Wright functions of the second kind and Whittaker functions
In the framework of higher transcendental functions, the Wright functions of the second kind have increased their relevance resulting from their applications in probability theory and, in particular, in fractional diffusion processes. Here, these functions are compared with the well-known Whittaker...
Saved in:
Published in | Fractional calculus & applied analysis Vol. 25; no. 3; pp. 858 - 875 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the framework of higher transcendental functions, the Wright functions of the second kind have increased their relevance resulting from their applications in probability theory and, in particular, in fractional diffusion processes. Here, these functions are compared with the well-known Whittaker functions in some special cases of fractional order. In addition, we point out two erroneous representations in the literature. |
---|---|
AbstractList | In the framework of higher transcendental functions, the Wright functions of the second kind have increased their relevance resulting from their applications in probability theory and, in particular, in fractional diffusion processes. Here, these functions are compared with the well-known Whittaker functions in some special cases of fractional order. In addition, we point out two erroneous representations in the literature. |
Author | Consiglio, Armando Paris, Richard B. Mainardi, Francesco |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0003-4858-7309 surname: Mainardi fullname: Mainardi, Francesco email: francesco.mainardi@bo.infn.it organization: Department of Physics and Astronomy, University of Bologna, & INFN – sequence: 2 givenname: Richard B. surname: Paris fullname: Paris, Richard B. organization: Division of Computing and Mathematics, University of Abertay – sequence: 3 givenname: Armando surname: Consiglio fullname: Consiglio, Armando organization: Institut für Theoretische Physik und Astrophysik, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg |
BookMark | eNp9kM1KAzEQgINUsNa-gKd9gWgySboNnqT4BwUvSo8h2Z10Y2tWkvTg27ttBcFDD_NzmG-Y-S7JKPYRCbnm7IYzVt9mLpRklAFQxpgECmdkzAWXFADk6NBzyqSSF2Sac3BMScmUVvWY3K1SWHel8rvYlNDHXPW-Kh1WGZs-ttUmDMkOsepCKXaD6W_0ipx7u804_a0T8v748LZ4psvXp5fF_ZI2oHmhshYanUdt596qZmadY8Jp5fwcOQjlsNWzphUWnNXQCgUKsPYSFHL0TosJmR_3NqnPOaE3TSh2f0JJNmwNZ2bvwRw9mMGDOXgwMKDwD_1K4dOm79OQOEJ5GI5rTOaj36U4vHiK-gHs7HKt |
CitedBy_id | crossref_primary_10_1103_PhysRevE_107_064103 crossref_primary_10_1007_s00365_023_09666_w crossref_primary_10_3390_axioms12040382 |
Cites_doi | 10.1080/03610926.2010.543299 10.1515/fca-2021-0003; 10.4401/ag-3863 10.1093/qmath/os-11.1.36 10.1007/978-3-030-69236-0_8 10.1090/S0002-9904-1903-01077-5 10.1017/CBO9780511546662 10.1063/1.3526663 10.3390/math8060884 10.1007/s10986-016-9324-1 10.1016/0893-9659(96)00089-4 10.3390/sym13020354 10.1007/978-3-662-61550-8 10.1142/p614 10.1007/978-3-642-65690-3 10.1007/s10986-014-9229-9 |
ContentType | Journal Article |
Copyright | Diogenes Co.Ltd 2022 |
Copyright_xml | – notice: Diogenes Co.Ltd 2022 |
DBID | AAYXX CITATION |
DOI | 10.1007/s13540-022-00042-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1314-2224 |
EndPage | 875 |
ExternalDocumentID | 10_1007_s13540_022_00042_2 |
GroupedDBID | 06D 0VY 2LR 2WC 30V 3V. 4.4 406 408 8FE 8FG 9-A AACDK AAFPC AAGVJ AAIAL AAJBT AAONY AAPJK AAQCX AARHV AASML AASQH AATNV AAXCG AAYZH ABAKF ABAQN ABFKT ABJCF ABJNI ABRQL ABSOE ABTKH ABUWG ABYKJ ACAOD ACBXY ACDTI ACEFL ACGFS ACIPV ACIWK ACMKP ACPIV ACXLN ACZBO ACZOJ ADGQD ADGYE ADINQ ADJVZ ADOZN AEFQL AEKEB AEMSY AENEX AEQDQ AERZL AESKC AFBAA AFBBN AFCXV AFGNR AFKRA AFLOW AFWTZ AGJBK AGMZJ AGQEE AHBYD AHSBF AIAKS AIGIU AIKXB AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF AMAVY AMKLP AMXSW AMYLF ARAPS ASPBG AVWKF AZFZN AZMOX AZQEC BAKPI BAPOH BBCWN BCIFA BENPR BGLVJ BGNMA BLHJL BPHCQ CCPQU CFGNV DPUIP DWQXO EBLON EBS EJD FEDTE FIGPU GNUQQ GQ7 H13 HCIFZ HF~ HMJXF HVGLF HZ~ IAO IWAJR IY9 J9A JZLTJ K6V K7- KOV L6V LLZTM LO0 M0N M4Y M7S NPVJJ NQJWS NU0 OK1 P9R PQQKQ PROAC PTHSS QD8 R9I ROL RSV S1Z S27 S3B SHX SJN SJYHP SMT SOJ T13 TR2 U2A VC2 WK8 WTRAM ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-4739ebfe9a8fa5c6abb03b95bf8e1235bed96cd3a2ba92d35252e7f425e1efb93 |
IEDL.DBID | U2A |
ISSN | 1311-0454 |
IngestDate | Tue Jul 01 00:57:09 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Fri Feb 21 02:46:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Wright functions Hypergeometric functions 30B10 26A33 (primary ) 33C20 Whittaker functions 30E15 41A60 Laplace transform Fractional calculus 34E05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-4739ebfe9a8fa5c6abb03b95bf8e1235bed96cd3a2ba92d35252e7f425e1efb93 |
ORCID | 0000-0003-4858-7309 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1007_s13540_022_00042_2 crossref_primary_10_1007_s13540_022_00042_2 springer_journals_10_1007_s13540_022_00042_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220600 2022-06-00 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220600 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSubtitle | An International Journal for Theory and Applications |
PublicationTitle | Fractional calculus & applied analysis |
PublicationTitleAbbrev | Fract Calc Appl Anal |
PublicationYear | 2022 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Mainardi, F., Tomirotti, M.: On a special function arising in the time fractional diffusion-wave equation. In: Rusev, P., Dimovski, I., Kiryakova, V. (Eds), Transform Methods and Special Functions, 1994 (Proc. Int. Workshop, Sofia 12–17 August 1994), 171–183, Science Culture Technology, Singapore (1995) MainardiFThe fundamental solutions for the fractional diffusion-wave equationApplied Mathematics Letters1996962328141981110.1016/0893-9659(96)00089-4 Mainardi, F., Tomirotti M.: Seismic pulse propagation with constant Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} and stable probability distributions. Annali di Geofisica 40, 1311–1328 (1997). [E-print http://arxiv.org/abs/1008.1341] ParisRBKochubeiALuchkoYuAsymptotics of the special functions of fractional calculusHandbook of Fractional Calculus with Applications2019BerlinDe Gruyter297325 WhittakerETAn expression of certain known functions as generalised hypergeometric functionsBull. Amer. Math. Soc.1903103125134155805810.1090/S0002-9904-1903-01077-5 Apelblat, A., Mainardi, F.: Applications of the Efros theorem to the function represented by the inverse Laplace transform of s-μexp(-sν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s^{-\mu } \exp (-s^\nu )$$\end{document}. Symmetry 13, Art. 354, 1–15 (2021). https://doi.org/10.3390/sym13020354; E-print arXiv:2012.07068 [math.CA] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. World Scientific, Singapore (2010) [2nd Ed. in press (2022)] CahoyDOEstimation and simulation for the M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-Wright functionCommunications in Statistics - Theory and Methods201241814661477290299910.1080/03610926.2010.5432991319.62073 ParisRBVinogradovVAsymptotic and structural properties of the Wright function arising in probability theoryLithuanian Math. J.201656377409353022510.1007/s10986-016-9324-1 Paris, R.B., Consiglio, A., Mainardi, F.: On the asymptotics of Wright functions of the second kind, Fract. Calc. Appl. Anal. 24(1), 54–72 (2021). https://doi.org/10.1515/fca-2021-0003; [E-print arXiv:2103.04284] Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation. In: Rionero, S., Ruggeri (Eds), 7th Conference on Waves and Stability in Continuous Media (WASCOM 1993), pp. 246–251, World Scientific, Singapore (1994) WrightEMThe generalised Bessel function of order greater than oneQuart. J. Math.194011364810.1093/qmath/os-11.1.36 ParisRBKaminskiDAsymptotics and Mellin-Barnes Integrals2001CambridgeCambridge University Press10.1017/CBO9780511546662 Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions. Related Topics and Applications. 2nd Ed., Monographs in Mathematics, Springer Verlag, Berlin (2020). [1st Ed. (2014)] Gorenflo, R., Luchko, Yu., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2(4), 383–414 (1999). E-print http://arxiv.org/abs/math-ph/0701069 Mainardi, F.: The Linear Diffusion Equation. Lecture Notes in Mathematical Physics, University of Bologna, Department of Physics, 19 pp. (1996–2006) DoetschGIntroduction to the Theory and Application of the Laplace Transformation1974BerlinSpringer10.1007/978-3-642-65690-3 Consiglio, A., Mainardi, F.: Fractional diffusive waves in the Cauchy and signalling problems. In: Beghin, L., Mainardi, F., Garrappa, R. (Eds), Nonlocal and Fractional Operators, SEMA-SIMAI Springer Ser. No 26, pp. 133–153, Springer Nature Switzerland (2021) LipnevichVLuchkoYuThe Wright function: its properties, applications, and numerical evaluationAIP Conference Proceedings20101301614622281011710.1063/1.35266631237.33013 Humbert, P.: Nouvelles correspondances symboliques. Bull. Sci. Math. (Paris, II Ser.) 69, 121–129 (1945) Wright, E.M.: The asymptotic expansion of the generalised Bessel function. Proc. Lond. Math. Soc. (Ser. 2), 38, 286–293 (1934) ErdélyiASwansonCAAsymptotic forms of Whittaker’s confluent hypergeometric functionsMemoirs of the American Mathematical Society1957125150906780127.29602 Mainardi, F., Consiglio, A.: The Wright function of the second kind in mathematical physics. Mathematics 8(6) (SI on Special Functions with Applications in Mathematical Physics), Art. 884, 1–26 (2021). https://doi.org/10.3390/math8060884; [E-print arXiv:2007.02098] LuchkoYuKochubeiALuchkoYuThe Wright functions and its applicationsHandbook of Fractional Calculus with Applications2019BerlinDe Gruyter241268 Olver, F.W., Lozier, D.W. : Boisvert, R.F. and Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) ConsiglioALuchkoYuMainardiFSome notes on the Wright functions in probability theoryWSEAS Transactions on Mathematics201918389393 ParisRBExponentially small expansions of the Wright function on the Stokes linesLithuanian Math. J.20145482105318913910.1007/s10986-014-9229-9 ParisRBThe asymptotics of the generalised Bessel functionMath. Aeterna20177381406 Stanković, B.: On the function of E.M. Wright. Publ. Inst. Math. (Beograd, Nouv. Sér.) 10(24), 113–124 (1970) Aceto, L., Durastante, F.: Efficient computation of the Wright function and its applications to fractional diffusion-wave equations. E-print arXiv:2202.00397v2 42_CR8 42_CR9 42_CR13 42_CR15 42_CR16 A Erdélyi (42_CR7) 1957; 1 42_CR17 ET Whittaker (42_CR28) 1903; 10 42_CR18 42_CR19 42_CR1 42_CR2 42_CR5 RB Paris (42_CR21) 2014; 54 EM Wright (42_CR30) 1940; 11 V Lipnevich (42_CR11) 2010; 1301 42_CR10 42_CR25 42_CR27 42_CR29 RB Paris (42_CR22) 2017; 7 Yu Luchko (42_CR12) 2019 A Consiglio (42_CR4) 2019; 18 DO Cahoy (42_CR3) 2012; 41 F Mainardi (42_CR14) 1996; 9 RB Paris (42_CR24) 2001 RB Paris (42_CR23) 2019 G Doetsch (42_CR6) 1974 RB Paris (42_CR26) 2016; 56 42_CR20 |
References_xml | – reference: Mainardi, F.: The Linear Diffusion Equation. Lecture Notes in Mathematical Physics, University of Bologna, Department of Physics, 19 pp. (1996–2006) – reference: ParisRBKaminskiDAsymptotics and Mellin-Barnes Integrals2001CambridgeCambridge University Press10.1017/CBO9780511546662 – reference: Humbert, P.: Nouvelles correspondances symboliques. Bull. Sci. Math. (Paris, II Ser.) 69, 121–129 (1945) – reference: Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. World Scientific, Singapore (2010) [2nd Ed. in press (2022)] – reference: ParisRBThe asymptotics of the generalised Bessel functionMath. Aeterna20177381406 – reference: Consiglio, A., Mainardi, F.: Fractional diffusive waves in the Cauchy and signalling problems. In: Beghin, L., Mainardi, F., Garrappa, R. (Eds), Nonlocal and Fractional Operators, SEMA-SIMAI Springer Ser. No 26, pp. 133–153, Springer Nature Switzerland (2021) – reference: LipnevichVLuchkoYuThe Wright function: its properties, applications, and numerical evaluationAIP Conference Proceedings20101301614622281011710.1063/1.35266631237.33013 – reference: Wright, E.M.: The asymptotic expansion of the generalised Bessel function. Proc. Lond. Math. Soc. (Ser. 2), 38, 286–293 (1934) – reference: DoetschGIntroduction to the Theory and Application of the Laplace Transformation1974BerlinSpringer10.1007/978-3-642-65690-3 – reference: Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation. In: Rionero, S., Ruggeri (Eds), 7th Conference on Waves and Stability in Continuous Media (WASCOM 1993), pp. 246–251, World Scientific, Singapore (1994) – reference: Mainardi, F., Tomirotti, M.: On a special function arising in the time fractional diffusion-wave equation. In: Rusev, P., Dimovski, I., Kiryakova, V. (Eds), Transform Methods and Special Functions, 1994 (Proc. Int. Workshop, Sofia 12–17 August 1994), 171–183, Science Culture Technology, Singapore (1995) – reference: MainardiFThe fundamental solutions for the fractional diffusion-wave equationApplied Mathematics Letters1996962328141981110.1016/0893-9659(96)00089-4 – reference: CahoyDOEstimation and simulation for the M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-Wright functionCommunications in Statistics - Theory and Methods201241814661477290299910.1080/03610926.2010.5432991319.62073 – reference: Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions. Related Topics and Applications. 2nd Ed., Monographs in Mathematics, Springer Verlag, Berlin (2020). [1st Ed. (2014)] – reference: Apelblat, A., Mainardi, F.: Applications of the Efros theorem to the function represented by the inverse Laplace transform of s-μexp(-sν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s^{-\mu } \exp (-s^\nu )$$\end{document}. Symmetry 13, Art. 354, 1–15 (2021). https://doi.org/10.3390/sym13020354; E-print arXiv:2012.07068 [math.CA] – reference: ErdélyiASwansonCAAsymptotic forms of Whittaker’s confluent hypergeometric functionsMemoirs of the American Mathematical Society1957125150906780127.29602 – reference: Stanković, B.: On the function of E.M. Wright. Publ. Inst. Math. (Beograd, Nouv. Sér.) 10(24), 113–124 (1970) – reference: Aceto, L., Durastante, F.: Efficient computation of the Wright function and its applications to fractional diffusion-wave equations. E-print arXiv:2202.00397v2 – reference: Mainardi, F., Consiglio, A.: The Wright function of the second kind in mathematical physics. Mathematics 8(6) (SI on Special Functions with Applications in Mathematical Physics), Art. 884, 1–26 (2021). https://doi.org/10.3390/math8060884; [E-print arXiv:2007.02098] – reference: WrightEMThe generalised Bessel function of order greater than oneQuart. J. Math.194011364810.1093/qmath/os-11.1.36 – reference: WhittakerETAn expression of certain known functions as generalised hypergeometric functionsBull. Amer. Math. Soc.1903103125134155805810.1090/S0002-9904-1903-01077-5 – reference: Paris, R.B., Consiglio, A., Mainardi, F.: On the asymptotics of Wright functions of the second kind, Fract. Calc. Appl. Anal. 24(1), 54–72 (2021). https://doi.org/10.1515/fca-2021-0003; [E-print arXiv:2103.04284] – reference: Mainardi, F., Tomirotti M.: Seismic pulse propagation with constant Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} and stable probability distributions. Annali di Geofisica 40, 1311–1328 (1997). [E-print http://arxiv.org/abs/1008.1341] – reference: Olver, F.W., Lozier, D.W. : Boisvert, R.F. and Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) – reference: ParisRBExponentially small expansions of the Wright function on the Stokes linesLithuanian Math. J.20145482105318913910.1007/s10986-014-9229-9 – reference: ParisRBVinogradovVAsymptotic and structural properties of the Wright function arising in probability theoryLithuanian Math. J.201656377409353022510.1007/s10986-016-9324-1 – reference: ConsiglioALuchkoYuMainardiFSome notes on the Wright functions in probability theoryWSEAS Transactions on Mathematics201918389393 – reference: LuchkoYuKochubeiALuchkoYuThe Wright functions and its applicationsHandbook of Fractional Calculus with Applications2019BerlinDe Gruyter241268 – reference: ParisRBKochubeiALuchkoYuAsymptotics of the special functions of fractional calculusHandbook of Fractional Calculus with Applications2019BerlinDe Gruyter297325 – reference: Gorenflo, R., Luchko, Yu., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2(4), 383–414 (1999). E-print http://arxiv.org/abs/math-ph/0701069 – volume: 41 start-page: 1466 issue: 8 year: 2012 ident: 42_CR3 publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610926.2010.543299 – ident: 42_CR25 doi: 10.1515/fca-2021-0003; – start-page: 297 volume-title: Handbook of Fractional Calculus with Applications year: 2019 ident: 42_CR23 – ident: 42_CR27 – ident: 42_CR19 doi: 10.4401/ag-3863 – ident: 42_CR10 – volume: 11 start-page: 36 year: 1940 ident: 42_CR30 publication-title: Quart. J. Math. doi: 10.1093/qmath/os-11.1.36 – ident: 42_CR9 – ident: 42_CR16 – ident: 42_CR5 doi: 10.1007/978-3-030-69236-0_8 – volume: 10 start-page: 125 issue: 3 year: 1903 ident: 42_CR28 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0002-9904-1903-01077-5 – volume-title: Asymptotics and Mellin-Barnes Integrals year: 2001 ident: 42_CR24 doi: 10.1017/CBO9780511546662 – volume: 1301 start-page: 614 year: 2010 ident: 42_CR11 publication-title: AIP Conference Proceedings doi: 10.1063/1.3526663 – ident: 42_CR17 doi: 10.3390/math8060884 – volume: 56 start-page: 377 year: 2016 ident: 42_CR26 publication-title: Lithuanian Math. J. doi: 10.1007/s10986-016-9324-1 – volume: 9 start-page: 23 issue: 6 year: 1996 ident: 42_CR14 publication-title: Applied Mathematics Letters doi: 10.1016/0893-9659(96)00089-4 – volume: 7 start-page: 381 year: 2017 ident: 42_CR22 publication-title: Math. Aeterna – ident: 42_CR20 – ident: 42_CR18 – ident: 42_CR1 doi: 10.3390/sym13020354 – ident: 42_CR8 doi: 10.1007/978-3-662-61550-8 – start-page: 241 volume-title: Handbook of Fractional Calculus with Applications year: 2019 ident: 42_CR12 – ident: 42_CR15 doi: 10.1142/p614 – volume: 18 start-page: 389 year: 2019 ident: 42_CR4 publication-title: WSEAS Transactions on Mathematics – ident: 42_CR2 – volume-title: Introduction to the Theory and Application of the Laplace Transformation year: 1974 ident: 42_CR6 doi: 10.1007/978-3-642-65690-3 – ident: 42_CR13 – volume: 54 start-page: 82 year: 2014 ident: 42_CR21 publication-title: Lithuanian Math. J. doi: 10.1007/s10986-014-9229-9 – volume: 1 start-page: 1 issue: 25 year: 1957 ident: 42_CR7 publication-title: Memoirs of the American Mathematical Society – ident: 42_CR29 |
SSID | ssib054405957 ssj0000826098 |
Score | 2.5859416 |
Snippet | In the framework of higher transcendental functions, the Wright functions of the second kind have increased their relevance resulting from their applications... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 858 |
SubjectTerms | Abstract Harmonic Analysis Analysis Functional Analysis Integral Transforms Mathematics Mathematics and Statistics Operational Calculus Original Paper |
Title | Wright functions of the second kind and Whittaker functions |
URI | https://link.springer.com/article/10.1007/s13540-022-00042-2 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqK85IENLMVO7MRiQoiqQioTlbpFfi5FLWrC_8fnOK0qoUoMmXLJ8Pnsu7P9fYfQg9TMVarypGAuFChCU6Iot6T0hpWW2sIoYCNPPsR4WrzP-CyRwpr-tnt_JBlX6g3ZDbYoCNw-zzpSyT464FC7By-espfei3gRchCZzvLiehwy6Cw2xQVpGQKac4k98_dvtyPU9vFojDqjE3Sc0kX80o3vKdpzizN0NFlrrTbn6LkrsDFEqOhEeOlxeI8bqHUtnoeqG6vwQC-8Vs3damN6gaajt8_XMUktEYhhkrakKHPptHcywKu4EUrrLNeSa185YL1qZ6UwNldMK8ksaJ0yV_owMR11Xsv8Eg0Wy4W7Qjgz3HAvpSqFL6j0Abms8pwLRQWz3gwR7WGoTdILh7YVX_VG6RigqwN0dYSuZkP0uP7mu1PL2Gn91KNbp5nT7DC__p_5DTpkcVRhx-QWDdrVj7sLCUSr76O__AKqSrlJ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RTl6YENLMVOnMRiqhBVgbZTK3WL_FxALWrC_8d2klaVUCWGTLlk-Hz23fnuvgN44JKaXOQWJ9S4ACWVBAvCNM6sopkmOlHCdyOPxulgmrzP2KxpCivbavc2JRlO6nWzm7-iwL76PKqbSnZhzzkDuS_kmtJeq0UscT4Ib3J54Tx2HnQUhuJ6ahnsOeea7pm_f7tpoTbTo8Hq9I_hqHEXUa9e3xPYMfNTOBytuFbLM3iuA2zkLVRQIrSwyL1HpY91Nfp0UTcS7vGz8CrxaZZr0XOY9l8nLwPcjETAinJS4SSLuZHWcAevYCoVUkax5Eza3PiuV2k0T5WOBZWCU-25TqnJrNuYhhgreXwBnflibi4BRYopZjkXWWoTwq1DLsotY6kgKdVWdYG0MBSq4Qv3Yyu-ijXTsYeucNAVAbqCduFx9c13zZaxVfqpRbdodk65Rfzqf-L3sD-YjIbF8G38cQ0HNKywvz25gU61_DG3zpmo5F3QnV-Qhrw8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFOUpwc2sBo7sROLqQKq8mjFQKVukZ9LUVq14f9jO0lLJYTEkCmXDJ_Pvjvb33cA3HBJTCYyixJiXIHCJEYCU41Sq0iqsU6U8GzkwZD1R8nLmI5_sPjDbffmSLLiNHiVpqLszLTtrIhvfrsC-ZvoUUUw2QRbbjnG3q9HpNt4FE1cPsLrc72wNrtsOgoNcr3MDPL6czWT5vffrker9aPSEIF6-2CvTh1htxrrA7BhikOwO1jqri6OwH1VbEMfrYJDwamF7j1c-LpXw4mrwKFwj--LV4qJma9Mj8Go9_Tx0Ed1ewSkCMclStKYG2kNd1ALqpiQMoolp9JmxjNgpdGcKR0LIgUn2uueEpNaN0kNNlby-AS0imlhTgGMFFXUci5SZhPMrUMuyiylTGBGtFVtgBsYclVrh_sWFp_5SvXYQ5c76PIAXU7a4Hb5zaxSzvjT-q5BN69n0eIP87P_mV-D7ffHXv72PHw9BzskDLDfSLkArXL-ZS5dXlHKq-A63_rfwHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wright+functions+of+the+second+kind+and+Whittaker+functions&rft.jtitle=Fractional+calculus+%26+applied+analysis&rft.au=Mainardi%2C+Francesco&rft.au=Paris%2C+Richard+B.&rft.au=Consiglio%2C+Armando&rft.date=2022-06-01&rft.pub=Springer+International+Publishing&rft.issn=1311-0454&rft.eissn=1314-2224&rft.volume=25&rft.issue=3&rft.spage=858&rft.epage=875&rft_id=info:doi/10.1007%2Fs13540-022-00042-2&rft.externalDocID=10_1007_s13540_022_00042_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1311-0454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1311-0454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1311-0454&client=summon |