Multitemporal hyperspectral satellite image analysis and classification using fast scale invariant feature transform and deep learning neural network classifier

Image classification is a frequent but still difficult subject in image processing, yet it has applications in various sectors and the medical profession, such as target tracking, object identification, and medical image processing. A Deep Learning Neural Network is used in this research to identify...

Full description

Saved in:
Bibliographic Details
Published inEarth science informatics Vol. 16; no. 1; pp. 877 - 886
Main Authors Vinuja, G., Devi, N. Bharatha
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image classification is a frequent but still difficult subject in image processing, yet it has applications in various sectors and the medical profession, such as target tracking, object identification, and medical image processing. A Deep Learning Neural Network is used in this research to identify methods for satellite remote sensing images. The image data must be pre-processed before being applied to the Fuzzy- Relevance vector machine segmentation stage. Noise is eliminated from satellite images using a Cellular Automata-based Gaussian Filter method. The pre-processed satellite image is then segmented using the Fuzzy- Relevance vector machine Segmentation approach to achieve inverse shape identification while utilizing the least amount of energy. Following segmentation, the satellite images are subjected to Fast Scale Invariant Feature Transform feature extraction, and the Deep Learning Neural Network is utilized to classify the images. When compared to existing approaches, the proposed method’s findings have an exceptional accuracy of 98.9%.
AbstractList Image classification is a frequent but still difficult subject in image processing, yet it has applications in various sectors and the medical profession, such as target tracking, object identification, and medical image processing. A Deep Learning Neural Network is used in this research to identify methods for satellite remote sensing images. The image data must be pre-processed before being applied to the Fuzzy- Relevance vector machine segmentation stage. Noise is eliminated from satellite images using a Cellular Automata-based Gaussian Filter method. The pre-processed satellite image is then segmented using the Fuzzy- Relevance vector machine Segmentation approach to achieve inverse shape identification while utilizing the least amount of energy. Following segmentation, the satellite images are subjected to Fast Scale Invariant Feature Transform feature extraction, and the Deep Learning Neural Network is utilized to classify the images. When compared to existing approaches, the proposed method’s findings have an exceptional accuracy of 98.9%.
Author Vinuja, G.
Devi, N. Bharatha
Author_xml – sequence: 1
  givenname: G.
  surname: Vinuja
  fullname: Vinuja, G.
  email: vinujag9004.sse@saveetha.com
  organization: Department of CSE, Saveetha School of Engineering, SIMATS
– sequence: 2
  givenname: N. Bharatha
  surname: Devi
  fullname: Devi, N. Bharatha
  organization: Department of CSE, Saveetha School of Engineering, SIMATS
BookMark eNp9kEtOwzAQhi1UJErpBVj5AgE_kiZZooqXVMQG1tbEmRSD60S2A-ptOCpui7pgwcpjz3y_7e-cTFzvkJBLzq44Y-V14ILnRcaEzBir8yoTJ2TKq0U6yis-OdalPCPzEEzDJBcLKUQ1Jd9Po40m4mboPVj6th3QhwF13O0CRLQ2danZwBopOLDbYEIqWqotpKzOaIimd3QMxq1pByHSoMEmxH2CN-Ai7RDi6JGmTBe63m_2fIs4UIvg3Q50OO5udBi_ev9xDEd_QU47sAHnv-uMvN7dviwfstXz_ePyZpVpUfOY5UVZtKIpKlaCriUUEhHaknWibJsWpKhlWdUgmtThuk0TuhWyFkzUiwZzLWekOuRq34fgsVPaxP3X0rONVZypnWx1kK2SbLWXrURCxR908EmY3_4PyQMU0rBbo1fv_eiT4PAf9QNEbpnI
CitedBy_id crossref_primary_10_1007_s11042_024_19158_z
crossref_primary_10_3390_su16177539
crossref_primary_10_1007_s12145_024_01408_1
Cites_doi 10.1109/TGRS.2020.3015157
10.1016/j.isprsjprs.2019.09.008
10.32604/iasc.2021.018039
10.3390/systems10030052
10.1080/10106049.2021.1926552
10.1007/s11431-021-1978-6
10.1137/21M1395351
10.3390/rs14061453
10.1007/s10994-021-05972-1
10.1109/TGRS.2022.3172371
10.2514/6.2022-0397
10.1016/j.earscirev.2022.104110
10.1016/j.rse.2022.112913
10.1109/LGRS.2022.3228531
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s12145-023-00948-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1865-0481
EndPage 886
ExternalDocumentID 10_1007_s12145_023_00948_2
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
1N0
203
2JN
2KG
2VQ
2~H
30V
3V.
4.4
406
408
40D
67M
67Z
6NX
88I
8FE
8FG
8FH
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
AYJHY
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXD
IZQ
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KOV
L8X
LK5
LLZTM
M0N
M2P
M4Y
M7R
MK~
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
PCBAR
PQQKQ
PROAC
PT4
Q2X
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-4575d2b5807ac93a53eead70f27dbda3293789a2ba531cd93acd23920296be4c3
IEDL.DBID U2A
ISSN 1865-0473
IngestDate Thu Apr 24 23:09:47 EDT 2025
Tue Jul 01 01:18:03 EDT 2025
Fri Feb 21 02:45:52 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Cellular Automata based Gaussian Filter
Remote sensing
Fuzzy- relevance vector machine
Fast scale invariant feature transform
Deep learning neural network classifier
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4575d2b5807ac93a53eead70f27dbda3293789a2ba531cd93acd23920296be4c3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1007_s12145_023_00948_2
crossref_primary_10_1007_s12145_023_00948_2
springer_journals_10_1007_s12145_023_00948_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Earth science informatics
PublicationTitleAbbrev Earth Sci Inform
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Cabrera, Cabrera, Cabrera (CR2) 2022; 10
Thamaga, Humphrey, Dube, Shoko (CR13) 2022; 37
Liu, Gu, Jia (CR10) 2022; 65
Wan, Zhan, Liu, Yu, Pan (CR14) 2021; 34
De Luca (CR3) 2022; 2
CR7
CR16
CR15
Nasiri, Darvishsefat, Arefi, Griess, Sadeghi, Borz (CR11) 2022; 14
CR12
Alyas Khan, Ali, Shah (CR1) 2021; 30
Hong, Yokoya, Chanussot, Xu (CR4) 2019; 158
Hong, Gao, Yao, Zhang, Plaza (CR5) 2020; 59
Hong, Han, Yao, Gao, Zhang, Plaza (CR6) 2021; 60
Jia, Benson (CR8) 2022; 4
Karasiak, Nicolas, Dejoux, Sheeren (CR9) 2022; 111
948_CR12
TianZhu Liu (948_CR10) 2022; 65
948_CR15
948_CR7
J-F Karasiak, Nicolas (948_CR9) 2022; 111
948_CR16
J Jia (948_CR8) 2022; 4
K Thamaga (948_CR13) 2022; 37
D Hong (948_CR5) 2020; 59
V Nasiri (948_CR11) 2022; 14
M Alyas Khan (948_CR1) 2021; 30
D Hong (948_CR4) 2019; 158
D Cabrera (948_CR2) 2022; 10
S Wan (948_CR14) 2021; 34
G De Luca (948_CR3) 2022; 2
D Hong (948_CR6) 2021; 60
References_xml – volume: 2
  start-page: 9
  issue: 1
  year: 2022
  end-page: 15
  ident: CR3
  article-title: A survey of nisq era hybrid quantum classical machine learning research
  publication-title: J Artif Intell Technol
– ident: CR15
– ident: CR16
– ident: CR12
– volume: 59
  start-page: 5966
  issue: 7
  year: 2020
  end-page: 5978
  ident: CR5
  article-title: Graph convolutional networks for hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2020.3015157
– volume: 158
  start-page: 35
  year: 2019
  end-page: 49
  ident: CR4
  article-title: Learning to propagate labels on graphs: an iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction
  publication-title: ISPRS J photogrammetry remote Sens
  doi: 10.1016/j.isprsjprs.2019.09.008
– volume: 34
  start-page: 6316
  year: 2021
  end-page: 6327
  ident: CR14
  article-title: Contrastive graph poisson networks: semi-supervised learning with extremely limited labels
  publication-title: Adv Neural Inf Process Syst
– volume: 30
  start-page: 771
  issue: 3
  year: 2021
  end-page: 785
  ident: CR1
  article-title: Machine learning-based detection and classification of walnut fungi diseases
  publication-title: Intell Autom Soft Comput
  doi: 10.32604/iasc.2021.018039
– volume: 10
  start-page: 52
  issue: 3
  year: 2022
  ident: CR2
  article-title: Perspectives organize information in mind and nature: empirical findings of point-view perspective (p) in cognitive and material complexity
  publication-title: Systems
  doi: 10.3390/systems10030052
– volume: 37
  start-page: 5891
  issue: 20
  year: 2022
  end-page: 5913
  ident: CR13
  article-title: "Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa
  publication-title: ” Geocarto International
  doi: 10.1080/10106049.2021.1926552
– volume: 65
  start-page: 744
  issue: 4
  year: 2022
  end-page: 758
  ident: CR10
  article-title: Class-guided coupled dictionary learning for multispectral-hyperspectral remote sensing image collaborative classification
  publication-title: Sci China Technological Sci
  doi: 10.1007/s11431-021-1978-6
– ident: CR7
– volume: 4
  start-page: 100
  issue: 1
  year: 2022
  end-page: 125
  ident: CR8
  article-title: A unifying generative model for graph learning algorithms: label propagation, graph convolutions, and combinations
  publication-title: SIAM J Math Data Sci
  doi: 10.1137/21M1395351
– volume: 14
  start-page: 1453
  issue: 6
  year: 2022
  ident: CR11
  article-title: Modeling forest canopy cover: a synergistic use of sentinel 2, aerial photogrammetry data, and machine learning
  publication-title: Remote Sens
  doi: 10.3390/rs14061453
– volume: 111
  start-page: 2715
  issue: 7
  year: 2022
  end-page: 2740
  ident: CR9
  article-title: Spatial dependence between training and test sets: another pitfall of classification accuracy assessment in remote sensing
  publication-title: Mach Learn
  doi: 10.1007/s10994-021-05972-1
– volume: 60
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR6
  article-title: SpectralFormer: rethinking hyperspectral image classification with transformers
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2022.3172371
– volume: 10
  start-page: 52
  issue: 3
  year: 2022
  ident: 948_CR2
  publication-title: Systems
  doi: 10.3390/systems10030052
– volume: 30
  start-page: 771
  issue: 3
  year: 2021
  ident: 948_CR1
  publication-title: Intell Autom Soft Comput
  doi: 10.32604/iasc.2021.018039
– volume: 14
  start-page: 1453
  issue: 6
  year: 2022
  ident: 948_CR11
  publication-title: Remote Sens
  doi: 10.3390/rs14061453
– volume: 2
  start-page: 9
  issue: 1
  year: 2022
  ident: 948_CR3
  publication-title: J Artif Intell Technol
– volume: 59
  start-page: 5966
  issue: 7
  year: 2020
  ident: 948_CR5
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2020.3015157
– ident: 948_CR7
  doi: 10.2514/6.2022-0397
– volume: 111
  start-page: 2715
  issue: 7
  year: 2022
  ident: 948_CR9
  publication-title: Mach Learn
  doi: 10.1007/s10994-021-05972-1
– volume: 4
  start-page: 100
  issue: 1
  year: 2022
  ident: 948_CR8
  publication-title: SIAM J Math Data Sci
  doi: 10.1137/21M1395351
– volume: 37
  start-page: 5891
  issue: 20
  year: 2022
  ident: 948_CR13
  publication-title: ” Geocarto International
  doi: 10.1080/10106049.2021.1926552
– volume: 60
  start-page: 1
  year: 2021
  ident: 948_CR6
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2022.3172371
– volume: 158
  start-page: 35
  year: 2019
  ident: 948_CR4
  publication-title: ISPRS J photogrammetry remote Sens
  doi: 10.1016/j.isprsjprs.2019.09.008
– volume: 65
  start-page: 744
  issue: 4
  year: 2022
  ident: 948_CR10
  publication-title: Sci China Technological Sci
  doi: 10.1007/s11431-021-1978-6
– ident: 948_CR15
  doi: 10.1016/j.earscirev.2022.104110
– ident: 948_CR16
  doi: 10.1016/j.rse.2022.112913
– ident: 948_CR12
  doi: 10.1109/LGRS.2022.3228531
– volume: 34
  start-page: 6316
  year: 2021
  ident: 948_CR14
  publication-title: Adv Neural Inf Process Syst
SSID ssib031263228
ssj0062140
Score 2.2685978
Snippet Image classification is a frequent but still difficult subject in image processing, yet it has applications in various sectors and the medical profession, such...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 877
SubjectTerms Earth and Environmental Science
Earth Sciences
Earth System Sciences
Information Systems Applications (incl.Internet)
Ontology
Simulation and Modeling
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Title Multitemporal hyperspectral satellite image analysis and classification using fast scale invariant feature transform and deep learning neural network classifier
URI https://link.springer.com/article/10.1007/s12145-023-00948-2
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66IfgiXnFeRh5800CbXtI-brILintyoE8lzUWFWcdaBf-NP9WTNN0YyMCnNvScFPKdJifNOd9B6IprEUa59AnzfEHCRESES82gmcdMSpoLbX4NPEzi8TS8e4qeXFJY2US7N0eSdqZeJbsZUm0Cawwx4XCA7zZqR7B3N4FcU9prrCjwDQU5XZ4lxNSlRSYxaIcscKkzf_e5vjytn43aJWe4j_acr4h7NbgHaEsVh2hnZGvxfh-hnzp5tuaWmuFX2FHWiZOmVXJLtVkp_PYOUwbmjnwEbiQWxmU2MUIWFmxi31-w5mWFS4AMVIov2ELDmGOtLPEnrhr_1upLpebY1Zt4wYYSE95Y1AHly87V4hhNh4PH2zFxBReIoKlfkRB8N4AnSjzGRRrwKFBgaMzTlMlc8gBcA5aknObwxBcSJISk4GB5NI1zFYrgBLWKj0KdIizyNPFNDWEVyTD2NFeBllEsU7AGpoXoIL8Z50w4NnJTFGOWrXiUDTYZYJNZbDLaQddLnXnNxbFR-qaBL3PfZblB_Ox_4udol1qzMdFoF6hVLT7VJbgnVd5F7d6w35-Y6-j5ftC11vkL10jh1A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46EX0RrzivefBNC216Sfs4xDl129MGeyu5TkGrrFXw3_hTPUnTjYEMfGvoSQr5TpOvzTnfQeiKaRHFXAYe9QPhRamIPSY1hSZPqJSEC21-DQyGSW8cPU7iiUsKK5to9-ZI0q7Ui2Q3I6rtwR7jmXA4wHcdbQAZSI0vj0mn8aIwMBLkZH6WkBCXFpkm0DuioUud-XvM5e1p-WzUbjndXbTjuCLu1ODuoTVV7KPNe1uL9_sA_dTJs7W21Ct-hi_KOnHStEpmpTYrhV_eYMnAzImPwIXEwlBmEyNkYcEm9n2KNSsrXAJk0KX4gk9omHOslRX-xFXDb21_qdQHdvUmpthIYsITizqgfD64mh2icfdudNvzXMEFT5AsqLwIuBvAE6c-ZSILWRwqcDTqa0IllywEakDTjBEOdwIhwUJIAgTLJ1nCVSTCI9Qq3gt1jLDgWRqYGsIqllHia6ZCLeNEZuANVAvRRkEzz7lwauSmKMZrvtBRNtjkgE1usclJG13P-3zUWhwrrW8a-HL3XpYrzE_-Z36JtnqjQT_vPwyfTtE2sS5kItPOUKuafapzoCoVv7Ce-Qt7suG3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46UXwRrzivefBNy9r0kvZxqHPehg8O9lbSXKYw61ir4L_xp3qSppsDGfjW0JMU8p02J835voPQGVM8CDPhOdT1uBPEPHSYUBSaWUSFIBlX-tfAYy_q9oO7QTj4xeI32e71kWTFadAqTXnZGgvVmhHftMC2A-uNo1PjAOtltBJoNjB4dJ-0a4_yPS1HTqbnChGxFMk4gt4B9S2N5u8x55eq-XNSs_x0NtGGjRtxuwJ6Cy3JfBut3pi6vF876Lsi0lY6UyP8ArvLikSpWwUzspulxK9v8PnAzAqRwIXAXIfPOl_IQIR1HvwQK1aUuAD4oEv-CdtpmH-spBEBxWUd65r-QsoxtrUnhljLY8IT8yq5fDq4nOyifuf6-bLr2OILDieJVzoBxHEAVRi7lPHEZ6EvwemoqwgVmWA-hAk0ThjJ4I7HBVhwQSDYckkSZTLg_h5q5O-53EeYZ0ns6XrCMhRB5ComfSXCSCTgGVRx3kRePc8pt8rkukDGKJ1pKmtsUsAmNdikpInOp33GlS7HQuuLGr7UvqPFAvOD_5mforWnq076cNu7P0TrxHiQTlI7Qo1y8iGPIWopsxPjmD9bHeXq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitemporal+hyperspectral+satellite+image+analysis+and+classification+using+fast+scale+invariant+feature+transform+and+deep+learning+neural+network+classifier&rft.jtitle=Earth+science+informatics&rft.au=Vinuja%2C+G.&rft.au=Devi%2C+N.+Bharatha&rft.date=2023-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=16&rft.issue=1&rft.spage=877&rft.epage=886&rft_id=info:doi/10.1007%2Fs12145-023-00948-2&rft.externalDocID=10_1007_s12145_023_00948_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon