Classification of IQ-Modulated Signals Based on Reservoir Computing With Narrowband Optoelectronic Oscillators
We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators (OEOs) driven by a continuous-wave semiconductor laser. In general, the OEOs used for reservoir computing are wideband and are processing analog s...
Saved in:
Published in | IEEE journal of quantum electronics Vol. 57; no. 3; pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9197 1558-1713 |
DOI | 10.1109/JQE.2021.3074132 |
Cover
Loading…
Abstract | We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators (OEOs) driven by a continuous-wave semiconductor laser. In general, the OEOs used for reservoir computing are wideband and are processing analog signals in the baseband. However, their hardware architecture is inherently inadequate to directly process radiotelecom or radar signals, which are modulated carriers. On the other hand, the high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEOs that have been developed for ultra-low phase noise microwave generation have the adequate hardware architecture to process such multi-GHz modulated signals, but they have never been investigated as possible reservoir computing platforms. In this article, we show that these high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEOs are indeed suitable for reservoir computing with modulated carriers. Our dataset (DeepSig RadioML) is composed with 11 analog and digital formats of IQ-modulated radio signals (BPSK, QAM64, WBFM, etc.), and the task of the high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEO reservoir computer is to recognize and classify them. Our numerical simulations show that with a simpler architecture, a smaller training set, fewer nodes and fewer layers than their neural network counterparts, high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEO-based reservoir computers perform this classification task with an accuracy better than the state-of-the-art, for a wide range of parameters. We also investigate in detail the effects of reducing the size of the training sets on the classification performance. |
---|---|
AbstractList | We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators (OEOs) driven by a continuous-wave semiconductor laser. In general, the OEOs used for reservoir computing are wideband and are processing analog signals in the baseband. However, their hardware architecture is inherently inadequate to directly process radiotelecom or radar signals, which are modulated carriers. On the other hand, the high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEOs that have been developed for ultra-low phase noise microwave generation have the adequate hardware architecture to process such multi-GHz modulated signals, but they have never been investigated as possible reservoir computing platforms. In this article, we show that these high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEOs are indeed suitable for reservoir computing with modulated carriers. Our dataset (DeepSig RadioML) is composed with 11 analog and digital formats of IQ-modulated radio signals (BPSK, QAM64, WBFM, etc.), and the task of the high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEO reservoir computer is to recognize and classify them. Our numerical simulations show that with a simpler architecture, a smaller training set, fewer nodes and fewer layers than their neural network counterparts, high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> OEO-based reservoir computers perform this classification task with an accuracy better than the state-of-the-art, for a wide range of parameters. We also investigate in detail the effects of reducing the size of the training sets on the classification performance. We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators (OEOs) driven by a continuous-wave semiconductor laser. In general, the OEOs used for reservoir computing are wideband and are processing analog signals in the baseband. However, their hardware architecture is inherently inadequate to directly process radiotelecom or radar signals, which are modulated carriers. On the other hand, the high-[Formula Omitted] OEOs that have been developed for ultra-low phase noise microwave generation have the adequate hardware architecture to process such multi-GHz modulated signals, but they have never been investigated as possible reservoir computing platforms. In this article, we show that these high-[Formula Omitted] OEOs are indeed suitable for reservoir computing with modulated carriers. Our dataset (DeepSig RadioML) is composed with 11 analog and digital formats of IQ-modulated radio signals (BPSK, QAM64, WBFM, etc.), and the task of the high-[Formula Omitted] OEO reservoir computer is to recognize and classify them. Our numerical simulations show that with a simpler architecture, a smaller training set, fewer nodes and fewer layers than their neural network counterparts, high-[Formula Omitted] OEO-based reservoir computers perform this classification task with an accuracy better than the state-of-the-art, for a wide range of parameters. We also investigate in detail the effects of reducing the size of the training sets on the classification performance. |
Author | Dai, Haoying Chembo, Yanne K. |
Author_xml | – sequence: 1 givenname: Haoying orcidid: 0000-0001-5982-3528 surname: Dai fullname: Dai, Haoying email: dhy@terpmail.umd.edu organization: Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, USA – sequence: 2 givenname: Yanne K. orcidid: 0000-0002-8375-0020 surname: Chembo fullname: Chembo, Yanne K. email: ykchembo@umd.edu organization: Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, USA |
BookMark | eNp9kEtLAzEUhYNUsK3uBTcB11NzM69kqaVqpVrqA5dDJpOpKdNJTTKK_97UFhcuXF0OnO_A_Qao15pWIXQKZARA-MXdYjKihMIoJnkCMT1AfUhTFkEOcQ_1CQEWceD5ERo4twoxSRjpo3bcCOd0raXw2rTY1Hi6iO5N1TXCqwo_6WUrGoevhAspFB6VU_bDaIvHZr3pvG6X-FX7N_wgrDWfpWgrPN94oxolvTWtlnjupG7CnLHuGB3WYU6d7O8QvVxPnse30Wx-Mx1fziJJOfgoyZXKkzwFmZWSKlGzlDCelDVhlLEqlpKVPFUgIeaMpVmVClGKWFS0rGhNRDxE57vdjTXvnXK-WJnObj8paAqcBIiQ0Mp2LWmNc1bVhdT-x4O3QjcFkGLrtghui63bYu82gOQPuLF6LezXf8jZDtFKqd86TwjLIIu_AYJyh-Y |
CODEN | IEJQA7 |
CitedBy_id | crossref_primary_10_3390_electronics12020422 crossref_primary_10_1007_s12596_024_02170_9 crossref_primary_10_1364_OL_523718 crossref_primary_10_1063_5_0130278 crossref_primary_10_1109_JLT_2024_3488592 crossref_primary_10_1364_AO_454422 crossref_primary_10_3390_app13085145 crossref_primary_10_1016_j_prime_2023_100378 crossref_primary_10_1063_5_0124204 crossref_primary_10_1364_OE_538608 crossref_primary_10_1007_s11082_022_03546_6 crossref_primary_10_1063_5_0141251 crossref_primary_10_1109_ACCESS_2024_3446182 crossref_primary_10_1109_JSTSP_2024_3387274 crossref_primary_10_3390_electronics11162577 crossref_primary_10_1140_epjb_s10051_022_00280_6 crossref_primary_10_1515_nanoph_2021_0578 crossref_primary_10_3390_photonics10030236 |
Cites_doi | 10.1364/OE.27.018579 10.1016/j.neunet.2019.03.005 10.1038/srep14945 10.1364/OL.40.003416 10.1103/PhysRevLett.108.244101 10.1038/s41467-019-11484-3 10.1364/OE.26.010211 10.1109/JSTQE.2019.2936947 10.1007/978-3-319-44188-7_16 10.1038/ncomms1476 10.1063/1.5042342 10.1007/s13218-012-0204-5 10.1364/OE.20.003241 10.1109/JSTQE.2019.2929179 10.1109/COMST.2019.2904897 10.1364/OL.42.000375 10.1364/OE.25.002401 10.1364/OPTICA.2.000438 10.1126/science.1091277 10.1038/srep00287 10.1109/JSTQE.2013.2241738 10.1038/ncomms4541 10.1109/SPLIM.2016.7528397 10.1016/j.neunet.2007.04.003 10.1103/RevModPhys.91.035006 10.1109/JSTQE.2019.2932023 10.1109/JSTQE.2018.2821843 10.1162/089976602760407955 10.1016/j.cosrev.2009.03.005 10.1038/ncomms2368 10.1364/OE.21.000012 10.1364/OE.16.009067 10.1098/rsta.2018.0123 10.1515/nanoph-2016-0132 10.1109/JSTQE.2018.2836985 10.1109/JQE.2008.925121 10.1103/PhysRevX.7.011015 10.1038/s41598-018-21624-2 10.1103/PhysRevLett.123.154101 10.1364/OE.27.027431 10.1364/OL.32.002571 10.1063/1.5120788 10.1364/OE.27.019931 10.1103/PhysRevLett.117.128301 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JQE.2021.3074132 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-1713 |
EndPage | 8 |
ExternalDocumentID | 10_1109_JQE_2021_3074132 9408616 |
Genre | orig-research |
GrantInformation_xml | – fundername: Northrop Grumman–University of Maryland Seed Grant Program funderid: 10.13039/100005014 – fundername: University of Maryland through the Minta Martin Fellowship funderid: 10.13039/100008510 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFFNX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ MVM O9- OCL P2P RIA RIE RNS TAE TN5 UPT VH1 XOL ZKB AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-47ee74751c6bc2eaf850894bf08288d3cc8b95e1c1398856d5aaba3ad2bd2f0a3 |
IEDL.DBID | RIE |
ISSN | 0018-9197 |
IngestDate | Mon Jun 30 06:40:35 EDT 2025 Tue Jul 01 03:19:29 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Wed Aug 27 02:30:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-47ee74751c6bc2eaf850894bf08288d3cc8b95e1c1398856d5aaba3ad2bd2f0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5982-3528 0000-0002-8375-0020 |
PQID | 2519088500 |
PQPubID | 85483 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_JQE_2021_3074132 proquest_journals_2519088500 ieee_primary_9408616 crossref_primary_10_1109_JQE_2021_3074132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of quantum electronics |
PublicationTitleAbbrev | JQE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref45 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 antonik (ref10) 2017; 7 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref25 doi: 10.1364/OE.27.018579 – ident: ref39 doi: 10.1016/j.neunet.2019.03.005 – ident: ref5 doi: 10.1038/srep14945 – ident: ref18 doi: 10.1364/OL.40.003416 – ident: ref6 doi: 10.1103/PhysRevLett.108.244101 – ident: ref13 doi: 10.1038/s41467-019-11484-3 – ident: ref23 doi: 10.1364/OE.26.010211 – ident: ref29 doi: 10.1109/JSTQE.2019.2936947 – ident: ref34 doi: 10.1007/978-3-319-44188-7_16 – ident: ref42 doi: 10.1038/ncomms1476 – ident: ref11 doi: 10.1063/1.5042342 – ident: ref41 doi: 10.1007/s13218-012-0204-5 – ident: ref3 doi: 10.1364/OE.20.003241 – ident: ref30 doi: 10.1109/JSTQE.2019.2929179 – ident: ref1 doi: 10.1109/COMST.2019.2904897 – ident: ref21 doi: 10.1364/OL.42.000375 – ident: ref20 doi: 10.1364/OE.25.002401 – ident: ref19 doi: 10.1364/OPTICA.2.000438 – ident: ref32 doi: 10.1126/science.1091277 – ident: ref4 doi: 10.1038/srep00287 – ident: ref15 doi: 10.1109/JSTQE.2013.2241738 – ident: ref17 doi: 10.1038/ncomms4541 – ident: ref38 doi: 10.1109/SPLIM.2016.7528397 – ident: ref33 doi: 10.1016/j.neunet.2007.04.003 – ident: ref2 doi: 10.1103/RevModPhys.91.035006 – ident: ref28 doi: 10.1109/JSTQE.2019.2932023 – ident: ref24 doi: 10.1109/JSTQE.2018.2821843 – ident: ref31 doi: 10.1162/089976602760407955 – volume: 7 year: 2017 ident: ref10 article-title: Brain-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems publication-title: Phys Rev A Gen Phys – ident: ref40 doi: 10.1016/j.cosrev.2009.03.005 – ident: ref16 doi: 10.1038/ncomms2368 – ident: ref43 doi: 10.1364/OE.21.000012 – ident: ref37 doi: 10.1364/OE.16.009067 – ident: ref12 doi: 10.1098/rsta.2018.0123 – ident: ref8 doi: 10.1515/nanoph-2016-0132 – ident: ref22 doi: 10.1109/JSTQE.2018.2836985 – ident: ref36 doi: 10.1109/JQE.2008.925121 – ident: ref9 doi: 10.1103/PhysRevX.7.011015 – ident: ref44 doi: 10.1038/s41598-018-21624-2 – ident: ref45 doi: 10.1103/PhysRevLett.123.154101 – ident: ref27 doi: 10.1364/OE.27.027431 – ident: ref35 doi: 10.1364/OL.32.002571 – ident: ref14 doi: 10.1063/1.5120788 – ident: ref26 doi: 10.1364/OE.27.019931 – ident: ref7 doi: 10.1103/PhysRevLett.117.128301 |
SSID | ssj0014480 |
Score | 2.4258833 |
Snippet | We numerically perform the classification of IQ-modulated radiofrequency signals using reservoir computing based on narrowband optoelectronic oscillators... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classification Computation Continuous radiation Hardware IQ~modulation formats Modulation Narrowband Neural networks Noise generation nonlinear oscillators optoelectronic oscillators Optoelectronics Oscillators Radio frequency radio modulation recognition Radio signals Reservoir computing Reservoirs RF signals Semiconductor lasers Signal classification Signal processing Task analysis Training Wideband |
Title | Classification of IQ-Modulated Signals Based on Reservoir Computing With Narrowband Optoelectronic Oscillators |
URI | https://ieeexplore.ieee.org/document/9408616 https://www.proquest.com/docview/2519088500 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBFsLt9pN30qKKooCIqeit5THVR2mXtevDXO0m76xPx1kMSAt8kM9N8Mx_AjpF-JBKpvDDvJh7XMvcEovZk7htF6QDX6Fi-F8nJLT-7j-8nYG9cC4OIjnyGbfvp3vJNqYf2V1kn5RSAB8kkTFLiVtdqjV8MaN263CSwBzjtjp4k_bRzdnVEiWAYtCPrP6Pwiwtymio_LmLnXY7n4Xy0r5pU8tQeVqqt3761bPzvxhdgrgkz2X5tF4swgcUSzH5qPrgE0478qV-WoXDKmJYz5GBiZc5Or7zz0lhpLzTsuvdguyyzA_J4htEAS9cbvJa9AatFIWg9dterHtmFa-moZGHYZb8qPzR22CW5WrI4q-2zArfHRzeHJ16jw-DpMA0qj3cRKeuIA50oHaLMBUV1KVe5bX8nTKS1UGmMgaZoUog4MbGUSkbShMqEuS-jVZgqygLXgCUJ3QGKgiYyBR4hCi4DHnQ1F1r4JsYWdEbQZLppUm61Mp4zl6z4aUZgZhbMrAGzBbvjGf26QccfY5ctNuNxDSwt2ByhnzUn-CWzFb10A8e-v_77rA2YsWvXtLFNmKoGQ9yiAKVS284y3wGv2-M_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BVhX0QHkUsYWCD1yQmt04cbLOsa1AC2UXoYLKLfJjUlagBC3ZHvrrO3ay2xequOXgOJa-sWcmnvk-gEOrwlimSgdRMUgDYVQRSEQTqCK0mtIBYdBX-Y7T4bU4u0luluD9ohcGEX3xGfbco7_Lt5WZuV9l_UxQAM7TZXhBfj_hTbfW4s6AZm4aTrjbwtlgfikZZv2zy2NKBSPei50HjaM_nJBXVfnnKPb-5eQ1jOYra8pK7nqzWvfMj79IG5-79HVYawNN9qGxjA1YwnITXv1GP7gJL335p3ncgtJrY7qqIQ8Uqwp2ehmMKuvEvdCyL5NvjmeZfSSfZxkNcAV70-_VZMoaWQiaj32d1Lds7EkdtSotu3ioq18qO-yCnC3ZnFP3eQPXJ8dXn4ZBq8QQmCjjdSAGiJR3JNyk2kSoCklxXSZ04QjwpI2NkTpLkBuKJ6VMUpsopVWsbKRtVIQq3oZOWZW4AyxN6RTQFDaRMYgYUQrFBR8YIY0MbYJd6M-hyU1LU-7UMu5zn66EWU5g5g7MvAWzC0eLNx4aio7_jN1y2CzGtbB0YW-Oft7u4cfc9fTSGZyE4dun3zqAleHV6Dw_Px1_3oVV952miGwPOvV0hu8oXKn1vrfSn7H75og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+IQ-Modulated+Signals+Based+on+Reservoir+Computing+With+Narrowband+Optoelectronic+Oscillators&rft.jtitle=IEEE+journal+of+quantum+electronics&rft.au=Dai%2C+Haoying&rft.au=Chembo%2C+Yanne+K.&rft.date=2021-06-01&rft.issn=0018-9197&rft.eissn=1558-1713&rft.volume=57&rft.issue=3&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FJQE.2021.3074132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JQE_2021_3074132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9197&client=summon |