SynergyChain: Blockchain-Assisted Adaptive Cyber-Physical P2P Energy Trading

Industrial investments into distributed energy resource technologies are increasing and playing a pivotal role in the global transactive energy, as part of a wider drive to provide a clean and stable source of energy. The management of prosumers, which consume and as well as generate energy, with he...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 17; no. 8; pp. 5769 - 5778
Main Authors Ali, Faizan Safdar, Bouachir, Ouns, Ozkasap, Oznur, Aloqaily, Moayad
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Industrial investments into distributed energy resource technologies are increasing and playing a pivotal role in the global transactive energy, as part of a wider drive to provide a clean and stable source of energy. The management of prosumers, which consume and as well as generate energy, with heterogeneous energy sources is critical for sustainable and efficient energy trading procedures. This article proposes a blockchain-assisted adaptive model, namely SynergyChain, for improving the scalability and decentralization of the prosumer grouping mechanism in the context of peer-to-peer energy trading. Smart contracts are used for storing the transaction information and for the creation of the prosumer groups. SynergyChain integrates a reinforcement learning module to further improve the overall system performance and profitability by creating a self-adaptive grouping technique. The proposed SynergyChain is developed using Python and Solidity and has been tested using Ethereum test nets. The comprehensive analysis using the hourly energy consumption dataset shows a 39.7% improvement in the performance and scalability of the system as compared to the centralized systems. The evaluation results confirm that SynergyChain can reduce the request completion time along with an 18.3% improvement in the overall profitability of the system as compared to its counterparts.
AbstractList Industrial investments into distributed energy resource technologies are increasing and playing a pivotal role in the global transactive energy, as part of a wider drive to provide a clean and stable source of energy. The management of prosumers, which consume and as well as generate energy, with heterogeneous energy sources is critical for sustainable and efficient energy trading procedures. This article proposes a blockchain-assisted adaptive model, namely SynergyChain, for improving the scalability and decentralization of the prosumer grouping mechanism in the context of peer-to-peer energy trading. Smart contracts are used for storing the transaction information and for the creation of the prosumer groups. SynergyChain integrates a reinforcement learning module to further improve the overall system performance and profitability by creating a self-adaptive grouping technique. The proposed SynergyChain is developed using Python and Solidity and has been tested using Ethereum test nets. The comprehensive analysis using the hourly energy consumption dataset shows a 39.7% improvement in the performance and scalability of the system as compared to the centralized systems. The evaluation results confirm that SynergyChain can reduce the request completion time along with an 18.3% improvement in the overall profitability of the system as compared to its counterparts.
Author Ozkasap, Oznur
Ali, Faizan Safdar
Aloqaily, Moayad
Bouachir, Ouns
Author_xml – sequence: 1
  givenname: Faizan Safdar
  surname: Ali
  fullname: Ali, Faizan Safdar
  email: fali18@ku.edu.tr
  organization: Department of Computer Engineering, Koç University, Istanbul, Turkey
– sequence: 2
  givenname: Ouns
  orcidid: 0000-0001-9616-4488
  surname: Bouachir
  fullname: Bouachir, Ouns
  email: ouns.bouachir@zu.ac.ae
  organization: Zayed University, Abu Dhabi, United Arab Emirates
– sequence: 3
  givenname: Oznur
  orcidid: 0000-0003-4343-0986
  surname: Ozkasap
  fullname: Ozkasap, Oznur
  email: oozkasap@ku.edu.tr
  organization: Department of Computer Engineering, Koç University, Istanbul, Turkey
– sequence: 4
  givenname: Moayad
  orcidid: 0000-0003-2443-7234
  surname: Aloqaily
  fullname: Aloqaily, Moayad
  email: maloqaily@ieee.org
  organization: Faculty of Engineering, Al Ain University, Al Ain, United Arab Emirates
BookMark eNp9kM9LwzAYhoNMcJveBS8Fz51fkv6Kt1mmDgYOnOeQpF-3zNrOpBP639u54cGDp-89vM_3wjMig7qpkZBrChNKQdyt5vMJAwYTDlGSRtEZGVIR0RAghkGf45iGnAG_ICPvtwA8BS6GZPHa1ejWXb5Rtr4PHqrGvJtDDqfeW99iEUwLtWvtFwZ5p9GFy03nrVFVsGTLYPYDByunCluvL8l5qSqPV6c7Jm-Ps1X-HC5enub5dBEaJmgbRsqkheKpZjqJFWihIkgY6swUOk1RlGWmhFFKZFjGmERZYqJCI-iyBECM-ZjcHv_uXPO5R9_KbbN3dT8pWcwYowlLad-CY8u4xnuHpdw5-6FcJynIgzPZO5MHZ_LkrEeSP4ixrWptU7dO2eo_8OYIWkT83REcYpZx_g3bAXtZ
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_JIOT_2022_3140430
crossref_primary_10_1049_rpg2_12349
crossref_primary_10_3390_electronics11234033
crossref_primary_10_1016_j_ijepes_2023_108997
crossref_primary_10_1016_j_energy_2023_130110
crossref_primary_10_1109_JIOT_2023_3311103
crossref_primary_10_1109_MWC_018_2100194
crossref_primary_10_1109_COMST_2022_3141490
crossref_primary_10_1016_j_rser_2022_112848
crossref_primary_10_1007_s12083_023_01599_2
crossref_primary_10_1016_j_compeleceng_2024_109437
crossref_primary_10_1002_er_7398
crossref_primary_10_1109_ACCESS_2022_3194161
crossref_primary_10_1109_MWC_011_2000431
crossref_primary_10_1007_s12083_021_01199_y
crossref_primary_10_1109_ACCESS_2021_3132962
crossref_primary_10_1016_j_egyr_2023_04_020
crossref_primary_10_1016_j_comcom_2024_108009
crossref_primary_10_2139_ssrn_4200144
crossref_primary_10_1007_s10586_021_03435_9
crossref_primary_10_1016_j_jclepro_2022_135441
crossref_primary_10_1109_MWC_017_2100187
crossref_primary_10_1109_TITS_2024_3435001
crossref_primary_10_3390_su151310552
crossref_primary_10_4018_IJITWE_306915
crossref_primary_10_3390_su152115248
crossref_primary_10_1007_s10922_021_09610_y
crossref_primary_10_1016_j_eswa_2024_124759
crossref_primary_10_3390_en14102818
crossref_primary_10_3390_s23104640
crossref_primary_10_1016_j_adhoc_2023_103243
crossref_primary_10_3390_fi16050162
crossref_primary_10_1016_j_engappai_2024_107847
crossref_primary_10_1109_ACCESS_2022_3143307
crossref_primary_10_1016_j_apenergy_2022_120085
crossref_primary_10_1016_j_spc_2025_03_002
crossref_primary_10_3390_su14137609
crossref_primary_10_1109_ACCESS_2024_3367999
crossref_primary_10_1016_j_rser_2022_112999
crossref_primary_10_1109_TGCN_2022_3140978
crossref_primary_10_1109_JPROC_2022_3181528
crossref_primary_10_1109_ACCESS_2021_3065087
crossref_primary_10_1109_MWC_015_2100177
crossref_primary_10_1016_j_rser_2023_113170
crossref_primary_10_23939_csn2024_02_001
crossref_primary_10_1109_TII_2022_3185661
crossref_primary_10_3934_mbe_2021138
Cites_doi 10.1109/SSCI.2016.7849837
10.1109/TII.2019.2950809
10.1109/MNET.011.1900573
10.1016/j.apenergy.2017.06.054
10.5210/fm.v2i9.548
10.1109/ICCE.2016.7430742
10.1109/PES.2011.6039737
10.1016/j.rser.2018.10.014
10.1109/WoWMoM49955.2020.00071
10.1109/MTS.2014.2301859
10.1109/ACCESS.2019.2896108
10.1109/EUROCON.2013.6625174
10.1109/TII.2019.2893433
10.1038/nenergy.2016.32
10.1109/MC.2020.2991453
10.1109/HPCC/SmartCity/DSS.2018.00222
10.1016/j.ijepes.2015.05.008
10.1109/AFRCON.2013.6757761
10.1109/EI2.2017.8245449
10.3390/s18010162
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.3046744
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 5778
ExternalDocumentID 10_1109_TII_2020_3046744
9305283
Genre orig-research
GrantInformation_xml – fundername: Faculty of Engineering, Al Ain University
  grantid: ERF-20
– fundername: CTI Zayed University
  grantid: R19095
– fundername: Koç University - Tupras Energy Research Center
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-4ac7da37b2b65a0b9a4062eb8cdb77e9ff8a9caa98ef5e6486c4dbe0bff00ee53
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:23:45 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Jul 01 03:00:12 EDT 2025
Wed Aug 27 02:30:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4ac7da37b2b65a0b9a4062eb8cdb77e9ff8a9caa98ef5e6486c4dbe0bff00ee53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9616-4488
0000-0003-2443-7234
0000-0003-4343-0986
PQID 2522216271
PQPubID 85507
PageCount 10
ParticipantIDs ieee_primary_9305283
crossref_primary_10_1109_TII_2020_3046744
proquest_journals_2522216271
crossref_citationtrail_10_1109_TII_2020_3046744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref23
ref15
ref14
ref20
hester (ref22) 0; 32
ref11
ref10
ref21
ref2
ref1
ref17
ref16
ref18
ref8
ref7
da silva (ref12) 2014; 5
ref9
ref4
ref3
ref6
ref5
sutton (ref19) 2011
References_xml – ident: ref21
  doi: 10.1109/SSCI.2016.7849837
– ident: ref20
  doi: 10.1109/TII.2019.2950809
– ident: ref14
  doi: 10.1109/MNET.011.1900573
– volume: 5
  start-page: 402?410
  year: 2014
  ident: ref12
  article-title: The impact of smart grid prosumer grouping on forecasting accuracy and its benefits for local electricity market trading
  publication-title: IEEE Trans Smart Grid
– ident: ref4
  doi: 10.1016/j.apenergy.2017.06.054
– ident: ref18
  doi: 10.5210/fm.v2i9.548
– ident: ref10
  doi: 10.1109/ICCE.2016.7430742
– ident: ref5
  doi: 10.1109/PES.2011.6039737
– ident: ref1
  doi: 10.1016/j.rser.2018.10.014
– ident: ref13
  doi: 10.1109/WoWMoM49955.2020.00071
– ident: ref8
  doi: 10.1109/MTS.2014.2301859
– ident: ref3
  doi: 10.1109/ACCESS.2019.2896108
– ident: ref9
  doi: 10.1109/EUROCON.2013.6625174
– ident: ref15
  doi: 10.1109/TII.2019.2893433
– ident: ref17
  doi: 10.1038/nenergy.2016.32
– year: 2011
  ident: ref19
  publication-title: Reinforcement Learning An Introduction
– ident: ref2
  doi: 10.1109/MC.2020.2991453
– ident: ref23
  doi: 10.1109/HPCC/SmartCity/DSS.2018.00222
– ident: ref7
  doi: 10.1016/j.ijepes.2015.05.008
– ident: ref11
  doi: 10.1109/AFRCON.2013.6757761
– volume: 32
  start-page: 3223
  year: 0
  ident: ref22
  article-title: Deep Q-learning from demonstrations
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref6
  doi: 10.1109/EI2.2017.8245449
– ident: ref16
  doi: 10.3390/s18010162
SSID ssj0037039
Score 2.5196486
Snippet Industrial investments into distributed energy resource technologies are increasing and playing a pivotal role in the global transactive energy, as part of a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5769
SubjectTerms Adaptive systems
Blockchain
Clean energy
Completion time
Cryptography
distributed energy resources
Energy
Energy consumption
Energy management
Energy sources
Microgrids
peer-to-peer (P2P) energy trading
Profitability
prosumers
Scalability
self-adaptive grouping
Smart contracts
Smart grids
Smart meters
Systems analysis
Title SynergyChain: Blockchain-Assisted Adaptive Cyber-Physical P2P Energy Trading
URI https://ieeexplore.ieee.org/document/9305283
https://www.proquest.com/docview/2522216271
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ootLTqAq1y6KVSvevYjhNzgxUIKlqtVJC4RX6MVUS1ILp7gF_P2ElWfanqzQdbsuabzDcTzwPgPXnFtmyMZjpixZSXyEwTJeOhKWOIVVBdlu8XfXqpPl1VV2vwcVULg4g5-QzHaZnf8sOtX6ZfZRNDykl0uA7rFLh1tVqD1ZWkuSb3Rq1KJgWXw5MkN5OLszMKBAXFpzzN1lC_UFCeqfKHIc7scrIFn4d7dUklN-Plwo39428tG__34tvwvHczi8NOL17AGs5fwrOfmg_uwPnXh1z3N_1mr-cHxRGx2o1Pa0aQJfBDcRjsXTKHxfTB4T2b9ZgWMzErjvPhgrgusd8ruDw5vpiesn62AvPClAumrK-DlbUTTleWO2OJ2QW6xgdX12hibKzx1poGY4VaNdqr4JC7GDlHrORr2JjfzvENFDxKLzVZimhQ-bpyQUntCeuaYinnmxFMBnG3vm88nuZffG9zAMJNSwC1CaC2B2gEH1Yn7rqmG__Yu5PkvdrXi3oE-wOibf9V_mgFOZui1KIud_9-ag82RcpZyQl--7CxuF_iW3I6Fu5d1rYnOifS9w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcgAOvAoipYU9cEHCidevXXMrUasE0ioSqdTbyo-xiorSqiSH9tdje3cjoAhx88GWrPlm55tZzwPgXfSKTVlrRVRASYTjSHQdOKG-LoMP0os2y_dETU7F5zN5tgUfNrUwiJiTz3CYlvkt31-6dfpVNtJROSMd3oP7kfdl2VZr9XaXR93VuTuqLAlnlPePklSPFtNpDAVZjFBpmq4hfiOhPFXljinO_HL0BI77m7VpJRfD9coO3e0fTRv_9-pP4XHnaBYHrWY8gy1cPodHv7Qf3IHZ15tc-Tc-N9-WH4tPkdcuXFqTCFqC3xcH3lwlg1iMbyxek3mHajFn8-IwHy4i2yX-ewGnR4eL8YR00xWIY7pcEWFc5Q2vLLNKGmq1idzO0NbO26pCHUJttDNG1xgkKlErJ7xFakOgFFHyl7C9vFziKyho4I6raCuCRuEqab3gykW0qxhNWVcPYNSLu3Fd6_E0AeN7k0MQqpsIUJMAajqABvB-c-Kqbbvxj707Sd6bfZ2oB7DXI9p03-WPhkV3k5WKVeXu30-9hQeTxfGsmU1PvryGhyxlsOR0vz3YXl2vcT-6ICv7JmveT2ZS1kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SynergyChain%3A+Blockchain-Assisted+Adaptive+Cyber-Physical+P2P+Energy+Trading&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Faizan+Safdar+Ali&rft.au=Bouachir%2C+Ouns&rft.au=Ozkasap%2C+Oznur&rft.au=Aloqaily%2C+Moayad&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=8&rft.spage=5769&rft_id=info:doi/10.1109%2FTII.2020.3046744&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon