Classification of IQ-Modulated Signals Based on Reservoir Computing With Narrowband Optoelectronic Oscillators

We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators (OEOs) driven by a continuous-wave semiconductor laser. In general, the OEOs used for reservoir computing are wideband and are processing analog s...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of quantum electronics Vol. 57; no. 3; pp. 1 - 8
Main Authors Dai, Haoying, Chembo, Yanne K.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9197
1558-1713
DOI10.1109/JQE.2021.3074132

Cover

Loading…
Abstract We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators (OEOs) driven by a continuous-wave semiconductor laser. In general, the OEOs used for reservoir computing are wideband and are processing analog signals in the baseband. However, their hardware architecture is inherently inadequate to directly process radiotelecom or radar signals, which are modulated carriers. On the other hand, the high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEOs that have been developed for ultra-low phase noise microwave generation have the adequate hardware architecture to process such multi-GHz modulated signals, but they have never been investigated as possible reservoir computing platforms. In this article, we show that these high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEOs are indeed suitable for reservoir computing with modulated carriers. Our dataset (DeepSig RadioML) is composed with 11 analog and digital formats of IQ-modulated radio signals (BPSK, QAM64, WBFM, etc.), and the task of the high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEO reservoir computer is to recognize and classify them. Our numerical simulations show that with a simpler architecture, a smaller training set, fewer nodes and fewer layers than their neural network counterparts, high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEO-based reservoir computers perform this classification task with an accuracy better than the state-of-the-art, for a wide range of parameters. We also investigate in detail the effects of reducing the size of the training sets on the classification performance.
AbstractList We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators (OEOs) driven by a continuous-wave semiconductor laser. In general, the OEOs used for reservoir computing are wideband and are processing analog signals in the baseband. However, their hardware architecture is inherently inadequate to directly process radiotelecom or radar signals, which are modulated carriers. On the other hand, the high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEOs that have been developed for ultra-low phase noise microwave generation have the adequate hardware architecture to process such multi-GHz modulated signals, but they have never been investigated as possible reservoir computing platforms. In this article, we show that these high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEOs are indeed suitable for reservoir computing with modulated carriers. Our dataset (DeepSig RadioML) is composed with 11 analog and digital formats of IQ-modulated radio signals (BPSK, QAM64, WBFM, etc.), and the task of the high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEO reservoir computer is to recognize and classify them. Our numerical simulations show that with a simpler architecture, a smaller training set, fewer nodes and fewer layers than their neural network counterparts, high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEO-based reservoir computers perform this classification task with an accuracy better than the state-of-the-art, for a wide range of parameters. We also investigate in detail the effects of reducing the size of the training sets on the classification performance.
We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators (OEOs) driven by a continuous-wave semiconductor laser. In general, the OEOs used for reservoir computing are wideband and are processing analog signals in the baseband. However, their hardware architecture is inherently inadequate to directly process radiotelecom or radar signals, which are modulated carriers. On the other hand, the high-[Formula Omitted] OEOs that have been developed for ultra-low phase noise microwave generation have the adequate hardware architecture to process such multi-GHz modulated signals, but they have never been investigated as possible reservoir computing platforms. In this article, we show that these high-[Formula Omitted] OEOs are indeed suitable for reservoir computing with modulated carriers. Our dataset (DeepSig RadioML) is composed with 11 analog and digital formats of IQ-modulated radio signals (BPSK, QAM64, WBFM, etc.), and the task of the high-[Formula Omitted] OEO reservoir computer is to recognize and classify them. Our numerical simulations show that with a simpler architecture, a smaller training set, fewer nodes and fewer layers than their neural network counterparts, high-[Formula Omitted] OEO-based reservoir computers perform this classification task with an accuracy better than the state-of-the-art, for a wide range of parameters. We also investigate in detail the effects of reducing the size of the training sets on the classification performance.
Author Dai, Haoying
Chembo, Yanne K.
Author_xml – sequence: 1
  givenname: Haoying
  orcidid: 0000-0001-5982-3528
  surname: Dai
  fullname: Dai, Haoying
  email: dhy@terpmail.umd.edu
  organization: Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, USA
– sequence: 2
  givenname: Yanne K.
  orcidid: 0000-0002-8375-0020
  surname: Chembo
  fullname: Chembo, Yanne K.
  email: ykchembo@umd.edu
  organization: Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, USA
BookMark eNp9kEtLAzEUhYNUsK3uBTcB11NzM69kqaVqpVrqA5dDJpOpKdNJTTKK_97UFhcuXF0OnO_A_Qao15pWIXQKZARA-MXdYjKihMIoJnkCMT1AfUhTFkEOcQ_1CQEWceD5ERo4twoxSRjpo3bcCOd0raXw2rTY1Hi6iO5N1TXCqwo_6WUrGoevhAspFB6VU_bDaIvHZr3pvG6X-FX7N_wgrDWfpWgrPN94oxolvTWtlnjupG7CnLHuGB3WYU6d7O8QvVxPnse30Wx-Mx1fziJJOfgoyZXKkzwFmZWSKlGzlDCelDVhlLEqlpKVPFUgIeaMpVmVClGKWFS0rGhNRDxE57vdjTXvnXK-WJnObj8paAqcBIiQ0Mp2LWmNc1bVhdT-x4O3QjcFkGLrtghui63bYu82gOQPuLF6LezXf8jZDtFKqd86TwjLIIu_AYJyh-Y
CODEN IEJQA7
CitedBy_id crossref_primary_10_3390_electronics12020422
crossref_primary_10_1007_s12596_024_02170_9
crossref_primary_10_1364_OL_523718
crossref_primary_10_1063_5_0130278
crossref_primary_10_1109_JLT_2024_3488592
crossref_primary_10_1364_AO_454422
crossref_primary_10_3390_app13085145
crossref_primary_10_1016_j_prime_2023_100378
crossref_primary_10_1063_5_0124204
crossref_primary_10_1364_OE_538608
crossref_primary_10_1007_s11082_022_03546_6
crossref_primary_10_1063_5_0141251
crossref_primary_10_1109_ACCESS_2024_3446182
crossref_primary_10_1109_JSTSP_2024_3387274
crossref_primary_10_3390_electronics11162577
crossref_primary_10_1140_epjb_s10051_022_00280_6
crossref_primary_10_1515_nanoph_2021_0578
crossref_primary_10_3390_photonics10030236
Cites_doi 10.1364/OE.27.018579
10.1016/j.neunet.2019.03.005
10.1038/srep14945
10.1364/OL.40.003416
10.1103/PhysRevLett.108.244101
10.1038/s41467-019-11484-3
10.1364/OE.26.010211
10.1109/JSTQE.2019.2936947
10.1007/978-3-319-44188-7_16
10.1038/ncomms1476
10.1063/1.5042342
10.1007/s13218-012-0204-5
10.1364/OE.20.003241
10.1109/JSTQE.2019.2929179
10.1109/COMST.2019.2904897
10.1364/OL.42.000375
10.1364/OE.25.002401
10.1364/OPTICA.2.000438
10.1126/science.1091277
10.1038/srep00287
10.1109/JSTQE.2013.2241738
10.1038/ncomms4541
10.1109/SPLIM.2016.7528397
10.1016/j.neunet.2007.04.003
10.1103/RevModPhys.91.035006
10.1109/JSTQE.2019.2932023
10.1109/JSTQE.2018.2821843
10.1162/089976602760407955
10.1016/j.cosrev.2009.03.005
10.1038/ncomms2368
10.1364/OE.21.000012
10.1364/OE.16.009067
10.1098/rsta.2018.0123
10.1515/nanoph-2016-0132
10.1109/JSTQE.2018.2836985
10.1109/JQE.2008.925121
10.1103/PhysRevX.7.011015
10.1038/s41598-018-21624-2
10.1103/PhysRevLett.123.154101
10.1364/OE.27.027431
10.1364/OL.32.002571
10.1063/1.5120788
10.1364/OE.27.019931
10.1103/PhysRevLett.117.128301
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JQE.2021.3074132
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-1713
EndPage 8
ExternalDocumentID 10_1109_JQE_2021_3074132
9408616
Genre orig-research
GrantInformation_xml – fundername: Northrop Grumman–University of Maryland Seed Grant Program
  funderid: 10.13039/100005014
– fundername: University of Maryland through the Minta Martin Fellowship
  funderid: 10.13039/100008510
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFFNX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
MVM
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
UPT
VH1
XOL
ZKB
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-47ee74751c6bc2eaf850894bf08288d3cc8b95e1c1398856d5aaba3ad2bd2f0a3
IEDL.DBID RIE
ISSN 0018-9197
IngestDate Mon Jun 30 06:40:35 EDT 2025
Tue Jul 01 03:19:29 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Wed Aug 27 02:30:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-47ee74751c6bc2eaf850894bf08288d3cc8b95e1c1398856d5aaba3ad2bd2f0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5982-3528
0000-0002-8375-0020
PQID 2519088500
PQPubID 85483
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JQE_2021_3074132
proquest_journals_2519088500
ieee_primary_9408616
crossref_primary_10_1109_JQE_2021_3074132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of quantum electronics
PublicationTitleAbbrev JQE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
antonik (ref10) 2017; 7
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref25
  doi: 10.1364/OE.27.018579
– ident: ref39
  doi: 10.1016/j.neunet.2019.03.005
– ident: ref5
  doi: 10.1038/srep14945
– ident: ref18
  doi: 10.1364/OL.40.003416
– ident: ref6
  doi: 10.1103/PhysRevLett.108.244101
– ident: ref13
  doi: 10.1038/s41467-019-11484-3
– ident: ref23
  doi: 10.1364/OE.26.010211
– ident: ref29
  doi: 10.1109/JSTQE.2019.2936947
– ident: ref34
  doi: 10.1007/978-3-319-44188-7_16
– ident: ref42
  doi: 10.1038/ncomms1476
– ident: ref11
  doi: 10.1063/1.5042342
– ident: ref41
  doi: 10.1007/s13218-012-0204-5
– ident: ref3
  doi: 10.1364/OE.20.003241
– ident: ref30
  doi: 10.1109/JSTQE.2019.2929179
– ident: ref1
  doi: 10.1109/COMST.2019.2904897
– ident: ref21
  doi: 10.1364/OL.42.000375
– ident: ref20
  doi: 10.1364/OE.25.002401
– ident: ref19
  doi: 10.1364/OPTICA.2.000438
– ident: ref32
  doi: 10.1126/science.1091277
– ident: ref4
  doi: 10.1038/srep00287
– ident: ref15
  doi: 10.1109/JSTQE.2013.2241738
– ident: ref17
  doi: 10.1038/ncomms4541
– ident: ref38
  doi: 10.1109/SPLIM.2016.7528397
– ident: ref33
  doi: 10.1016/j.neunet.2007.04.003
– ident: ref2
  doi: 10.1103/RevModPhys.91.035006
– ident: ref28
  doi: 10.1109/JSTQE.2019.2932023
– ident: ref24
  doi: 10.1109/JSTQE.2018.2821843
– ident: ref31
  doi: 10.1162/089976602760407955
– volume: 7
  year: 2017
  ident: ref10
  article-title: Brain-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems
  publication-title: Phys Rev A Gen Phys
– ident: ref40
  doi: 10.1016/j.cosrev.2009.03.005
– ident: ref16
  doi: 10.1038/ncomms2368
– ident: ref43
  doi: 10.1364/OE.21.000012
– ident: ref37
  doi: 10.1364/OE.16.009067
– ident: ref12
  doi: 10.1098/rsta.2018.0123
– ident: ref8
  doi: 10.1515/nanoph-2016-0132
– ident: ref22
  doi: 10.1109/JSTQE.2018.2836985
– ident: ref36
  doi: 10.1109/JQE.2008.925121
– ident: ref9
  doi: 10.1103/PhysRevX.7.011015
– ident: ref44
  doi: 10.1038/s41598-018-21624-2
– ident: ref45
  doi: 10.1103/PhysRevLett.123.154101
– ident: ref27
  doi: 10.1364/OE.27.027431
– ident: ref35
  doi: 10.1364/OL.32.002571
– ident: ref14
  doi: 10.1063/1.5120788
– ident: ref26
  doi: 10.1364/OE.27.019931
– ident: ref7
  doi: 10.1103/PhysRevLett.117.128301
SSID ssj0014480
Score 2.4258833
Snippet We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classification
Computation
Continuous radiation
Hardware
IQ~modulation formats
Modulation
Narrowband
Neural networks
Noise generation
nonlinear oscillators
optoelectronic oscillators
Optoelectronics
Oscillators
Radio frequency
radio modulation recognition
Radio signals
Reservoir computing
Reservoirs
RF signals
Semiconductor lasers
Signal classification
Signal processing
Task analysis
Training
Wideband
Title Classification of IQ-Modulated Signals Based on Reservoir Computing With Narrowband Optoelectronic Oscillators
URI https://ieeexplore.ieee.org/document/9408616
https://www.proquest.com/docview/2519088500
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBFsLt9pN30qKKooCIqeit5THVR2mXtevDXO0m76xPx1kMSAt8kM9N8Mx_AjpF-JBKpvDDvJh7XMvcEovZk7htF6QDX6Fi-F8nJLT-7j-8nYG9cC4OIjnyGbfvp3vJNqYf2V1kn5RSAB8kkTFLiVtdqjV8MaN263CSwBzjtjp4k_bRzdnVEiWAYtCPrP6Pwiwtymio_LmLnXY7n4Xy0r5pU8tQeVqqt3761bPzvxhdgrgkz2X5tF4swgcUSzH5qPrgE0478qV-WoXDKmJYz5GBiZc5Or7zz0lhpLzTsuvdguyyzA_J4htEAS9cbvJa9AatFIWg9dterHtmFa-moZGHYZb8qPzR22CW5WrI4q-2zArfHRzeHJ16jw-DpMA0qj3cRKeuIA50oHaLMBUV1KVe5bX8nTKS1UGmMgaZoUog4MbGUSkbShMqEuS-jVZgqygLXgCUJ3QGKgiYyBR4hCi4DHnQ1F1r4JsYWdEbQZLppUm61Mp4zl6z4aUZgZhbMrAGzBbvjGf26QccfY5ctNuNxDSwt2ByhnzUn-CWzFb10A8e-v_77rA2YsWvXtLFNmKoGQ9yiAKVS284y3wGv2-M_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BVhX0QHkUsYWCD1yQmt04cbLOsa1AC2UXoYLKLfJjUlagBC3ZHvrrO3ay2xequOXgOJa-sWcmnvk-gEOrwlimSgdRMUgDYVQRSEQTqCK0mtIBYdBX-Y7T4bU4u0luluD9ohcGEX3xGfbco7_Lt5WZuV9l_UxQAM7TZXhBfj_hTbfW4s6AZm4aTrjbwtlgfikZZv2zy2NKBSPei50HjaM_nJBXVfnnKPb-5eQ1jOYra8pK7nqzWvfMj79IG5-79HVYawNN9qGxjA1YwnITXv1GP7gJL335p3ncgtJrY7qqIQ8Uqwp2ehmMKuvEvdCyL5NvjmeZfSSfZxkNcAV70-_VZMoaWQiaj32d1Lds7EkdtSotu3ioq18qO-yCnC3ZnFP3eQPXJ8dXn4ZBq8QQmCjjdSAGiJR3JNyk2kSoCklxXSZ04QjwpI2NkTpLkBuKJ6VMUpsopVWsbKRtVIQq3oZOWZW4AyxN6RTQFDaRMYgYUQrFBR8YIY0MbYJd6M-hyU1LU-7UMu5zn66EWU5g5g7MvAWzC0eLNx4aio7_jN1y2CzGtbB0YW-Oft7u4cfc9fTSGZyE4dun3zqAleHV6Dw_Px1_3oVV952miGwPOvV0hu8oXKn1vrfSn7H75og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+IQ-Modulated+Signals+Based+on+Reservoir+Computing+With+Narrowband+Optoelectronic+Oscillators&rft.jtitle=IEEE+journal+of+quantum+electronics&rft.au=Dai%2C+Haoying&rft.au=Chembo%2C+Yanne+K.&rft.date=2021-06-01&rft.issn=0018-9197&rft.eissn=1558-1713&rft.volume=57&rft.issue=3&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FJQE.2021.3074132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JQE_2021_3074132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9197&client=summon