu3Fd6_E0AeN7k0MQqpsIUJMAajqABvB-c-Kqbbvxj707Sd6bfZ2oB7DXI9p03-WPhkV3k5WKVeXu30-9hQeTxfGsmU1PvryGhyxlsOR0vz3YXl2vcT-6ICv7JmveT2ZS1kA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SynergyChain%3A+Blockchain-Assisted+Adaptive+Cyber-Physical+P2P+Energy+Trading&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Faizan+Safdar+Ali&rft.au=Bouachir%2C+Ouns&rft.au=Ozkasap%2C+Oznur&rft.au=Aloqaily%2C+Moayad&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=8&rft.spage=5769&rft_id=info:doi/10.1109%2FTII.2020.3046744&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |