Radiation Effects in AlGaN/GaN HEMTs
An overview is presented of displacement damage (DD) effects, total-ionizing-dose (TID) effects, and single-event effects in AlGaN/GaN HEMTs. High-fluence proton-induced DD creates point defects and impurity complexes at fluences that are comparable to or higher than those encountered in space appli...
Saved in:
Published in | IEEE transactions on nuclear science Vol. 69; no. 5; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9499 1558-1578 |
DOI | 10.1109/TNS.2022.3147143 |
Cover
Loading…
Abstract | An overview is presented of displacement damage (DD) effects, total-ionizing-dose (TID) effects, and single-event effects in AlGaN/GaN HEMTs. High-fluence proton-induced DD creates point defects and impurity complexes at fluences that are comparable to or higher than those encountered in space applications. Defect and impurity dehydrogenation also contributes significantly to the DD/TID response at fluences typical of realistic space environments. The bias applied during irradiation can affect the DD/TID response strongly. Bias-stress before irradiation can lead to enhanced proton-induced degradation of AlGaN/GaN HEMTs. Low-frequency noise measurements and density functional calculations provide insight into defect micro-structures and energy levels. GaN-based HEMTs can be quite vulnerable to single-event effects in space. Of particular concern is single-event burnout (SEB). The vulnerabilities of GaN-based devices to SEB at voltages below rated limits and significant device-to-device variations in SEB response lead to significant voltage derating for GaN-based power devices in space systems. Developing an improved understanding of the effects of defects and hydrogen on the radiation response of AlGaN/GaN HEMTs can improve the DD/TID response by reducing threshold-voltage shifts and transconductance degradation. Reducing defect densities may also reduce the variation in SEB response, enabling reliable device operation at higher voltages in future space systems. |
---|---|
AbstractList | An overview is presented of displacement damage (DD) effects, total-ionizing-dose (TID) effects, and single-event effects in AlGaN/GaN high electron mobility transistors (HEMTs). High-fluence proton-induced DD creates point defects and impurity complexes at fluences that are comparable to or higher than those encountered in space applications. Defect and impurity dehydrogenation also contributes significantly to the DD/TID response at fluences typical of realistic space environments. The bias applied during irradiation can affect the DD/TID response strongly. Bias stress before irradiation can lead to enhanced proton-induced degradation of AlGaN/GaN HEMTs. Low-frequency noise measurements and density functional calculations provide insight into defect microstructures and energy levels. GaN-based HEMTs can be quite vulnerable to single-event effects in space. Of particular concern is single-event burnout (SEB). The vulnerabilities of GaN-based devices to SEB at voltages below rated limits and significant device-to-device variations in SEB response lead to significant voltage derating for GaN-based power devices in space systems. Developing an improved understanding of the effects of defects and hydrogen on the radiation response of AlGaN/GaN HEMTs can improve the DD/TID response by reducing threshold-voltage shifts and transconductance degradation. Reducing defect densities may also reduce the variation in SEB response, enabling reliable device operation at higher voltages in future space systems. An overview is presented of displacement damage (DD) effects, total-ionizing-dose (TID) effects, and single-event effects in AlGaN/GaN HEMTs. High-fluence proton-induced DD creates point defects and impurity complexes at fluences that are comparable to or higher than those encountered in space applications. Defect and impurity dehydrogenation also contributes significantly to the DD/TID response at fluences typical of realistic space environments. The bias applied during irradiation can affect the DD/TID response strongly. Bias-stress before irradiation can lead to enhanced proton-induced degradation of AlGaN/GaN HEMTs. Low-frequency noise measurements and density functional calculations provide insight into defect micro-structures and energy levels. GaN-based HEMTs can be quite vulnerable to single-event effects in space. Of particular concern is single-event burnout (SEB). The vulnerabilities of GaN-based devices to SEB at voltages below rated limits and significant device-to-device variations in SEB response lead to significant voltage derating for GaN-based power devices in space systems. Developing an improved understanding of the effects of defects and hydrogen on the radiation response of AlGaN/GaN HEMTs can improve the DD/TID response by reducing threshold-voltage shifts and transconductance degradation. Reducing defect densities may also reduce the variation in SEB response, enabling reliable device operation at higher voltages in future space systems. |
Author | Zhang, En Xia Pantelides, Sokrates T. Fleetwood, Daniel M. Schrimpf, Ronald D. |
Author_xml | – sequence: 1 givenname: Daniel M. surname: Fleetwood fullname: Fleetwood, Daniel M. organization: Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235 USA. (e-mail: dan.fleetwood@vanderbilt.edu) – sequence: 2 givenname: En Xia surname: Zhang fullname: Zhang, En Xia organization: Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235 USA – sequence: 3 givenname: Ronald D. surname: Schrimpf fullname: Schrimpf, Ronald D. organization: Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235 USA – sequence: 4 givenname: Sokrates T. surname: Pantelides fullname: Pantelides, Sokrates T. organization: Department of Physics and Astronomy and the Dept. of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235 USA |
BookMark | eNp9kE1LAzEQhoNUsK3eBS8Let02k4_ZzbGU2gq1gtZzyKZZSKm7Ndke_Pemtnjw4CEMYd5nhnkGpNe0jSPkFugIgKrxevU2YpSxEQdRgOAXpA9SljnIouyRPqVQ5koodUUGMW7TV0gq--Th1Wy86XzbZLO6draLmW-yyW5uVuP0ssXseR2vyWVtdtHdnOuQvD_O1tNFvnyZP00ny9wyBV0uSqgqaSUzrLCi2qBDBIbKMcaRqmpjucOi4jViaoMSRsmKUcscKMmh5ENyf5q7D-3nwcVOb9tDaNJKzRBlKUBSkVJ4StnQxhhcra3vfk7ogvE7DVQfjehkRB-N6LORBNI_4D74DxO-_kPuToh3zv3GFSqBFPg3xIFpmQ |
CODEN | IETNAE |
CitedBy_id | crossref_primary_10_1109_TNS_2024_3520476 crossref_primary_10_1016_j_nimb_2025_165635 crossref_primary_10_1103_PhysRevB_108_155203 crossref_primary_10_1007_s12633_023_02506_3 crossref_primary_10_1063_5_0146638 crossref_primary_10_1109_TNS_2023_3316930 crossref_primary_10_1109_TNS_2025_3543451 crossref_primary_10_1002_pssr_202200171 crossref_primary_10_1109_TNS_2023_3346834 crossref_primary_10_1063_5_0203047 crossref_primary_10_1063_5_0186802 crossref_primary_10_1109_TED_2024_3487087 crossref_primary_10_1063_5_0169886 crossref_primary_10_1109_TNS_2024_3370190 crossref_primary_10_1109_LED_2024_3403682 crossref_primary_10_3390_mi15080950 crossref_primary_10_1007_s41365_024_01567_2 crossref_primary_10_1039_D3NR02427J crossref_primary_10_1063_5_0106905 crossref_primary_10_1109_TNS_2024_3385708 crossref_primary_10_1109_TNS_2025_3529188 crossref_primary_10_1109_TNS_2023_3323548 crossref_primary_10_1063_5_0190371 crossref_primary_10_1088_1361_6463_ad8b58 crossref_primary_10_1016_j_radphyschem_2023_111244 crossref_primary_10_1116_6_0002628 crossref_primary_10_1063_5_0189744 crossref_primary_10_1109_TNS_2023_3332126 crossref_primary_10_1016_j_micrna_2023_207653 crossref_primary_10_1063_5_0190614 crossref_primary_10_1109_ACCESS_2024_3368870 crossref_primary_10_1109_LSSC_2024_3386870 crossref_primary_10_1088_1361_6463_ad3f29 crossref_primary_10_1109_TNS_2022_3220235 crossref_primary_10_1063_5_0230997 crossref_primary_10_1088_1361_6463_accfa7 crossref_primary_10_1109_TED_2023_3347212 crossref_primary_10_1109_TNS_2024_3445351 crossref_primary_10_1109_TED_2023_3287816 crossref_primary_10_1109_TED_2025_3528873 crossref_primary_10_1109_TNS_2023_3237179 crossref_primary_10_1109_TNS_2023_3237979 crossref_primary_10_1109_TED_2024_3471986 crossref_primary_10_1109_TNS_2023_3336836 crossref_primary_10_1109_LED_2024_3501073 crossref_primary_10_1109_TNS_2024_3370970 crossref_primary_10_1063_5_0109606 crossref_primary_10_1063_5_0103302 crossref_primary_10_1149_2162_8777_ac7f5a crossref_primary_10_1109_TNS_2022_3199269 crossref_primary_10_1016_j_nimb_2023_165120 crossref_primary_10_1007_s00339_023_06756_1 crossref_primary_10_1088_1402_4896_ad22c5 |
Cites_doi | 10.1103/PhysRevB.58.12571 10.1109/TNS.2014.2365545 10.1109/TNS.2015.2498286 10.1016/j.microrel.2020.114000 10.1039/C2TC00039C 10.1109/TNS.2013.2281771 10.1103/PhysRevB.31.1157 10.1109/TNS.2021.3053424 10.1109/TNS.2011.2171504 10.1109/TNS.2006.884971 10.1103/PhysRevB.54.16676 10.1109/TNS.2013.2259260 10.1063/1.3662041 10.1109/23.490899 10.1109/TNS.1982.4336456 10.1109/TNS.2015.2405852 10.1103/PhysRevLett.87.165506 10.1109/TNS.2006.885165 10.1109/TDMR.2020.2986401 10.1109/TNS.2003.813137 10.1109/TNS.2016.2640945 10.1109/23.903763 10.1063/1.4907675 10.1109/TNS.2021.3051972 10.1109/TNS.2004.839199 10.1016/j.mssp.2017.10.009 10.1109/TNS.2021.3074379 10.1109/TNS.2013.2289373 10.1063/1.106798 10.1109/TNS.2015.2488650 10.1109/TED.2015.2499313 10.1109/55.536291 10.1109/TED.2020.2965953 10.1109/EDL.1985.26205 10.1007/s11214-013-9964-y 10.1109/TNS.2017.2710629 10.1109/TNS.2016.2626962 10.1109/TDMR.2018.2847338 10.1109/REDW.2015.7336720 10.1109/LED.2004.826977 10.1109/TNS.1980.4331084 10.1109/23.556887 10.1016/j.microrel.2015.06.139 10.1109/TNS.2019.2904911 10.1109/TNS.2013.2261316 10.1109/TNS.2020.2974916 10.1103/PhysRevB.99.205202 10.1109/TNS.2013.2247774 10.1109/23.273529 10.1109/TNS.2003.820792 10.1109/TNS.2003.813197 10.3390/electronics8121401 10.1149/2162-8777/ac12b8 10.1109/TNS.2013.2254722 10.1109/23.983177 10.1038/nature01665 10.1109/TNS.2018.2849405 10.1109/TED.2016.2532806 10.1109/TNS.2008.2001040 10.1063/1.109775 10.1016/j.microrel.2018.07.148 10.1063/1.3524185 10.1063/1.326344 10.1103/RevModPhys.53.497 10.1063/1.1356450 10.1063/1.4806980 10.1103/PhysRevLett.75.4452 10.1063/1.1490147 10.1109/TNS.2004.825077 10.1109/TED.2013.2268577 10.1063/1.1762980 10.1143/APEX.4.024101 10.1109/23.340564 10.1063/1.3377004 10.1109/TNS.2010.2073720 10.1016/S0026-2714(02)00019-7 10.1109/TNS.2015.2499160 10.1109/T-ED.1984.21470 10.1149/2.0181503jss 10.1109/TMTT.2004.837196 10.1063/1.117767 10.1109/TNS.2019.2955922 10.1109/TNS.2013.2289383 10.1109/TNS.2008.2001705 10.1103/PhysRevLett.80.4008 10.1109/TED.2018.2848721 10.1109/TNS.2003.812927 10.1063/1.2136224 10.1109/TNS.2018.2873059 10.1109/TDMR.2016.2581178 10.1002/pssc.200778622 10.1063/1.4948298 10.1109/TNS.2013.2278314 10.1109/22.32217 10.1109/TNS.1975.4328188 10.1109/TDMR.2008.923743 10.1109/JPHOTOV.2015.2459971 10.1109/23.736492 10.1088/0256-307X/37/4/046101 10.1109/TNS.2003.813131 10.1109/TNS.2018.2819990 10.1063/1.1861113 10.1109/PROC.1967.5817 10.1109/PROC.1966.4661 10.1109/TNS.2018.2885526 10.1149/2.0251602jss 10.1109/TNS.2002.805363 10.1109/TNS.2015.2470665 10.1016/j.microrel.2010.09.022 10.1063/1.4874735 10.1109/LED.2003.821673 10.1109/55.954910 10.1109/TNS.2011.2170433 10.1016/S0026-2714(99)00225-5 10.1109/JPROC.2007.911060 10.1063/1.4816423 10.1109/JEDS.2018.2879480 10.1016/j.microrel.2009.07.003 10.1063/1.4933174 10.1063/1.1682673 10.1109/TNS.2003.821827 10.1109/IRPS46558.2021.9405226 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 |
DOI | 10.1109/TNS.2022.3147143 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Bacteriology Abstracts (Microbiology B) Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Engineered Materials Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1578 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TNS_2022_3147143 9694601 |
Genre | orig-research |
GroupedDBID | .DC 0R~ 29I 4.4 5GY 5RE 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 .GJ 3O- 53G 5VS 8WZ A6W AAYXX AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH RIG VH1 VOH 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 |
ID | FETCH-LOGICAL-c291t-481bb5c52a27c4bd6e661269e223609bdc3e67b3f66c4b194a95b20c2e1953183 |
IEDL.DBID | RIE |
ISSN | 0018-9499 |
IngestDate | Mon Jun 30 08:32:58 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Tue Jul 01 00:53:45 EDT 2025 Wed Aug 27 02:38:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-481bb5c52a27c4bd6e661269e223609bdc3e67b3f66c4b194a95b20c2e1953183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2963-7545 0000-0003-4257-7142 0000-0002-8021-2411 0000-0001-7419-2701 |
PQID | 2665841504 |
PQPubID | 85457 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1109_TNS_2022_3147143 ieee_primary_9694601 proquest_journals_2665841504 crossref_primary_10_1109_TNS_2022_3147143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on nuclear science |
PublicationTitleAbbrev | TNS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 Sun (ref33) 2013; 60 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 Lauenstein (ref40) ref3 ref6 ref100 ref101 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref39 ref38 Sze (ref5) 1982 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref126 ref96 ref11 ref99 ref124 ref10 ref98 ref125 Rashkeev (ref80) 2001; 87 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 Winokur (ref83) 2021 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 (ref45) 2021 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – start-page: III-1 volume-title: IEEE Nucl. Space Radiat. Effects Short Course ident: ref40 article-title: Wide-bandgap-power–SiC and GaN–radiation reliability – ident: ref121 doi: 10.1103/PhysRevB.58.12571 – ident: ref42 doi: 10.1109/TNS.2014.2365545 – ident: ref103 doi: 10.1109/TNS.2015.2498286 – ident: ref87 doi: 10.1016/j.microrel.2020.114000 – ident: ref66 doi: 10.1039/C2TC00039C – ident: ref3 doi: 10.1109/TNS.2013.2281771 – ident: ref69 doi: 10.1103/PhysRevB.31.1157 – ident: ref96 doi: 10.1109/TNS.2021.3053424 – ident: ref97 doi: 10.1109/TNS.2011.2171504 – ident: ref110 doi: 10.1109/TNS.2006.884971 – ident: ref60 doi: 10.1103/PhysRevB.54.16676 – ident: ref22 doi: 10.1109/TNS.2013.2259260 – ident: ref37 doi: 10.1063/1.3662041 – start-page: 312 volume-title: Physics of Semiconductor Devices year: 1982 ident: ref5 – ident: ref92 doi: 10.1109/23.490899 – ident: ref31 doi: 10.1109/TNS.1982.4336456 – ident: ref38 doi: 10.1109/TNS.2015.2405852 – volume: 87 issue: 16 year: 2001 ident: ref80 article-title: Defect generation by hydrogen at the Si-SiO2 interface publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.165506 – ident: ref113 doi: 10.1109/TNS.2006.885165 – ident: ref79 doi: 10.1109/TDMR.2020.2986401 – ident: ref95 doi: 10.1109/TNS.2003.813137 – ident: ref111 doi: 10.1109/TNS.2016.2640945 – ident: ref76 doi: 10.1109/23.903763 – ident: ref70 doi: 10.1063/1.4907675 – ident: ref67 doi: 10.1109/TNS.2021.3051972 – ident: ref50 doi: 10.1109/TNS.2004.839199 – ident: ref86 doi: 10.1016/j.mssp.2017.10.009 – ident: ref89 doi: 10.1109/TNS.2021.3074379 – ident: ref101 doi: 10.1109/TNS.2013.2289373 – ident: ref6 doi: 10.1063/1.106798 – ident: ref28 doi: 10.1109/TNS.2015.2488650 – ident: ref72 doi: 10.1109/TED.2015.2499313 – ident: ref8 doi: 10.1109/55.536291 – ident: ref124 doi: 10.1109/TED.2020.2965953 – ident: ref12 doi: 10.1109/EDL.1985.26205 – ident: ref16 doi: 10.1007/s11214-013-9964-y – ident: ref115 doi: 10.1109/TNS.2017.2710629 – ident: ref32 doi: 10.1109/TNS.2016.2626962 – ident: ref59 doi: 10.1109/TDMR.2018.2847338 – ident: ref98 doi: 10.1109/REDW.2015.7336720 – ident: ref1 doi: 10.1109/LED.2004.826977 – ident: ref82 doi: 10.1109/TNS.1980.4331084 – ident: ref93 doi: 10.1109/23.556887 – ident: ref99 doi: 10.1016/j.microrel.2015.06.139 – ident: ref19 doi: 10.1109/TNS.2019.2904911 – ident: ref65 doi: 10.1109/TNS.2013.2261316 – ident: ref90 doi: 10.1109/TNS.2020.2974916 – ident: ref71 doi: 10.1103/PhysRevB.99.205202 – ident: ref41 doi: 10.1109/TNS.2013.2247774 – ident: ref63 doi: 10.1109/23.273529 – ident: ref47 doi: 10.1109/TNS.2003.820792 – ident: ref64 doi: 10.1109/TNS.2003.813197 – ident: ref108 doi: 10.3390/electronics8121401 – ident: ref104 doi: 10.1149/2162-8777/ac12b8 – ident: ref18 doi: 10.1109/TNS.2013.2254722 – ident: ref77 doi: 10.1109/23.983177 – ident: ref85 doi: 10.1038/nature01665 – ident: ref112 doi: 10.1109/TNS.2018.2849405 – ident: ref30 doi: 10.1109/TED.2016.2532806 – ident: ref21 doi: 10.1109/TNS.2008.2001040 – ident: ref7 doi: 10.1063/1.109775 – ident: ref116 doi: 10.1016/j.microrel.2018.07.148 – ident: ref25 doi: 10.1063/1.3524185 – ident: ref81 doi: 10.1063/1.326344 – ident: ref68 doi: 10.1103/RevModPhys.53.497 – ident: ref119 doi: 10.1063/1.1356450 – ident: ref26 doi: 10.1063/1.4806980 – ident: ref84 doi: 10.1103/PhysRevLett.75.4452 – volume-title: SRIM—The Stopping and Range of Ions in Matter year: 2021 ident: ref45 – ident: ref117 doi: 10.1063/1.1490147 – ident: ref17 doi: 10.1109/TNS.2004.825077 – ident: ref106 doi: 10.1109/TED.2013.2268577 – year: 2021 ident: ref83 article-title: Physical processes associated with radiation-induced interface states – ident: ref122 doi: 10.1063/1.1762980 – ident: ref118 doi: 10.1143/APEX.4.024101 – ident: ref109 doi: 10.1109/23.340564 – ident: ref52 doi: 10.1063/1.3377004 – ident: ref53 doi: 10.1109/TNS.2010.2073720 – ident: ref78 doi: 10.1016/S0026-2714(02)00019-7 – ident: ref27 doi: 10.1109/TNS.2015.2499160 – ident: ref11 doi: 10.1109/T-ED.1984.21470 – ident: ref125 doi: 10.1149/2.0181503jss – ident: ref105 doi: 10.1109/TMTT.2004.837196 – ident: ref55 doi: 10.1063/1.117767 – ident: ref114 doi: 10.1109/TNS.2019.2955922 – ident: ref102 doi: 10.1109/TNS.2013.2289383 – ident: ref48 doi: 10.1109/TNS.2008.2001705 – ident: ref62 doi: 10.1103/PhysRevLett.80.4008 – ident: ref107 doi: 10.1109/TED.2018.2848721 – ident: ref20 doi: 10.1109/TNS.2003.812927 – ident: ref123 doi: 10.1063/1.2136224 – ident: ref35 doi: 10.1109/TNS.2018.2873059 – ident: ref58 doi: 10.1109/TDMR.2016.2581178 – ident: ref56 doi: 10.1002/pssc.200778622 – ident: ref75 doi: 10.1063/1.4948298 – volume: 60 start-page: 4074 issue: 6 year: 2013 ident: ref33 article-title: Ionizing radiation induced threshold voltage shifts in GaN MOS HEMTs on Si substrates publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2013.2278314 – ident: ref13 doi: 10.1109/22.32217 – ident: ref91 doi: 10.1109/TNS.1975.4328188 – ident: ref23 doi: 10.1109/TDMR.2008.923743 – ident: ref73 doi: 10.1109/JPHOTOV.2015.2459971 – ident: ref94 doi: 10.1109/23.736492 – ident: ref100 doi: 10.1088/0256-307X/37/4/046101 – ident: ref15 doi: 10.1109/TNS.2003.813131 – ident: ref43 doi: 10.1109/TNS.2018.2819990 – ident: ref120 doi: 10.1063/1.1861113 – ident: ref10 doi: 10.1109/PROC.1967.5817 – ident: ref4 doi: 10.1109/PROC.1966.4661 – ident: ref44 doi: 10.1109/TNS.2018.2885526 – ident: ref29 doi: 10.1149/2.0251602jss – ident: ref34 doi: 10.1109/TNS.2002.805363 – ident: ref39 doi: 10.1109/TNS.2015.2470665 – ident: ref57 doi: 10.1016/j.microrel.2010.09.022 – ident: ref2 doi: 10.1063/1.4874735 – ident: ref49 doi: 10.1109/LED.2003.821673 – ident: ref46 doi: 10.1109/55.954910 – ident: ref36 doi: 10.1109/TNS.2011.2170433 – ident: ref14 doi: 10.1016/S0026-2714(99)00225-5 – ident: ref9 doi: 10.1109/JPROC.2007.911060 – ident: ref74 doi: 10.1063/1.4816423 – ident: ref88 doi: 10.1109/JEDS.2018.2879480 – ident: ref24 doi: 10.1016/j.microrel.2009.07.003 – ident: ref54 doi: 10.1063/1.4933174 – ident: ref61 doi: 10.1063/1.1682673 – ident: ref51 doi: 10.1109/TNS.2003.821827 – ident: ref126 doi: 10.1109/IRPS46558.2021.9405226 |
SSID | ssj0014505 |
Score | 2.5955644 |
Snippet | An overview is presented of displacement damage (DD) effects, total-ionizing-dose (TID) effects, and single-event effects in AlGaN/GaN HEMTs. High-fluence... An overview is presented of displacement damage (DD) effects, total-ionizing-dose (TID) effects, and single-event effects in AlGaN/GaN high electron mobility... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 1/f noise Aluminum gallium nitride Aluminum gallium nitrides Bias Burnout defects Degradation Dehydrogenation Electric potential Electronic devices Energy levels Fluence gallium nitride Gallium nitrides HEMTs High electron mobility transistors hydrogen Impurities Irradiation LF noise MODFETs Point defects Protons Radiation Radiation effects Semiconductor devices Single Event Effects Space applications Transconductance Voltage Wide band gap semiconductors |
Title | Radiation Effects in AlGaN/GaN HEMTs |
URI | https://ieeexplore.ieee.org/document/9694601 https://www.proquest.com/docview/2665841504 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3rwVcVqlRx6EUyTbveRPRZpLUJ70BZ6C7ubLYiSik0v_npn86KoiIdAILthmdnJfJPZ-Qagq0koiBpYH3155NMVEb7ijl67z02UCGFY4mqHpzM-WdDHJVs24K6uhbHW5ofPbM_d5rn8ZG227ldZILmk3BVr7WHgVtRq1RkDysKyWwEaMML4KiUZymA-e8ZAkBCMT6nI63N2XFDeU-XHhzj3LuMjmFbrKg6VvPa2me6Zz2-Ujf9d-DEcljDTGxb74gQaNj2Fgx3ywRZ0nxwtgdOLV1AYb7yX1Bu-PahZgJc3GU3nmzNYjEfz-4lf9kzwDZH9zKcIQzUzjCgiDNUJt-iACZcWYQAPpU7MwHKhByvO8XFfUiUZ6ssQ6_JpaN_n0EzXqb0AD605QfcfWqFDinGUEjJiqh8ZqmjEEt6GoBJjbEpCcdfX4i3OA4tQxij42Ak-LgXfhtt6xntBpvHH2JaTYz2uFGEbOpWm4tLaNjGCDMRRCG3p5e-zrmDfvbs4qNiBZvaxtdcIJjJ9k--iLzKhwEw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5KPagHX1WsVs2hF8G0yXYf2WORatUmB02ht5BstiCWVGx68dc7m6SlqIiHQCC7ZJnZyXyT2fkGoJ0QR5C4p2305Z5Np0TYMTf02i5XXiqEYqmpHfYDPhzTxwmb1OBmXQujtS4On-mOuS1y-elcLc2vsq7kknJTrLXFTDFuWa21zhlQ5lT9CtCEEcivkpKO7IbBC4aChGCESkVRobPhhIquKj8-xYV_udsHf7Wy8ljJW2eZJx31-Y208b9LP4C9Cmha_XJnHEJNZ0ewu0E_2ID2syEmMJqxShLjhfWaWf3ZfRx08bKGAz9cHMP4bhDeDu2qa4KtiHRzmyIQTZhiJCZC0STlGl0w4VIjEOCOTFLV01wkvSnn-NiVNJYMNaaINhk1tPATqGfzTJ-ChfacIgBwtEgcipFULKTHYtdTNKYeS3kTuisxRqqiFDedLWZREVo4MkLBR0bwUSX4JlyvZ7yXdBp_jG0YOa7HVSJsQmulqaiyt0WEMAORFIJbevb7rCvYHob-KBo9BE_nsGPeUx5bbEE9_1jqC4QWeXJZ7KgvbRrDlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiation+Effects+in+AlGaN%2FGaN+HEMTs&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Fleetwood%2C+Daniel+M.&rft.au=Zhang%2C+En+Xia&rft.au=Schrimpf%2C+Ronald+D.&rft.au=Pantelides%2C+Sokrates+T.&rft.date=2022-05-01&rft.issn=0018-9499&rft.eissn=1558-1578&rft.volume=69&rft.issue=5&rft.spage=1105&rft.epage=1119&rft_id=info:doi/10.1109%2FTNS.2022.3147143&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNS_2022_3147143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon |