Wright functions of the second kind and Whittaker functions

In the framework of higher transcendental functions, the Wright functions of the second kind have increased their relevance resulting from their applications in probability theory and, in particular, in fractional diffusion processes. Here, these functions are compared with the well-known Whittaker...

Full description

Saved in:
Bibliographic Details
Published inFractional calculus & applied analysis Vol. 25; no. 3; pp. 858 - 875
Main Authors Mainardi, Francesco, Paris, Richard B., Consiglio, Armando
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the framework of higher transcendental functions, the Wright functions of the second kind have increased their relevance resulting from their applications in probability theory and, in particular, in fractional diffusion processes. Here, these functions are compared with the well-known Whittaker functions in some special cases of fractional order. In addition, we point out two erroneous representations in the literature.
AbstractList In the framework of higher transcendental functions, the Wright functions of the second kind have increased their relevance resulting from their applications in probability theory and, in particular, in fractional diffusion processes. Here, these functions are compared with the well-known Whittaker functions in some special cases of fractional order. In addition, we point out two erroneous representations in the literature.
Author Consiglio, Armando
Paris, Richard B.
Mainardi, Francesco
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0003-4858-7309
  surname: Mainardi
  fullname: Mainardi, Francesco
  email: francesco.mainardi@bo.infn.it
  organization: Department of Physics and Astronomy, University of Bologna, & INFN
– sequence: 2
  givenname: Richard B.
  surname: Paris
  fullname: Paris, Richard B.
  organization: Division of Computing and Mathematics, University of Abertay
– sequence: 3
  givenname: Armando
  surname: Consiglio
  fullname: Consiglio, Armando
  organization: Institut für Theoretische Physik und Astrophysik, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg
BookMark eNp9kM1KAzEQgINUsNa-gKd9gWgySboNnqT4BwUvSo8h2Z10Y2tWkvTg27ttBcFDD_NzmG-Y-S7JKPYRCbnm7IYzVt9mLpRklAFQxpgECmdkzAWXFADk6NBzyqSSF2Sac3BMScmUVvWY3K1SWHel8rvYlNDHXPW-Kh1WGZs-ttUmDMkOsepCKXaD6W_0ipx7u804_a0T8v748LZ4psvXp5fF_ZI2oHmhshYanUdt596qZmadY8Jp5fwcOQjlsNWzphUWnNXQCgUKsPYSFHL0TosJmR_3NqnPOaE3TSh2f0JJNmwNZ2bvwRw9mMGDOXgwMKDwD_1K4dOm79OQOEJ5GI5rTOaj36U4vHiK-gHs7HKt
CitedBy_id crossref_primary_10_1103_PhysRevE_107_064103
crossref_primary_10_1007_s00365_023_09666_w
crossref_primary_10_3390_axioms12040382
Cites_doi 10.1080/03610926.2010.543299
10.1515/fca-2021-0003;
10.4401/ag-3863
10.1093/qmath/os-11.1.36
10.1007/978-3-030-69236-0_8
10.1090/S0002-9904-1903-01077-5
10.1017/CBO9780511546662
10.1063/1.3526663
10.3390/math8060884
10.1007/s10986-016-9324-1
10.1016/0893-9659(96)00089-4
10.3390/sym13020354
10.1007/978-3-662-61550-8
10.1142/p614
10.1007/978-3-642-65690-3
10.1007/s10986-014-9229-9
ContentType Journal Article
Copyright Diogenes Co.Ltd 2022
Copyright_xml – notice: Diogenes Co.Ltd 2022
DBID AAYXX
CITATION
DOI 10.1007/s13540-022-00042-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1314-2224
EndPage 875
ExternalDocumentID 10_1007_s13540_022_00042_2
GroupedDBID 06D
0VY
2LR
2WC
30V
3V.
4.4
406
408
8FE
8FG
9-A
AACDK
AAFPC
AAGVJ
AAIAL
AAJBT
AAONY
AAPJK
AAQCX
AARHV
AASML
AASQH
AATNV
AAXCG
AAYZH
ABAKF
ABAQN
ABFKT
ABJCF
ABJNI
ABRQL
ABSOE
ABTKH
ABUWG
ABYKJ
ACAOD
ACBXY
ACDTI
ACEFL
ACGFS
ACIPV
ACIWK
ACMKP
ACPIV
ACXLN
ACZBO
ACZOJ
ADGQD
ADGYE
ADINQ
ADJVZ
ADOZN
AEFQL
AEKEB
AEMSY
AENEX
AEQDQ
AERZL
AESKC
AFBAA
AFBBN
AFCXV
AFGNR
AFKRA
AFLOW
AFWTZ
AGJBK
AGMZJ
AGQEE
AHBYD
AHSBF
AIAKS
AIGIU
AIKXB
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
AMAVY
AMKLP
AMXSW
AMYLF
ARAPS
ASPBG
AVWKF
AZFZN
AZMOX
AZQEC
BAKPI
BAPOH
BBCWN
BCIFA
BENPR
BGLVJ
BGNMA
BLHJL
BPHCQ
CCPQU
CFGNV
DPUIP
DWQXO
EBLON
EBS
EJD
FEDTE
FIGPU
GNUQQ
GQ7
H13
HCIFZ
HF~
HMJXF
HVGLF
HZ~
IAO
IWAJR
IY9
J9A
JZLTJ
K6V
K7-
KOV
L6V
LLZTM
LO0
M0N
M4Y
M7S
NPVJJ
NQJWS
NU0
OK1
P9R
PQQKQ
PROAC
PTHSS
QD8
R9I
ROL
RSV
S1Z
S27
S3B
SHX
SJN
SJYHP
SMT
SOJ
T13
TR2
U2A
VC2
WK8
WTRAM
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-4739ebfe9a8fa5c6abb03b95bf8e1235bed96cd3a2ba92d35252e7f425e1efb93
IEDL.DBID U2A
ISSN 1311-0454
IngestDate Tue Jul 01 00:57:09 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Fri Feb 21 02:46:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Wright functions
Hypergeometric functions
30B10
26A33 (primary )
33C20
Whittaker functions
30E15
41A60
Laplace transform
Fractional calculus
34E05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4739ebfe9a8fa5c6abb03b95bf8e1235bed96cd3a2ba92d35252e7f425e1efb93
ORCID 0000-0003-4858-7309
PageCount 18
ParticipantIDs crossref_citationtrail_10_1007_s13540_022_00042_2
crossref_primary_10_1007_s13540_022_00042_2
springer_journals_10_1007_s13540_022_00042_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle An International Journal for Theory and Applications
PublicationTitle Fractional calculus & applied analysis
PublicationTitleAbbrev Fract Calc Appl Anal
PublicationYear 2022
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Mainardi, F., Tomirotti, M.: On a special function arising in the time fractional diffusion-wave equation. In: Rusev, P., Dimovski, I., Kiryakova, V. (Eds), Transform Methods and Special Functions, 1994 (Proc. Int. Workshop, Sofia 12–17 August 1994), 171–183, Science Culture Technology, Singapore (1995)
MainardiFThe fundamental solutions for the fractional diffusion-wave equationApplied Mathematics Letters1996962328141981110.1016/0893-9659(96)00089-4
Mainardi, F., Tomirotti M.: Seismic pulse propagation with constant Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} and stable probability distributions. Annali di Geofisica 40, 1311–1328 (1997). [E-print http://arxiv.org/abs/1008.1341]
ParisRBKochubeiALuchkoYuAsymptotics of the special functions of fractional calculusHandbook of Fractional Calculus with Applications2019BerlinDe Gruyter297325
WhittakerETAn expression of certain known functions as generalised hypergeometric functionsBull. Amer. Math. Soc.1903103125134155805810.1090/S0002-9904-1903-01077-5
Apelblat, A., Mainardi, F.: Applications of the Efros theorem to the function represented by the inverse Laplace transform of s-μexp(-sν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s^{-\mu } \exp (-s^\nu )$$\end{document}. Symmetry 13, Art. 354, 1–15 (2021). https://doi.org/10.3390/sym13020354; E-print arXiv:2012.07068 [math.CA]
Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. World Scientific, Singapore (2010) [2nd Ed. in press (2022)]
CahoyDOEstimation and simulation for the M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-Wright functionCommunications in Statistics - Theory and Methods201241814661477290299910.1080/03610926.2010.5432991319.62073
ParisRBVinogradovVAsymptotic and structural properties of the Wright function arising in probability theoryLithuanian Math. J.201656377409353022510.1007/s10986-016-9324-1
Paris, R.B., Consiglio, A., Mainardi, F.: On the asymptotics of Wright functions of the second kind, Fract. Calc. Appl. Anal. 24(1), 54–72 (2021). https://doi.org/10.1515/fca-2021-0003; [E-print arXiv:2103.04284]
Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation. In: Rionero, S., Ruggeri (Eds), 7th Conference on Waves and Stability in Continuous Media (WASCOM 1993), pp. 246–251, World Scientific, Singapore (1994)
WrightEMThe generalised Bessel function of order greater than oneQuart. J. Math.194011364810.1093/qmath/os-11.1.36
ParisRBKaminskiDAsymptotics and Mellin-Barnes Integrals2001CambridgeCambridge University Press10.1017/CBO9780511546662
Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions. Related Topics and Applications. 2nd Ed., Monographs in Mathematics, Springer Verlag, Berlin (2020). [1st Ed. (2014)]
Gorenflo, R., Luchko, Yu., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2(4), 383–414 (1999). E-print http://arxiv.org/abs/math-ph/0701069
Mainardi, F.: The Linear Diffusion Equation. Lecture Notes in Mathematical Physics, University of Bologna, Department of Physics, 19 pp. (1996–2006)
DoetschGIntroduction to the Theory and Application of the Laplace Transformation1974BerlinSpringer10.1007/978-3-642-65690-3
Consiglio, A., Mainardi, F.: Fractional diffusive waves in the Cauchy and signalling problems. In: Beghin, L., Mainardi, F., Garrappa, R. (Eds), Nonlocal and Fractional Operators, SEMA-SIMAI Springer Ser. No 26, pp. 133–153, Springer Nature Switzerland (2021)
LipnevichVLuchkoYuThe Wright function: its properties, applications, and numerical evaluationAIP Conference Proceedings20101301614622281011710.1063/1.35266631237.33013
Humbert, P.: Nouvelles correspondances symboliques. Bull. Sci. Math. (Paris, II Ser.) 69, 121–129 (1945)
Wright, E.M.: The asymptotic expansion of the generalised Bessel function. Proc. Lond. Math. Soc. (Ser. 2), 38, 286–293 (1934)
ErdélyiASwansonCAAsymptotic forms of Whittaker’s confluent hypergeometric functionsMemoirs of the American Mathematical Society1957125150906780127.29602
Mainardi, F., Consiglio, A.: The Wright function of the second kind in mathematical physics. Mathematics 8(6) (SI on Special Functions with Applications in Mathematical Physics), Art. 884, 1–26 (2021). https://doi.org/10.3390/math8060884; [E-print arXiv:2007.02098]
LuchkoYuKochubeiALuchkoYuThe Wright functions and its applicationsHandbook of Fractional Calculus with Applications2019BerlinDe Gruyter241268
Olver, F.W., Lozier, D.W. : Boisvert, R.F. and Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)
ConsiglioALuchkoYuMainardiFSome notes on the Wright functions in probability theoryWSEAS Transactions on Mathematics201918389393
ParisRBExponentially small expansions of the Wright function on the Stokes linesLithuanian Math. J.20145482105318913910.1007/s10986-014-9229-9
ParisRBThe asymptotics of the generalised Bessel functionMath. Aeterna20177381406
Stanković, B.: On the function of E.M. Wright. Publ. Inst. Math. (Beograd, Nouv. Sér.) 10(24), 113–124 (1970)
Aceto, L., Durastante, F.: Efficient computation of the Wright function and its applications to fractional diffusion-wave equations. E-print arXiv:2202.00397v2
42_CR8
42_CR9
42_CR13
42_CR15
42_CR16
A Erdélyi (42_CR7) 1957; 1
42_CR17
ET Whittaker (42_CR28) 1903; 10
42_CR18
42_CR19
42_CR1
42_CR2
42_CR5
RB Paris (42_CR21) 2014; 54
EM Wright (42_CR30) 1940; 11
V Lipnevich (42_CR11) 2010; 1301
42_CR10
42_CR25
42_CR27
42_CR29
RB Paris (42_CR22) 2017; 7
Yu Luchko (42_CR12) 2019
A Consiglio (42_CR4) 2019; 18
DO Cahoy (42_CR3) 2012; 41
F Mainardi (42_CR14) 1996; 9
RB Paris (42_CR24) 2001
RB Paris (42_CR23) 2019
G Doetsch (42_CR6) 1974
RB Paris (42_CR26) 2016; 56
42_CR20
References_xml – reference: Mainardi, F.: The Linear Diffusion Equation. Lecture Notes in Mathematical Physics, University of Bologna, Department of Physics, 19 pp. (1996–2006)
– reference: ParisRBKaminskiDAsymptotics and Mellin-Barnes Integrals2001CambridgeCambridge University Press10.1017/CBO9780511546662
– reference: Humbert, P.: Nouvelles correspondances symboliques. Bull. Sci. Math. (Paris, II Ser.) 69, 121–129 (1945)
– reference: Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. World Scientific, Singapore (2010) [2nd Ed. in press (2022)]
– reference: ParisRBThe asymptotics of the generalised Bessel functionMath. Aeterna20177381406
– reference: Consiglio, A., Mainardi, F.: Fractional diffusive waves in the Cauchy and signalling problems. In: Beghin, L., Mainardi, F., Garrappa, R. (Eds), Nonlocal and Fractional Operators, SEMA-SIMAI Springer Ser. No 26, pp. 133–153, Springer Nature Switzerland (2021)
– reference: LipnevichVLuchkoYuThe Wright function: its properties, applications, and numerical evaluationAIP Conference Proceedings20101301614622281011710.1063/1.35266631237.33013
– reference: Wright, E.M.: The asymptotic expansion of the generalised Bessel function. Proc. Lond. Math. Soc. (Ser. 2), 38, 286–293 (1934)
– reference: DoetschGIntroduction to the Theory and Application of the Laplace Transformation1974BerlinSpringer10.1007/978-3-642-65690-3
– reference: Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation. In: Rionero, S., Ruggeri (Eds), 7th Conference on Waves and Stability in Continuous Media (WASCOM 1993), pp. 246–251, World Scientific, Singapore (1994)
– reference: Mainardi, F., Tomirotti, M.: On a special function arising in the time fractional diffusion-wave equation. In: Rusev, P., Dimovski, I., Kiryakova, V. (Eds), Transform Methods and Special Functions, 1994 (Proc. Int. Workshop, Sofia 12–17 August 1994), 171–183, Science Culture Technology, Singapore (1995)
– reference: MainardiFThe fundamental solutions for the fractional diffusion-wave equationApplied Mathematics Letters1996962328141981110.1016/0893-9659(96)00089-4
– reference: CahoyDOEstimation and simulation for the M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-Wright functionCommunications in Statistics - Theory and Methods201241814661477290299910.1080/03610926.2010.5432991319.62073
– reference: Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions. Related Topics and Applications. 2nd Ed., Monographs in Mathematics, Springer Verlag, Berlin (2020). [1st Ed. (2014)]
– reference: Apelblat, A., Mainardi, F.: Applications of the Efros theorem to the function represented by the inverse Laplace transform of s-μexp(-sν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s^{-\mu } \exp (-s^\nu )$$\end{document}. Symmetry 13, Art. 354, 1–15 (2021). https://doi.org/10.3390/sym13020354; E-print arXiv:2012.07068 [math.CA]
– reference: ErdélyiASwansonCAAsymptotic forms of Whittaker’s confluent hypergeometric functionsMemoirs of the American Mathematical Society1957125150906780127.29602
– reference: Stanković, B.: On the function of E.M. Wright. Publ. Inst. Math. (Beograd, Nouv. Sér.) 10(24), 113–124 (1970)
– reference: Aceto, L., Durastante, F.: Efficient computation of the Wright function and its applications to fractional diffusion-wave equations. E-print arXiv:2202.00397v2
– reference: Mainardi, F., Consiglio, A.: The Wright function of the second kind in mathematical physics. Mathematics 8(6) (SI on Special Functions with Applications in Mathematical Physics), Art. 884, 1–26 (2021). https://doi.org/10.3390/math8060884; [E-print arXiv:2007.02098]
– reference: WrightEMThe generalised Bessel function of order greater than oneQuart. J. Math.194011364810.1093/qmath/os-11.1.36
– reference: WhittakerETAn expression of certain known functions as generalised hypergeometric functionsBull. Amer. Math. Soc.1903103125134155805810.1090/S0002-9904-1903-01077-5
– reference: Paris, R.B., Consiglio, A., Mainardi, F.: On the asymptotics of Wright functions of the second kind, Fract. Calc. Appl. Anal. 24(1), 54–72 (2021). https://doi.org/10.1515/fca-2021-0003; [E-print arXiv:2103.04284]
– reference: Mainardi, F., Tomirotti M.: Seismic pulse propagation with constant Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} and stable probability distributions. Annali di Geofisica 40, 1311–1328 (1997). [E-print http://arxiv.org/abs/1008.1341]
– reference: Olver, F.W., Lozier, D.W. : Boisvert, R.F. and Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)
– reference: ParisRBExponentially small expansions of the Wright function on the Stokes linesLithuanian Math. J.20145482105318913910.1007/s10986-014-9229-9
– reference: ParisRBVinogradovVAsymptotic and structural properties of the Wright function arising in probability theoryLithuanian Math. J.201656377409353022510.1007/s10986-016-9324-1
– reference: ConsiglioALuchkoYuMainardiFSome notes on the Wright functions in probability theoryWSEAS Transactions on Mathematics201918389393
– reference: LuchkoYuKochubeiALuchkoYuThe Wright functions and its applicationsHandbook of Fractional Calculus with Applications2019BerlinDe Gruyter241268
– reference: ParisRBKochubeiALuchkoYuAsymptotics of the special functions of fractional calculusHandbook of Fractional Calculus with Applications2019BerlinDe Gruyter297325
– reference: Gorenflo, R., Luchko, Yu., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2(4), 383–414 (1999). E-print http://arxiv.org/abs/math-ph/0701069
– volume: 41
  start-page: 1466
  issue: 8
  year: 2012
  ident: 42_CR3
  publication-title: Communications in Statistics - Theory and Methods
  doi: 10.1080/03610926.2010.543299
– ident: 42_CR25
  doi: 10.1515/fca-2021-0003;
– start-page: 297
  volume-title: Handbook of Fractional Calculus with Applications
  year: 2019
  ident: 42_CR23
– ident: 42_CR27
– ident: 42_CR19
  doi: 10.4401/ag-3863
– ident: 42_CR10
– volume: 11
  start-page: 36
  year: 1940
  ident: 42_CR30
  publication-title: Quart. J. Math.
  doi: 10.1093/qmath/os-11.1.36
– ident: 42_CR9
– ident: 42_CR16
– ident: 42_CR5
  doi: 10.1007/978-3-030-69236-0_8
– volume: 10
  start-page: 125
  issue: 3
  year: 1903
  ident: 42_CR28
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1903-01077-5
– volume-title: Asymptotics and Mellin-Barnes Integrals
  year: 2001
  ident: 42_CR24
  doi: 10.1017/CBO9780511546662
– volume: 1301
  start-page: 614
  year: 2010
  ident: 42_CR11
  publication-title: AIP Conference Proceedings
  doi: 10.1063/1.3526663
– ident: 42_CR17
  doi: 10.3390/math8060884
– volume: 56
  start-page: 377
  year: 2016
  ident: 42_CR26
  publication-title: Lithuanian Math. J.
  doi: 10.1007/s10986-016-9324-1
– volume: 9
  start-page: 23
  issue: 6
  year: 1996
  ident: 42_CR14
  publication-title: Applied Mathematics Letters
  doi: 10.1016/0893-9659(96)00089-4
– volume: 7
  start-page: 381
  year: 2017
  ident: 42_CR22
  publication-title: Math. Aeterna
– ident: 42_CR20
– ident: 42_CR18
– ident: 42_CR1
  doi: 10.3390/sym13020354
– ident: 42_CR8
  doi: 10.1007/978-3-662-61550-8
– start-page: 241
  volume-title: Handbook of Fractional Calculus with Applications
  year: 2019
  ident: 42_CR12
– ident: 42_CR15
  doi: 10.1142/p614
– volume: 18
  start-page: 389
  year: 2019
  ident: 42_CR4
  publication-title: WSEAS Transactions on Mathematics
– ident: 42_CR2
– volume-title: Introduction to the Theory and Application of the Laplace Transformation
  year: 1974
  ident: 42_CR6
  doi: 10.1007/978-3-642-65690-3
– ident: 42_CR13
– volume: 54
  start-page: 82
  year: 2014
  ident: 42_CR21
  publication-title: Lithuanian Math. J.
  doi: 10.1007/s10986-014-9229-9
– volume: 1
  start-page: 1
  issue: 25
  year: 1957
  ident: 42_CR7
  publication-title: Memoirs of the American Mathematical Society
– ident: 42_CR29
SSID ssib054405957
ssj0000826098
Score 2.5859416
Snippet In the framework of higher transcendental functions, the Wright functions of the second kind have increased their relevance resulting from their applications...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 858
SubjectTerms Abstract Harmonic Analysis
Analysis
Functional Analysis
Integral Transforms
Mathematics
Mathematics and Statistics
Operational Calculus
Original Paper
Title Wright functions of the second kind and Whittaker functions
URI https://link.springer.com/article/10.1007/s13540-022-00042-2
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqK85IENLMVO7MRiQoiqQioTlbpFfi5FLWrC_8fnOK0qoUoMmXLJ8Pnsu7P9fYfQg9TMVarypGAuFChCU6Iot6T0hpWW2sIoYCNPPsR4WrzP-CyRwpr-tnt_JBlX6g3ZDbYoCNw-zzpSyT464FC7By-espfei3gRchCZzvLiehwy6Cw2xQVpGQKac4k98_dvtyPU9vFojDqjE3Sc0kX80o3vKdpzizN0NFlrrTbn6LkrsDFEqOhEeOlxeI8bqHUtnoeqG6vwQC-8Vs3damN6gaajt8_XMUktEYhhkrakKHPptHcywKu4EUrrLNeSa185YL1qZ6UwNldMK8ksaJ0yV_owMR11Xsv8Eg0Wy4W7Qjgz3HAvpSqFL6j0Abms8pwLRQWz3gwR7WGoTdILh7YVX_VG6RigqwN0dYSuZkP0uP7mu1PL2Gn91KNbp5nT7DC__p_5DTpkcVRhx-QWDdrVj7sLCUSr76O__AKqSrlJ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RTl6YENLMVOnMRiqhBVgbZTK3WL_FxALWrC_8d2klaVUCWGTLlk-Hz23fnuvgN44JKaXOQWJ9S4ACWVBAvCNM6sopkmOlHCdyOPxulgmrzP2KxpCivbavc2JRlO6nWzm7-iwL76PKqbSnZhzzkDuS_kmtJeq0UscT4Ib3J54Tx2HnQUhuJ6ahnsOeea7pm_f7tpoTbTo8Hq9I_hqHEXUa9e3xPYMfNTOBytuFbLM3iuA2zkLVRQIrSwyL1HpY91Nfp0UTcS7vGz8CrxaZZr0XOY9l8nLwPcjETAinJS4SSLuZHWcAevYCoVUkax5Eza3PiuV2k0T5WOBZWCU-25TqnJrNuYhhgreXwBnflibi4BRYopZjkXWWoTwq1DLsotY6kgKdVWdYG0MBSq4Qv3Yyu-ijXTsYeucNAVAbqCduFx9c13zZaxVfqpRbdodk65Rfzqf-L3sD-YjIbF8G38cQ0HNKywvz25gU61_DG3zpmo5F3QnV-Qhrw8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFOUpwc2sBo7sROLqQKq8mjFQKVukZ9LUVq14f9jO0lLJYTEkCmXDJ_Pvjvb33cA3HBJTCYyixJiXIHCJEYCU41Sq0iqsU6U8GzkwZD1R8nLmI5_sPjDbffmSLLiNHiVpqLszLTtrIhvfrsC-ZvoUUUw2QRbbjnG3q9HpNt4FE1cPsLrc72wNrtsOgoNcr3MDPL6czWT5vffrker9aPSEIF6-2CvTh1htxrrA7BhikOwO1jqri6OwH1VbEMfrYJDwamF7j1c-LpXw4mrwKFwj--LV4qJma9Mj8Go9_Tx0Ed1ewSkCMclStKYG2kNd1ALqpiQMoolp9JmxjNgpdGcKR0LIgUn2uueEpNaN0kNNlby-AS0imlhTgGMFFXUci5SZhPMrUMuyiylTGBGtFVtgBsYclVrh_sWFp_5SvXYQ5c76PIAXU7a4Hb5zaxSzvjT-q5BN69n0eIP87P_mV-D7ffHXv72PHw9BzskDLDfSLkArXL-ZS5dXlHKq-A63_rfwHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wright+functions+of+the+second+kind+and+Whittaker+functions&rft.jtitle=Fractional+calculus+%26+applied+analysis&rft.au=Mainardi%2C+Francesco&rft.au=Paris%2C+Richard+B.&rft.au=Consiglio%2C+Armando&rft.date=2022-06-01&rft.pub=Springer+International+Publishing&rft.issn=1311-0454&rft.eissn=1314-2224&rft.volume=25&rft.issue=3&rft.spage=858&rft.epage=875&rft_id=info:doi/10.1007%2Fs13540-022-00042-2&rft.externalDocID=10_1007_s13540_022_00042_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1311-0454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1311-0454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1311-0454&client=summon