Multitemporal hyperspectral satellite image analysis and classification using fast scale invariant feature transform and deep learning neural network classifier
Image classification is a frequent but still difficult subject in image processing, yet it has applications in various sectors and the medical profession, such as target tracking, object identification, and medical image processing. A Deep Learning Neural Network is used in this research to identify...
Saved in:
Published in | Earth science informatics Vol. 16; no. 1; pp. 877 - 886 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Image classification is a frequent but still difficult subject in image processing, yet it has applications in various sectors and the medical profession, such as target tracking, object identification, and medical image processing. A Deep Learning Neural Network is used in this research to identify methods for satellite remote sensing images. The image data must be pre-processed before being applied to the Fuzzy- Relevance vector machine segmentation stage. Noise is eliminated from satellite images using a Cellular Automata-based Gaussian Filter method. The pre-processed satellite image is then segmented using the Fuzzy- Relevance vector machine Segmentation approach to achieve inverse shape identification while utilizing the least amount of energy. Following segmentation, the satellite images are subjected to Fast Scale Invariant Feature Transform feature extraction, and the Deep Learning Neural Network is utilized to classify the images. When compared to existing approaches, the proposed method’s findings have an exceptional accuracy of 98.9%. |
---|---|
AbstractList | Image classification is a frequent but still difficult subject in image processing, yet it has applications in various sectors and the medical profession, such as target tracking, object identification, and medical image processing. A Deep Learning Neural Network is used in this research to identify methods for satellite remote sensing images. The image data must be pre-processed before being applied to the Fuzzy- Relevance vector machine segmentation stage. Noise is eliminated from satellite images using a Cellular Automata-based Gaussian Filter method. The pre-processed satellite image is then segmented using the Fuzzy- Relevance vector machine Segmentation approach to achieve inverse shape identification while utilizing the least amount of energy. Following segmentation, the satellite images are subjected to Fast Scale Invariant Feature Transform feature extraction, and the Deep Learning Neural Network is utilized to classify the images. When compared to existing approaches, the proposed method’s findings have an exceptional accuracy of 98.9%. |
Author | Vinuja, G. Devi, N. Bharatha |
Author_xml | – sequence: 1 givenname: G. surname: Vinuja fullname: Vinuja, G. email: vinujag9004.sse@saveetha.com organization: Department of CSE, Saveetha School of Engineering, SIMATS – sequence: 2 givenname: N. Bharatha surname: Devi fullname: Devi, N. Bharatha organization: Department of CSE, Saveetha School of Engineering, SIMATS |
BookMark | eNp9kEtOwzAQhi1UJErpBVj5AgE_kiZZooqXVMQG1tbEmRSD60S2A-ptOCpui7pgwcpjz3y_7e-cTFzvkJBLzq44Y-V14ILnRcaEzBir8yoTJ2TKq0U6yis-OdalPCPzEEzDJBcLKUQ1Jd9Po40m4mboPVj6th3QhwF13O0CRLQ2danZwBopOLDbYEIqWqotpKzOaIimd3QMxq1pByHSoMEmxH2CN-Ai7RDi6JGmTBe63m_2fIs4UIvg3Q50OO5udBi_ev9xDEd_QU47sAHnv-uMvN7dviwfstXz_ePyZpVpUfOY5UVZtKIpKlaCriUUEhHaknWibJsWpKhlWdUgmtThuk0TuhWyFkzUiwZzLWekOuRq34fgsVPaxP3X0rONVZypnWx1kK2SbLWXrURCxR908EmY3_4PyQMU0rBbo1fv_eiT4PAf9QNEbpnI |
CitedBy_id | crossref_primary_10_1007_s11042_024_19158_z crossref_primary_10_3390_su16177539 crossref_primary_10_1007_s12145_024_01408_1 |
Cites_doi | 10.1109/TGRS.2020.3015157 10.1016/j.isprsjprs.2019.09.008 10.32604/iasc.2021.018039 10.3390/systems10030052 10.1080/10106049.2021.1926552 10.1007/s11431-021-1978-6 10.1137/21M1395351 10.3390/rs14061453 10.1007/s10994-021-05972-1 10.1109/TGRS.2022.3172371 10.2514/6.2022-0397 10.1016/j.earscirev.2022.104110 10.1016/j.rse.2022.112913 10.1109/LGRS.2022.3228531 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12145-023-00948-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1865-0481 |
EndPage | 886 |
ExternalDocumentID | 10_1007_s12145_023_00948_2 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 2JN 2KG 2VQ 2~H 30V 3V. 4.4 406 408 40D 67M 67Z 6NX 88I 8FE 8FG 8FH 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD AYJHY AZQEC B-. BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXD IZQ J-C J0Z JBSCW JZLTJ K6V K7- KOV L8X LK5 LLZTM M0N M2P M4Y M7R MK~ NPVJJ NQJWS NU0 O9- O93 O9J P62 PCBAR PQQKQ PROAC PT4 Q2X QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-4575d2b5807ac93a53eead70f27dbda3293789a2ba531cd93acd23920296be4c3 |
IEDL.DBID | U2A |
ISSN | 1865-0473 |
IngestDate | Thu Apr 24 23:09:47 EDT 2025 Tue Jul 01 01:18:03 EDT 2025 Fri Feb 21 02:45:52 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | Cellular Automata based Gaussian Filter Remote sensing Fuzzy- relevance vector machine Fast scale invariant feature transform Deep learning neural network classifier |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-4575d2b5807ac93a53eead70f27dbda3293789a2ba531cd93acd23920296be4c3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1007_s12145_023_00948_2 crossref_primary_10_1007_s12145_023_00948_2 springer_journals_10_1007_s12145_023_00948_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230300 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Earth science informatics |
PublicationTitleAbbrev | Earth Sci Inform |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Cabrera, Cabrera, Cabrera (CR2) 2022; 10 Thamaga, Humphrey, Dube, Shoko (CR13) 2022; 37 Liu, Gu, Jia (CR10) 2022; 65 Wan, Zhan, Liu, Yu, Pan (CR14) 2021; 34 De Luca (CR3) 2022; 2 CR7 CR16 CR15 Nasiri, Darvishsefat, Arefi, Griess, Sadeghi, Borz (CR11) 2022; 14 CR12 Alyas Khan, Ali, Shah (CR1) 2021; 30 Hong, Yokoya, Chanussot, Xu (CR4) 2019; 158 Hong, Gao, Yao, Zhang, Plaza (CR5) 2020; 59 Hong, Han, Yao, Gao, Zhang, Plaza (CR6) 2021; 60 Jia, Benson (CR8) 2022; 4 Karasiak, Nicolas, Dejoux, Sheeren (CR9) 2022; 111 948_CR12 TianZhu Liu (948_CR10) 2022; 65 948_CR15 948_CR7 J-F Karasiak, Nicolas (948_CR9) 2022; 111 948_CR16 J Jia (948_CR8) 2022; 4 K Thamaga (948_CR13) 2022; 37 D Hong (948_CR5) 2020; 59 V Nasiri (948_CR11) 2022; 14 M Alyas Khan (948_CR1) 2021; 30 D Hong (948_CR4) 2019; 158 D Cabrera (948_CR2) 2022; 10 S Wan (948_CR14) 2021; 34 G De Luca (948_CR3) 2022; 2 D Hong (948_CR6) 2021; 60 |
References_xml | – volume: 2 start-page: 9 issue: 1 year: 2022 end-page: 15 ident: CR3 article-title: A survey of nisq era hybrid quantum classical machine learning research publication-title: J Artif Intell Technol – ident: CR15 – ident: CR16 – ident: CR12 – volume: 59 start-page: 5966 issue: 7 year: 2020 end-page: 5978 ident: CR5 article-title: Graph convolutional networks for hyperspectral image classification publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2020.3015157 – volume: 158 start-page: 35 year: 2019 end-page: 49 ident: CR4 article-title: Learning to propagate labels on graphs: an iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction publication-title: ISPRS J photogrammetry remote Sens doi: 10.1016/j.isprsjprs.2019.09.008 – volume: 34 start-page: 6316 year: 2021 end-page: 6327 ident: CR14 article-title: Contrastive graph poisson networks: semi-supervised learning with extremely limited labels publication-title: Adv Neural Inf Process Syst – volume: 30 start-page: 771 issue: 3 year: 2021 end-page: 785 ident: CR1 article-title: Machine learning-based detection and classification of walnut fungi diseases publication-title: Intell Autom Soft Comput doi: 10.32604/iasc.2021.018039 – volume: 10 start-page: 52 issue: 3 year: 2022 ident: CR2 article-title: Perspectives organize information in mind and nature: empirical findings of point-view perspective (p) in cognitive and material complexity publication-title: Systems doi: 10.3390/systems10030052 – volume: 37 start-page: 5891 issue: 20 year: 2022 end-page: 5913 ident: CR13 article-title: "Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa publication-title: ” Geocarto International doi: 10.1080/10106049.2021.1926552 – volume: 65 start-page: 744 issue: 4 year: 2022 end-page: 758 ident: CR10 article-title: Class-guided coupled dictionary learning for multispectral-hyperspectral remote sensing image collaborative classification publication-title: Sci China Technological Sci doi: 10.1007/s11431-021-1978-6 – ident: CR7 – volume: 4 start-page: 100 issue: 1 year: 2022 end-page: 125 ident: CR8 article-title: A unifying generative model for graph learning algorithms: label propagation, graph convolutions, and combinations publication-title: SIAM J Math Data Sci doi: 10.1137/21M1395351 – volume: 14 start-page: 1453 issue: 6 year: 2022 ident: CR11 article-title: Modeling forest canopy cover: a synergistic use of sentinel 2, aerial photogrammetry data, and machine learning publication-title: Remote Sens doi: 10.3390/rs14061453 – volume: 111 start-page: 2715 issue: 7 year: 2022 end-page: 2740 ident: CR9 article-title: Spatial dependence between training and test sets: another pitfall of classification accuracy assessment in remote sensing publication-title: Mach Learn doi: 10.1007/s10994-021-05972-1 – volume: 60 start-page: 1 year: 2021 end-page: 15 ident: CR6 article-title: SpectralFormer: rethinking hyperspectral image classification with transformers publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2022.3172371 – volume: 10 start-page: 52 issue: 3 year: 2022 ident: 948_CR2 publication-title: Systems doi: 10.3390/systems10030052 – volume: 30 start-page: 771 issue: 3 year: 2021 ident: 948_CR1 publication-title: Intell Autom Soft Comput doi: 10.32604/iasc.2021.018039 – volume: 14 start-page: 1453 issue: 6 year: 2022 ident: 948_CR11 publication-title: Remote Sens doi: 10.3390/rs14061453 – volume: 2 start-page: 9 issue: 1 year: 2022 ident: 948_CR3 publication-title: J Artif Intell Technol – volume: 59 start-page: 5966 issue: 7 year: 2020 ident: 948_CR5 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2020.3015157 – ident: 948_CR7 doi: 10.2514/6.2022-0397 – volume: 111 start-page: 2715 issue: 7 year: 2022 ident: 948_CR9 publication-title: Mach Learn doi: 10.1007/s10994-021-05972-1 – volume: 4 start-page: 100 issue: 1 year: 2022 ident: 948_CR8 publication-title: SIAM J Math Data Sci doi: 10.1137/21M1395351 – volume: 37 start-page: 5891 issue: 20 year: 2022 ident: 948_CR13 publication-title: ” Geocarto International doi: 10.1080/10106049.2021.1926552 – volume: 60 start-page: 1 year: 2021 ident: 948_CR6 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2022.3172371 – volume: 158 start-page: 35 year: 2019 ident: 948_CR4 publication-title: ISPRS J photogrammetry remote Sens doi: 10.1016/j.isprsjprs.2019.09.008 – volume: 65 start-page: 744 issue: 4 year: 2022 ident: 948_CR10 publication-title: Sci China Technological Sci doi: 10.1007/s11431-021-1978-6 – ident: 948_CR15 doi: 10.1016/j.earscirev.2022.104110 – ident: 948_CR16 doi: 10.1016/j.rse.2022.112913 – ident: 948_CR12 doi: 10.1109/LGRS.2022.3228531 – volume: 34 start-page: 6316 year: 2021 ident: 948_CR14 publication-title: Adv Neural Inf Process Syst |
SSID | ssib031263228 ssj0062140 |
Score | 2.2685978 |
Snippet | Image classification is a frequent but still difficult subject in image processing, yet it has applications in various sectors and the medical profession, such... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 877 |
SubjectTerms | Earth and Environmental Science Earth Sciences Earth System Sciences Information Systems Applications (incl.Internet) Ontology Simulation and Modeling Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
Title | Multitemporal hyperspectral satellite image analysis and classification using fast scale invariant feature transform and deep learning neural network classifier |
URI | https://link.springer.com/article/10.1007/s12145-023-00948-2 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66IfgiXnFeRh5800CbXtI-brILintyoE8lzUWFWcdaBf-NP9WTNN0YyMCnNvScFPKdJifNOd9B6IprEUa59AnzfEHCRESES82gmcdMSpoLbX4NPEzi8TS8e4qeXFJY2US7N0eSdqZeJbsZUm0Cawwx4XCA7zZqR7B3N4FcU9prrCjwDQU5XZ4lxNSlRSYxaIcscKkzf_e5vjytn43aJWe4j_acr4h7NbgHaEsVh2hnZGvxfh-hnzp5tuaWmuFX2FHWiZOmVXJLtVkp_PYOUwbmjnwEbiQWxmU2MUIWFmxi31-w5mWFS4AMVIov2ELDmGOtLPEnrhr_1upLpebY1Zt4wYYSE95Y1AHly87V4hhNh4PH2zFxBReIoKlfkRB8N4AnSjzGRRrwKFBgaMzTlMlc8gBcA5aknObwxBcSJISk4GB5NI1zFYrgBLWKj0KdIizyNPFNDWEVyTD2NFeBllEsU7AGpoXoIL8Z50w4NnJTFGOWrXiUDTYZYJNZbDLaQddLnXnNxbFR-qaBL3PfZblB_Ox_4udol1qzMdFoF6hVLT7VJbgnVd5F7d6w35-Y6-j5ftC11vkL10jh1A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46EX0RrzivefBNC216Sfs4xDl129MGeyu5TkGrrFXw3_hTPUnTjYEMfGvoSQr5TpOvzTnfQeiKaRHFXAYe9QPhRamIPSY1hSZPqJSEC21-DQyGSW8cPU7iiUsKK5to9-ZI0q7Ui2Q3I6rtwR7jmXA4wHcdbQAZSI0vj0mn8aIwMBLkZH6WkBCXFpkm0DuioUud-XvM5e1p-WzUbjndXbTjuCLu1ODuoTVV7KPNe1uL9_sA_dTJs7W21Ct-hi_KOnHStEpmpTYrhV_eYMnAzImPwIXEwlBmEyNkYcEm9n2KNSsrXAJk0KX4gk9omHOslRX-xFXDb21_qdQHdvUmpthIYsITizqgfD64mh2icfdudNvzXMEFT5AsqLwIuBvAE6c-ZSILWRwqcDTqa0IllywEakDTjBEOdwIhwUJIAgTLJ1nCVSTCI9Qq3gt1jLDgWRqYGsIqllHia6ZCLeNEZuANVAvRRkEzz7lwauSmKMZrvtBRNtjkgE1usclJG13P-3zUWhwrrW8a-HL3XpYrzE_-Z36JtnqjQT_vPwyfTtE2sS5kItPOUKuafapzoCoVv7Ce-Qt7suG3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46UXwRrzivefBNy9r0kvZxqHPehg8O9lbSXKYw61ir4L_xp3qSppsDGfjW0JMU8p02J835voPQGVM8CDPhOdT1uBPEPHSYUBSaWUSFIBlX-tfAYy_q9oO7QTj4xeI32e71kWTFadAqTXnZGgvVmhHftMC2A-uNo1PjAOtltBJoNjB4dJ-0a4_yPS1HTqbnChGxFMk4gt4B9S2N5u8x55eq-XNSs_x0NtGGjRtxuwJ6Cy3JfBut3pi6vF876Lsi0lY6UyP8ArvLikSpWwUzspulxK9v8PnAzAqRwIXAXIfPOl_IQIR1HvwQK1aUuAD4oEv-CdtpmH-spBEBxWUd65r-QsoxtrUnhljLY8IT8yq5fDq4nOyifuf6-bLr2OILDieJVzoBxHEAVRi7lPHEZ6EvwemoqwgVmWA-hAk0ThjJ4I7HBVhwQSDYckkSZTLg_h5q5O-53EeYZ0ns6XrCMhRB5ComfSXCSCTgGVRx3kRePc8pt8rkukDGKJ1pKmtsUsAmNdikpInOp33GlS7HQuuLGr7UvqPFAvOD_5mforWnq076cNu7P0TrxHiQTlI7Qo1y8iGPIWopsxPjmD9bHeXq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitemporal+hyperspectral+satellite+image+analysis+and+classification+using+fast+scale+invariant+feature+transform+and+deep+learning+neural+network+classifier&rft.jtitle=Earth+science+informatics&rft.au=Vinuja%2C+G.&rft.au=Devi%2C+N.+Bharatha&rft.date=2023-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=16&rft.issue=1&rft.spage=877&rft.epage=886&rft_id=info:doi/10.1007%2Fs12145-023-00948-2&rft.externalDocID=10_1007_s12145_023_00948_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon |