Multilayer ransomware detection using grouped registry key operations, file entropy and file signature monitoring

The last few years have come with a sudden rise in ransomware attack incidents, causing significant financial losses to individuals, institutions and businesses. In reaction to these attacks, ransomware detection has become an important topic for research in recent years. Currently, there are two br...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer security Vol. 28; no. 3; pp. 337 - 373
Main Authors Jethva, Brijesh, Traoré, Issa, Ghaleb, Asem, Ganame, Karim, Ahmed, Sherif
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2020
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The last few years have come with a sudden rise in ransomware attack incidents, causing significant financial losses to individuals, institutions and businesses. In reaction to these attacks, ransomware detection has become an important topic for research in recent years. Currently, there are two broad categories of ransomware detection techniques: signature-based and behaviour-based analyses. On the one hand, signature-based detection, which mainly relies on a static analysis, can easily be evaded by code-obfuscation and encryption techniques. On the other hand, current behaviour-based models, which rely mainly on a dynamic analysis, face difficulties in accurately differentiating between user-triggered encryption from ransomware-triggered encryption. In the current paper, we present an upgraded behavioural ransomware detection model that reinforces the existing feature space with a new set of features based on grouped registry key operations, introducing a monitoring model based on combined file entropy and file signature. We analyze the new feature model by exploring and comparing three different linear machine learning techniques: SVM, logistic regression and random forest. The proposed approach helps achieve improved detection accuracy and provides the ability to detect novel ransomware. Furthermore, the proposed approach helps differentiate user-triggered encryption from ransomware-triggered encryption, allowing saving as many files as possible during an attack. To conduct our study, we use a new public ransomware detection dataset collected in our lab, which consists of 666 ransomware and 103 benign binaries. Our experimental results show that our proposed approach achieves relatively high accuracy in detecting both previously seen and novel ransomware samples.
AbstractList The last few years have come with a sudden rise in ransomware attack incidents, causing significant financial losses to individuals, institutions and businesses. In reaction to these attacks, ransomware detection has become an important topic for research in recent years. Currently, there are two broad categories of ransomware detection techniques: signature-based and behaviour-based analyses. On the one hand, signature-based detection, which mainly relies on a static analysis, can easily be evaded by code-obfuscation and encryption techniques. On the other hand, current behaviour-based models, which rely mainly on a dynamic analysis, face difficulties in accurately differentiating between user-triggered encryption from ransomware-triggered encryption. In the current paper, we present an upgraded behavioural ransomware detection model that reinforces the existing feature space with a new set of features based on grouped registry key operations, introducing a monitoring model based on combined file entropy and file signature. We analyze the new feature model by exploring and comparing three different linear machine learning techniques: SVM, logistic regression and random forest. The proposed approach helps achieve improved detection accuracy and provides the ability to detect novel ransomware. Furthermore, the proposed approach helps differentiate user-triggered encryption from ransomware-triggered encryption, allowing saving as many files as possible during an attack. To conduct our study, we use a new public ransomware detection dataset collected in our lab, which consists of 666 ransomware and 103 benign binaries. Our experimental results show that our proposed approach achieves relatively high accuracy in detecting both previously seen and novel ransomware samples.
Author Jethva, Brijesh
Traoré, Issa
Ganame, Karim
Ahmed, Sherif
Ghaleb, Asem
Author_xml – sequence: 1
  givenname: Brijesh
  surname: Jethva
  fullname: Jethva, Brijesh
  email: bjethva@uvic.ca
  organization: Department of Computer Science
– sequence: 2
  givenname: Issa
  surname: Traoré
  fullname: Traoré, Issa
  organization: Department of Computer Science
– sequence: 3
  givenname: Asem
  surname: Ghaleb
  fullname: Ghaleb, Asem
  email: aghaleb@uvic.ca
  organization: Department of Computer Science
– sequence: 4
  givenname: Karim
  surname: Ganame
  fullname: Ganame, Karim
  email: ganame@streamscan.io
  organization: Department of Computer Science
– sequence: 5
  givenname: Sherif
  surname: Ahmed
  fullname: Ahmed, Sherif
  email: Sherif.SaadAhmed@uwindsor.ca
  organization: Department of Computer Science
BookMark eNptkE1LxDAQhoOs4K568RcEPAhiNR_ttjnK4ieKBxW8lWk7LdFu0k1SpP_eagVB9jQwPO87w7MgM2MNEnLE2bkUUl7cr54jrriMlztkzrM0iTIl4hmZMyWWkRDp2x5ZeP_OmOBcZXOyeezboFsY0FEHxtv1JzikFQYsg7aG9l6bhjbO9h1W1GGjfXAD_cCB2g4dfEP-jNa6RYomONsNFEw1LbxuDIR-LFxbo4N1Y9cB2a2h9Xj4O_fJ6_XVy-o2eni6uVtdPkSlUDxEsUxA8apGUaoSslgWaS0UqyEtVMWKLONKMlFCkiUZJgmMqzopliCKOGWwLOU-OZ56O2c3PfqQv9vemfFkLuRoI46FikfqdKJKZ713WOed02twQ85Z_q00H5Xmk9IRZv_gUocfA8GBbrdHTqaIhwb_PthCfgFXXIm5
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3461965
crossref_primary_10_1109_TDSC_2024_3364209
crossref_primary_10_3390_s24010189
crossref_primary_10_1016_j_cose_2023_103595
crossref_primary_10_1016_j_cose_2024_103703
crossref_primary_10_1007_s11042_023_16946_x
crossref_primary_10_1109_ACCESS_2024_3397921
crossref_primary_10_1016_j_cose_2023_103349
crossref_primary_10_1093_comjnl_bxad005
crossref_primary_10_1016_j_cose_2024_104280
crossref_primary_10_1109_TDSC_2022_3214781
crossref_primary_10_3233_JIFS_202465
crossref_primary_10_3390_app14083520
crossref_primary_10_1109_TIFS_2025_3531230
crossref_primary_10_1109_ACCESS_2023_3322427
crossref_primary_10_3390_app12010172
crossref_primary_10_3390_s23031053
Cites_doi 10.1145/3052973.3053035
10.1155/2016/2946735
10.1145/3180465.3180467
10.1007/978-3-319-64701-2_14
10.1109/SP.2012.14
10.1109/HPCC-CSS-ICESS.2015.39
10.1007/978-3-319-26362-5_18
10.1145/3133956.3134035
10.1007/978-3-319-20550-2_1
10.1016/j.compeleceng.2017.10.012
10.1109/ICCITECHN.2017.8281835
10.1145/3230833.3234691
10.1145/3019612.3019793
10.1109/MSP.2018.2701165
10.1145/3129676.3129713
10.1007/978-3-319-39570-8_14
10.1109/ICDCS.2016.46
10.1145/1402256.1402262
10.1007/978-3-319-48965-0_32
10.1007/978-3-030-00470-5_6
10.1145/2991079.2991110
10.1109/COMSNETS.2018.8328219
10.1145/3129676.3129704
10.1145/586110.586145
10.1109/ISCISC.2015.7387902
10.1016/j.diin.2009.06.016
ContentType Journal Article
Copyright 2020 – IOS Press and the authors. All rights reserved
Copyright IOS Press BV 2020
Copyright_xml – notice: 2020 – IOS Press and the authors. All rights reserved
– notice: Copyright IOS Press BV 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JCS-191346
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-8924
EndPage 373
ExternalDocumentID 10_3233_JCS_191346
10.3233_JCS-191346
GroupedDBID .4S
.DC
0R~
4.4
6KP
8VB
AAGLT
AAQXI
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ARTOV
ASPBG
AVWKF
EAD
EAP
EAS
EAU
EBA
EBE
EBR
EBS
EBU
EDO
EIS
EMK
EPL
EST
ESX
FIL
H13
HZ~
I-F
IOS
ITG
ITH
J8X
K1G
MET
MIO
MV1
NGNOM
O9-
P2P
PQQKQ
QWB
SAUOL
SCNPE
SFC
TH9
TUS
XJE
ZL0
AAYXX
AJGYC
CITATION
7SC
8FD
AAPII
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-435a91dfe2c9ca843b7f290fa7b9d0b8819302ca5858e55a0b8f5b6a2b470a6c3
ISSN 0926-227X
IngestDate Fri Jul 25 10:06:24 EDT 2025
Tue Jul 01 05:26:41 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Tue Jun 17 22:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords file signature
machine learning
file entropy
Ransomware detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-435a91dfe2c9ca843b7f290fa7b9d0b8819302ca5858e55a0b8f5b6a2b470a6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2392644294
PQPubID 2046403
PageCount 37
ParticipantIDs proquest_journals_2392644294
crossref_primary_10_3233_JCS_191346
crossref_citationtrail_10_3233_JCS_191346
sage_journals_10_3233_JCS_191346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Journal of computer security
PublicationYear 2020
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References 2018; 16
2008; 26
2016; 26
ref009
ref007
ref029
ref005
ref027
ref006
ref028
ref003
ref025
ref004
ref026
Douceur J.R. (ref008) 2016; 26
ref012
ref034
ref013
ref035
ref010
ref032
ref011
ref033
ref030
ref031
ref018
ref019
ref016
ref038
ref017
ref039
ref014
ref036
ref015
ref037
ref001
ref023
ref002
ref024
ref021
ref022
ref041
ref020
ref040
References_xml – volume: 26
  start-page: 212
  issue: 4
  year: 2016
  end-page: 221
  article-title: A large-scale study of file-system contents
  publication-title: ACM SIGMETRICS Performance Evaluation Review
– volume: 26
  start-page: 23
  issue: 4
  year: 2008
  article-title: Organizing and managing personal electronic files: A mechanical engineer’s perspective
  publication-title: ACM Transactions on Information Systems (TOIS)
– volume: 16
  start-page: 103
  issue: 3
  year: 2018
  end-page: 107
  article-title: Protecting against ransomware: A new line of research or restating classic ideas?
  publication-title: IEEE Security & Privacy
– ident: ref018
  doi: 10.1145/3052973.3053035
– ident: ref030
– ident: ref032
– ident: ref003
– ident: ref037
  doi: 10.1155/2016/2946735
– ident: ref007
  doi: 10.1145/3180465.3180467
– ident: ref024
– ident: ref010
  doi: 10.1007/978-3-319-64701-2_14
– ident: ref031
  doi: 10.1109/SP.2012.14
– ident: ref040
  doi: 10.1109/HPCC-CSS-ICESS.2015.39
– ident: ref028
– ident: ref002
  doi: 10.1007/978-3-319-26362-5_18
– volume: 26
  start-page: 212
  issue: 4
  year: 2016
  ident: ref008
  publication-title: ACM SIGMETRICS Performance Evaluation Review
– ident: ref013
  doi: 10.1145/3133956.3134035
– ident: ref041
– ident: ref015
– ident: ref022
– ident: ref020
– ident: ref016
  doi: 10.1007/978-3-319-20550-2_1
– ident: ref004
  doi: 10.1016/j.compeleceng.2017.10.012
– ident: ref011
  doi: 10.1109/ICCITECHN.2017.8281835
– ident: ref034
– ident: ref027
  doi: 10.1145/3230833.3234691
– ident: ref038
– ident: ref021
  doi: 10.1145/3019612.3019793
– ident: ref029
– ident: ref017
  doi: 10.1109/MSP.2018.2701165
– ident: ref019
  doi: 10.1145/3129676.3129713
– ident: ref026
  doi: 10.1007/978-3-319-39570-8_14
– ident: ref033
  doi: 10.1109/ICDCS.2016.46
– ident: ref012
  doi: 10.1145/1402256.1402262
– ident: ref023
  doi: 10.1007/978-3-319-48965-0_32
– ident: ref025
  doi: 10.1007/978-3-030-00470-5_6
– ident: ref006
  doi: 10.1145/2991079.2991110
– ident: ref036
  doi: 10.1109/COMSNETS.2018.8328219
– ident: ref005
  doi: 10.1145/3129676.3129704
– ident: ref014
– ident: ref035
– ident: ref039
  doi: 10.1145/586110.586145
– ident: ref001
  doi: 10.1109/ISCISC.2015.7387902
– ident: ref009
  doi: 10.1016/j.diin.2009.06.016
SSID ssj0021198
Score 2.4135933
Snippet The last few years have come with a sudden rise in ransomware attack incidents, causing significant financial losses to individuals, institutions and...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 337
SubjectTerms Encryption
Entropy
Machine learning
Malware
Monitoring
Multilayers
Ransomware
Regression analysis
Static code analysis
Title Multilayer ransomware detection using grouped registry key operations, file entropy and file signature monitoring
URI https://journals.sagepub.com/doi/full/10.3233/JCS-191346
https://www.proquest.com/docview/2392644294
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9sIFKIsIlGokuCBjsMfrHKPStCppOTSRcrNmxuMW1MQhdkDiT_CXebN4aRsh4GJFz9YomvfN2-YtCL0pgjwtZB64rOCeG6o2hOAGUZeFKQ0LP6cpVwH9s_P4ZBaezqP5YPCrl7W0qfl78XNrXcn_cBVowFdVJfsPnG0XBQL8Bv7CEzgMz7_isa6evWZgNTtK5ZSLHyqPK5e1NAPANzoQoAs3pKpSudSj3Rw4t065kob3mo-qO5Oj4rzlyvRj0gSV26H7fjoLffLXjZq7a8wKOxzCqew8vDYzR9ZX38145_WXr7Jqo8-gJEt7Ta_lVFW1CuL4CrSWvicaVTayrKhsycxI90_g3y_64Qri3QpX9DORTKpfl72ko5IkdglJ5kY9GZkMLpWbUlNq3QhtkvbAGfQkcGB6yNzWDAFRkevx6eGF66tkgy3tt88_Z-PZZJJNj-bTe2iXgN8BgnN39PFsctH68L6vxyu3_9N0vFWrf-jWvmnjdI5LL1dQmy_TR-iBZRUeGRDtoYFcPkYPm5ke2Ir4J-hbhyncYQq3mMIaU9hiCjeYwoAp3GHqHVYAwhZRGBBlCC2icIeop2g2Ppoenrh2LIcrCPVrONARo35eSCKoYGkY8KQg1CtYwmnu8RRszMAjgoEjmsooYkAqIh4zwsPEY7EInqGdZbmUzxFOGKUREaAjqLqwpxwc7CAVJA9jQRLJhuhts5GZsD3r1eiU6wx8V7XpGWx6ZjZ9iF63365Mp5atX-03_MjsSa4yAk4C-AWEhkOEFY-6V3dXePHnFV6i-x3s99FOvd7IV2C31vzAYuk3g-6eyg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilayer+ransomware+detection+using+grouped+registry+key+operations%2C+file+entropy+and+file+signature+monitoring&rft.jtitle=Journal+of+computer+security&rft.au=Jethva%2C+Brijesh&rft.au=Traor%C3%A9%2C+Issa&rft.au=Ghaleb%2C+Asem&rft.au=Ganame%2C+Karim&rft.date=2020-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=0926-227X&rft.eissn=1875-8924&rft.volume=28&rft.issue=3&rft.spage=337&rft_id=info:doi/10.3233%2FJCS-191346&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-227X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-227X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-227X&client=summon