A Deep Learning Approach to Grasping the Invisible

We study an emerging problem named "grasping the invisible" in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object via a sequence of pushing and grasping actions. In this problem, pushes are needed to search for the target and rearrange cluttered...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 5; no. 2; pp. 2231 - 2238
Main Authors Yang, Yang, Liang, Hengyue, Choi, Changhyun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2020.2970622

Cover

Loading…
Abstract We study an emerging problem named "grasping the invisible" in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object via a sequence of pushing and grasping actions. In this problem, pushes are needed to search for the target and rearrange cluttered objects around it to enable effective grasps. We propose to solve the problem by formulating a deep learning approach in a critic-policy format. The target-oriented motion critic, which maps both visual observations and target information to the expected future rewards of pushing and grasping motion primitives, is learned via deep Q-learning. We divide the problem into two subtasks, and two policies are proposed to tackle each of them, by combining the critic predictions and relevant domain knowledge. A Bayesian-based policy accounting for past action experience performs pushing to search for the target; once the target is found, a classifier-based policy coordinates target-oriented pushing and grasping to grasp the target in clutter. The motion critic and the classifier are trained in a self-supervised manner through robot-environment interactions. Our system achieves a 93% and 87% task success rate on each of the two subtasks in simulation and an 85% task success rate in real robot experiments on the whole problem, which outperforms several baselines by large margins. Supplementary material is available at https://sites.google.com/umn.edu/grasping-invisible.
AbstractList We study an emerging problem named "grasping the invisible" in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object via a sequence of pushing and grasping actions. In this problem, pushes are needed to search for the target and rearrange cluttered objects around it to enable effective grasps. We propose to solve the problem by formulating a deep learning approach in a critic-policy format. The target-oriented motion critic, which maps both visual observations and target information to the expected future rewards of pushing and grasping motion primitives, is learned via deep Q-learning. We divide the problem into two subtasks, and two policies are proposed to tackle each of them, by combining the critic predictions and relevant domain knowledge. A Bayesian-based policy accounting for past action experience performs pushing to search for the target; once the target is found, a classifier-based policy coordinates target-oriented pushing and grasping to grasp the target in clutter. The motion critic and the classifier are trained in a self-supervised manner through robot-environment interactions. Our system achieves a 93% and 87% task success rate on each of the two subtasks in simulation and an 85% task success rate in real robot experiments on the whole problem, which outperforms several baselines by large margins. Supplementary material is available at https://sites.google.com/umn.edu/grasping-invisible.
Author Yang, Yang
Choi, Changhyun
Liang, Hengyue
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0001-5814-1170
  surname: Yang
  fullname: Yang, Yang
  email: yang5276@umn.edu
  organization: Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Hengyue
  orcidid: 0000-0001-9498-6402
  surname: Liang
  fullname: Liang, Hengyue
  email: liang656@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Changhyun
  orcidid: 0000-0003-4715-3576
  surname: Choi
  fullname: Choi, Changhyun
  email: cchoi@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
BookMark eNp9kEFLw0AQRhepYNXeBS8Bz6mzs8lu9hiq1kJAkN6XTTKxW2oSd1PBf29Ki4gHTzMM35sZ3iWbtF1LjN1wmHMO-r54zecICHPUCiTiGZuiUCoWSsrJr_6CzULYAgBPUQmdThnm0QNRHxVkfevatyjve9_ZahMNXbT0NvSH4bChaNV-uuDKHV2z88buAs1O9Yqtnx7Xi-e4eFmuFnkRV6j5EIuKRFkS8lTVspGZ1jYVugTN66TkTSIrDqppVJqR5cImpYCkVDXqqq5Bobhid8e14z8fewqD2XZ7344XDYpUa8gwgzElj6nKdyF4akzlBju4rh28dTvDwRwMmdGQORgyJ0MjCH_A3rt367_-Q26PiCOin3imlcRUiW_JpHBm
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_LRA_2024_3460416
crossref_primary_10_1109_JIOT_2024_3484755
crossref_primary_10_1109_TCYB_2024_3381639
crossref_primary_10_3390_biomimetics10030186
crossref_primary_10_3390_electronics11050706
crossref_primary_10_1109_TNNLS_2023_3244186
crossref_primary_10_1016_j_measurement_2021_109095
crossref_primary_10_3390_electronics11132065
crossref_primary_10_1109_LRA_2021_3092640
crossref_primary_10_3390_s21082594
crossref_primary_10_1109_LRA_2022_3145064
crossref_primary_10_1109_LRA_2021_3062295
crossref_primary_10_1109_ACCESS_2020_3028740
crossref_primary_10_1007_s10846_022_01702_4
crossref_primary_10_1007_s12555_023_0358_y
crossref_primary_10_3389_fnbot_2023_1188468
crossref_primary_10_1109_LRA_2022_3190094
crossref_primary_10_3390_s22207938
crossref_primary_10_1007_s12559_022_10047_x
crossref_primary_10_1007_s00170_024_13004_0
crossref_primary_10_1007_s10846_024_02127_x
crossref_primary_10_3390_act13080316
crossref_primary_10_3390_electronics12143065
crossref_primary_10_1109_TIM_2024_3379048
crossref_primary_10_3390_electronics12143100
crossref_primary_10_1109_LRA_2022_3204822
crossref_primary_10_1109_LRA_2024_3497753
crossref_primary_10_1007_s10489_020_01789_y
crossref_primary_10_1017_S0263574722000297
crossref_primary_10_1109_TCDS_2022_3163022
crossref_primary_10_1109_ACCESS_2020_3027923
crossref_primary_10_1109_TCDS_2024_3357084
crossref_primary_10_3390_su132413686
crossref_primary_10_1109_TRO_2024_3353484
crossref_primary_10_1016_j_aei_2022_101530
crossref_primary_10_1109_LRA_2024_3359553
crossref_primary_10_1109_TII_2024_3488774
crossref_primary_10_3390_app12020937
Cites_doi 10.1007/s10514-012-9306-z
10.1109/TRO.2013.2289018
10.1109/ICRA.2018.8461041
10.1109/ICRA.2012.6224575
10.1109/CVPR.2017.243
10.1109/IROS.2012.6385903
10.1109/TPAMI.2016.2644615
10.1109/CVPR.2009.5206848
10.1109/ICRA.2019.8794143
10.1016/j.robot.2011.07.016
10.1109/IROS.2018.8593986
10.1109/IROS.2011.6094737
10.1109/LRA.2018.2810544
10.1109/ICRA.2017.7989249
10.15607/RSS.2018.XIV.019
10.1109/IROS.2018.8594406
10.1109/CVPR.2019.00346
10.15607/RSS.2017.XIII.058
10.1007/978-3-030-28619-4_32
10.1109/CVPR.2016.90
10.1109/COASE.2018.8560406
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.2970622
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 2238
ExternalDocumentID 10_1109_LRA_2020_2970622
8976257
Genre orig-research
GrantInformation_xml – fundername: MnDRIVE Initiative on Robotics, Sensors, and Advanced Manufacturing
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-3ce3bbe2157d6f6899a539b091d4b1f46c107ff758ea13a4b304b7d29cdd0723
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Sun Jun 29 15:28:02 EDT 2025
Tue Jul 01 03:54:00 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Aug 27 02:35:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-3ce3bbe2157d6f6899a539b091d4b1f46c107ff758ea13a4b304b7d29cdd0723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9498-6402
0000-0003-4715-3576
0000-0001-5814-1170
PQID 2359908280
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_8976257
crossref_primary_10_1109_LRA_2020_2970622
crossref_citationtrail_10_1109_LRA_2020_2970622
proquest_journals_2359908280
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
boularias (ref16) 0
ref11
ref10
schaul (ref31) 2015
ref2
ref1
marios (ref15) 0
ref18
ioffe (ref19) 0
jang (ref4) 0
andrychowicz (ref32) 0
kalashnikov (ref9) 0
bohg (ref6) 2013; 30
nekrasov (ref30) 2018
ref24
ref23
ref25
ref22
ref21
nair (ref20) 0
ref28
ref27
ref29
ref8
jang (ref17) 0
ref7
ref3
ref5
zeng (ref26) 2018
References_xml – ident: ref10
  doi: 10.1007/s10514-012-9306-z
– year: 0
  ident: ref16
  article-title: Learning to manipulate unknown objects in clutter by reinforcement
  publication-title: Proc 29th AAAI Conf Artif Intell
– volume: 30
  start-page: 289
  year: 2013
  ident: ref6
  article-title: Data-driven grasp synthesisa survey
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2013.2289018
– ident: ref5
  doi: 10.1109/ICRA.2018.8461041
– ident: ref13
  doi: 10.1109/ICRA.2012.6224575
– year: 2015
  ident: ref31
  article-title: Prioritized experience replay
– start-page: 5048
  year: 0
  ident: ref32
  article-title: Hindsight experience replay
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 807
  year: 0
  ident: ref20
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref23
  doi: 10.1109/CVPR.2017.243
– ident: ref12
  doi: 10.1109/IROS.2012.6385903
– ident: ref21
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref24
  doi: 10.1109/CVPR.2009.5206848
– start-page: 119
  year: 0
  ident: ref17
  article-title: End-to-end learning of semantic grasping
  publication-title: Proc Conf Robot Learn
– ident: ref18
  doi: 10.1109/ICRA.2019.8794143
– ident: ref7
  doi: 10.1016/j.robot.2011.07.016
– ident: ref3
  doi: 10.1109/IROS.2018.8593986
– start-page: 99
  year: 0
  ident: ref4
  article-title: Grasp2vec: Learning object representations from self-supervised grasping
  publication-title: Proc Conf Robot Learn
– ident: ref11
  doi: 10.1109/IROS.2011.6094737
– ident: ref2
  doi: 10.1109/LRA.2018.2810544
– ident: ref25
  doi: 10.1109/ICRA.2017.7989249
– start-page: 651
  year: 0
  ident: ref9
  article-title: Scalable deep reinforcement learning for vision-based robotic manipulation
  publication-title: Proc Conf Robot Learn
– ident: ref27
  doi: 10.15607/RSS.2018.XIV.019
– ident: ref28
  doi: 10.1109/IROS.2018.8594406
– ident: ref29
  doi: 10.1109/CVPR.2019.00346
– start-page: 1596
  year: 0
  ident: ref15
  article-title: Robust object grasping in clutter via singulation
  publication-title: Proc Int Conf Robot Autom
– year: 2018
  ident: ref30
  article-title: Light-weight refinenet for real-time semantic segmentation
– start-page: 448
  year: 0
  ident: ref19
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– ident: ref8
  doi: 10.15607/RSS.2017.XIII.058
– year: 2018
  ident: ref26
  article-title: visual-pushing-grasping
– ident: ref1
  doi: 10.1007/978-3-030-28619-4_32
– ident: ref22
  doi: 10.1109/CVPR.2016.90
– ident: ref14
  doi: 10.1109/COASE.2018.8560406
SSID ssj0001527395
Score 2.4680054
Snippet We study an emerging problem named "grasping the invisible" in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object...
We study an emerging problem named “grasping the invisible” in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2231
SubjectTerms Classifiers
Clutter
computer vision for automation
Deep learning
deep learning in robotics and automation
Dexterous manipulation
Grasping (robotics)
Machine learning
Pushing
Robots
Visual observation
Title A Deep Learning Approach to Grasping the Invisible
URI https://ieeexplore.ieee.org/document/8976257
https://www.proquest.com/docview/2359908280
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFUnlgQSJtYjtJPVbQUhBlQEXqFvnJQJVWbbow8Nuxk7Q8hdgy2JHlu-S7z777DuA8tqhmYSPwuDHUoxwbT0TUeNKIKJDaRRGuOHn0EA2f6N0knFTgclMLo7XOk8902z3md_lqJlfuqKzTtdhpXawKVUvcilqtj_MUpyTGwvVNpM869489y_-w38Ys9iOMvyBP3krlx_83B5XBLozWyylySV7aq0y05es3pcb_rncPdsroEvUKd9iHik4PYPuT5mAdcA9daz1HpbDqM-qVquIom6GbBV-6Aipkw0J0m7rCczHVhzAe9MdXQ69snOBJzILMI1ITIbRF81hFJrKUioeECRsaKCoCQyNpSZ8xlipoHhBOBfGpiBVmUik_xuQIauks1ceAmNLESBUKSWLKOeYMG8UDZXjgC0NpAzrrPU1kKSrueltMk5xc-CyxVkicFZLSCg242MyYF4Iaf4ytu03djCv3swHNtdmS8otbJpiEzLVv7_onv886hS337iLrpgm1bLHSZzagyEQLqqO3fiv3p3ciWMjP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHtSDLzSiqD14MXFht-3u0iNRERQ4GEy8bfr0IAECy8Vfb7u74DPGWw9ttpmZ7TfTznwDcBFbVLOwEXjcGOpRjo0nImo8aUQUSO28CFec3B9EnSd6_xw-l-BqVQujtc6Sz3TdDbO3fDWRC3dV1mha7LQmtgbrFvfDIK_W-rhRcVxiLFy-Rfqs0Xts2QgQ-3XMYj_C-Av2ZM1UfpzAGay0d6C_3FCeTfJaX6SiLt--cTX-d8e7sF34l6iVG8QelPR4H7Y-sQ5WALfQjdZTVFCrvqBWwSuO0gm6m_G5K6FC1jFE3bErPRcjfQDD9u3wuuMVrRM8iVmQekRqIoS2eB6ryEQ2qOIhYcI6B4qKwNBI2rDPGBssaB4QTgXxqYgVZlIpP8bkEMrjyVgfAWJKEyNVKCSJKeeYM2wUD5ThgS8MpVVoLGWayIJW3HW3GCVZeOGzxGohcVpICi1U4XK1YppTavwxt-KEuppXyLMKtaXakuKfmyeYhMw1cG_6x7-vOoeNzrDfS3rdwcMJbLrv5Dk4NSins4U-te5FKs4yq3oHB9DK5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+to+Grasping+the+Invisible&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Yang%2C+Yang&rft.au=Liang%2C+Hengyue&rft.au=Choi%2C+Changhyun&rft.date=2020-04-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=2231&rft.epage=2238&rft_id=info:doi/10.1109%2FLRA.2020.2970622&rft.externalDocID=8976257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon