Suppressing Biased Samples for Robust VQA
Most existing visual question answering (VQA) models strongly rely on language bias to answer questions, i.e., they always tend to fit question-answer pairs on the train split and perform poorly on the test spilt when the answer distributions are different. This behavior makes them hard to be applie...
Saved in:
Published in | IEEE transactions on multimedia Vol. 24; pp. 3405 - 3415 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Be the first to leave a comment!