A Deep Learning Approach to Grasping the Invisible
We study an emerging problem named "grasping the invisible" in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object via a sequence of pushing and grasping actions. In this problem, pushes are needed to search for the target and rearrange cluttered...
Saved in:
Published in | IEEE robotics and automation letters Vol. 5; no. 2; pp. 2231 - 2238 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2377-3766 2377-3766 |
DOI | 10.1109/LRA.2020.2970622 |
Cover
Loading…
Abstract | We study an emerging problem named "grasping the invisible" in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object via a sequence of pushing and grasping actions. In this problem, pushes are needed to search for the target and rearrange cluttered objects around it to enable effective grasps. We propose to solve the problem by formulating a deep learning approach in a critic-policy format. The target-oriented motion critic, which maps both visual observations and target information to the expected future rewards of pushing and grasping motion primitives, is learned via deep Q-learning. We divide the problem into two subtasks, and two policies are proposed to tackle each of them, by combining the critic predictions and relevant domain knowledge. A Bayesian-based policy accounting for past action experience performs pushing to search for the target; once the target is found, a classifier-based policy coordinates target-oriented pushing and grasping to grasp the target in clutter. The motion critic and the classifier are trained in a self-supervised manner through robot-environment interactions. Our system achieves a 93% and 87% task success rate on each of the two subtasks in simulation and an 85% task success rate in real robot experiments on the whole problem, which outperforms several baselines by large margins. Supplementary material is available at https://sites.google.com/umn.edu/grasping-invisible. |
---|---|
AbstractList | We study an emerging problem named "grasping the invisible" in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object via a sequence of pushing and grasping actions. In this problem, pushes are needed to search for the target and rearrange cluttered objects around it to enable effective grasps. We propose to solve the problem by formulating a deep learning approach in a critic-policy format. The target-oriented motion critic, which maps both visual observations and target information to the expected future rewards of pushing and grasping motion primitives, is learned via deep Q-learning. We divide the problem into two subtasks, and two policies are proposed to tackle each of them, by combining the critic predictions and relevant domain knowledge. A Bayesian-based policy accounting for past action experience performs pushing to search for the target; once the target is found, a classifier-based policy coordinates target-oriented pushing and grasping to grasp the target in clutter. The motion critic and the classifier are trained in a self-supervised manner through robot-environment interactions. Our system achieves a 93% and 87% task success rate on each of the two subtasks in simulation and an 85% task success rate in real robot experiments on the whole problem, which outperforms several baselines by large margins. Supplementary material is available at https://sites.google.com/umn.edu/grasping-invisible. |
Author | Yang, Yang Choi, Changhyun Liang, Hengyue |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0001-5814-1170 surname: Yang fullname: Yang, Yang email: yang5276@umn.edu organization: Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: Hengyue orcidid: 0000-0001-9498-6402 surname: Liang fullname: Liang, Hengyue email: liang656@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 3 givenname: Changhyun orcidid: 0000-0003-4715-3576 surname: Choi fullname: Choi, Changhyun email: cchoi@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA |
BookMark | eNp9kEFLw0AQRhepYNXeBS8Bz6mzs8lu9hiq1kJAkN6XTTKxW2oSd1PBf29Ki4gHTzMM35sZ3iWbtF1LjN1wmHMO-r54zecICHPUCiTiGZuiUCoWSsrJr_6CzULYAgBPUQmdThnm0QNRHxVkfevatyjve9_ZahMNXbT0NvSH4bChaNV-uuDKHV2z88buAs1O9Yqtnx7Xi-e4eFmuFnkRV6j5EIuKRFkS8lTVspGZ1jYVugTN66TkTSIrDqppVJqR5cImpYCkVDXqqq5Bobhid8e14z8fewqD2XZ7344XDYpUa8gwgzElj6nKdyF4akzlBju4rh28dTvDwRwMmdGQORgyJ0MjCH_A3rt367_-Q26PiCOin3imlcRUiW_JpHBm |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1109_LRA_2024_3460416 crossref_primary_10_1109_JIOT_2024_3484755 crossref_primary_10_1109_TCYB_2024_3381639 crossref_primary_10_3390_biomimetics10030186 crossref_primary_10_3390_electronics11050706 crossref_primary_10_1109_TNNLS_2023_3244186 crossref_primary_10_1016_j_measurement_2021_109095 crossref_primary_10_3390_electronics11132065 crossref_primary_10_1109_LRA_2021_3092640 crossref_primary_10_3390_s21082594 crossref_primary_10_1109_LRA_2022_3145064 crossref_primary_10_1109_LRA_2021_3062295 crossref_primary_10_1109_ACCESS_2020_3028740 crossref_primary_10_1007_s10846_022_01702_4 crossref_primary_10_1007_s12555_023_0358_y crossref_primary_10_3389_fnbot_2023_1188468 crossref_primary_10_1109_LRA_2022_3190094 crossref_primary_10_3390_s22207938 crossref_primary_10_1007_s12559_022_10047_x crossref_primary_10_1007_s00170_024_13004_0 crossref_primary_10_1007_s10846_024_02127_x crossref_primary_10_3390_act13080316 crossref_primary_10_3390_electronics12143065 crossref_primary_10_1109_TIM_2024_3379048 crossref_primary_10_3390_electronics12143100 crossref_primary_10_1109_LRA_2022_3204822 crossref_primary_10_1109_LRA_2024_3497753 crossref_primary_10_1007_s10489_020_01789_y crossref_primary_10_1017_S0263574722000297 crossref_primary_10_1109_TCDS_2022_3163022 crossref_primary_10_1109_ACCESS_2020_3027923 crossref_primary_10_1109_TCDS_2024_3357084 crossref_primary_10_3390_su132413686 crossref_primary_10_1109_TRO_2024_3353484 crossref_primary_10_1016_j_aei_2022_101530 crossref_primary_10_1109_LRA_2024_3359553 crossref_primary_10_1109_TII_2024_3488774 crossref_primary_10_3390_app12020937 |
Cites_doi | 10.1007/s10514-012-9306-z 10.1109/TRO.2013.2289018 10.1109/ICRA.2018.8461041 10.1109/ICRA.2012.6224575 10.1109/CVPR.2017.243 10.1109/IROS.2012.6385903 10.1109/TPAMI.2016.2644615 10.1109/CVPR.2009.5206848 10.1109/ICRA.2019.8794143 10.1016/j.robot.2011.07.016 10.1109/IROS.2018.8593986 10.1109/IROS.2011.6094737 10.1109/LRA.2018.2810544 10.1109/ICRA.2017.7989249 10.15607/RSS.2018.XIV.019 10.1109/IROS.2018.8594406 10.1109/CVPR.2019.00346 10.15607/RSS.2017.XIII.058 10.1007/978-3-030-28619-4_32 10.1109/CVPR.2016.90 10.1109/COASE.2018.8560406 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LRA.2020.2970622 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 2238 |
ExternalDocumentID | 10_1109_LRA_2020_2970622 8976257 |
Genre | orig-research |
GrantInformation_xml | – fundername: MnDRIVE Initiative on Robotics, Sensors, and Advanced Manufacturing |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-3ce3bbe2157d6f6899a539b091d4b1f46c107ff758ea13a4b304b7d29cdd0723 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Sun Jun 29 15:28:02 EDT 2025 Tue Jul 01 03:54:00 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Wed Aug 27 02:35:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-3ce3bbe2157d6f6899a539b091d4b1f46c107ff758ea13a4b304b7d29cdd0723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9498-6402 0000-0003-4715-3576 0000-0001-5814-1170 |
PQID | 2359908280 |
PQPubID | 4437225 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8976257 crossref_primary_10_1109_LRA_2020_2970622 crossref_citationtrail_10_1109_LRA_2020_2970622 proquest_journals_2359908280 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 boularias (ref16) 0 ref11 ref10 schaul (ref31) 2015 ref2 ref1 marios (ref15) 0 ref18 ioffe (ref19) 0 jang (ref4) 0 andrychowicz (ref32) 0 kalashnikov (ref9) 0 bohg (ref6) 2013; 30 nekrasov (ref30) 2018 ref24 ref23 ref25 ref22 ref21 nair (ref20) 0 ref28 ref27 ref29 ref8 jang (ref17) 0 ref7 ref3 ref5 zeng (ref26) 2018 |
References_xml | – ident: ref10 doi: 10.1007/s10514-012-9306-z – year: 0 ident: ref16 article-title: Learning to manipulate unknown objects in clutter by reinforcement publication-title: Proc 29th AAAI Conf Artif Intell – volume: 30 start-page: 289 year: 2013 ident: ref6 article-title: Data-driven grasp synthesisa survey publication-title: IEEE Trans Robot doi: 10.1109/TRO.2013.2289018 – ident: ref5 doi: 10.1109/ICRA.2018.8461041 – ident: ref13 doi: 10.1109/ICRA.2012.6224575 – year: 2015 ident: ref31 article-title: Prioritized experience replay – start-page: 5048 year: 0 ident: ref32 article-title: Hindsight experience replay publication-title: Proc Adv Neural Inf Process Syst – start-page: 807 year: 0 ident: ref20 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proc 27th Int Conf Mach Learn – ident: ref23 doi: 10.1109/CVPR.2017.243 – ident: ref12 doi: 10.1109/IROS.2012.6385903 – ident: ref21 doi: 10.1109/TPAMI.2016.2644615 – ident: ref24 doi: 10.1109/CVPR.2009.5206848 – start-page: 119 year: 0 ident: ref17 article-title: End-to-end learning of semantic grasping publication-title: Proc Conf Robot Learn – ident: ref18 doi: 10.1109/ICRA.2019.8794143 – ident: ref7 doi: 10.1016/j.robot.2011.07.016 – ident: ref3 doi: 10.1109/IROS.2018.8593986 – start-page: 99 year: 0 ident: ref4 article-title: Grasp2vec: Learning object representations from self-supervised grasping publication-title: Proc Conf Robot Learn – ident: ref11 doi: 10.1109/IROS.2011.6094737 – ident: ref2 doi: 10.1109/LRA.2018.2810544 – ident: ref25 doi: 10.1109/ICRA.2017.7989249 – start-page: 651 year: 0 ident: ref9 article-title: Scalable deep reinforcement learning for vision-based robotic manipulation publication-title: Proc Conf Robot Learn – ident: ref27 doi: 10.15607/RSS.2018.XIV.019 – ident: ref28 doi: 10.1109/IROS.2018.8594406 – ident: ref29 doi: 10.1109/CVPR.2019.00346 – start-page: 1596 year: 0 ident: ref15 article-title: Robust object grasping in clutter via singulation publication-title: Proc Int Conf Robot Autom – year: 2018 ident: ref30 article-title: Light-weight refinenet for real-time semantic segmentation – start-page: 448 year: 0 ident: ref19 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – ident: ref8 doi: 10.15607/RSS.2017.XIII.058 – year: 2018 ident: ref26 article-title: visual-pushing-grasping – ident: ref1 doi: 10.1007/978-3-030-28619-4_32 – ident: ref22 doi: 10.1109/CVPR.2016.90 – ident: ref14 doi: 10.1109/COASE.2018.8560406 |
SSID | ssj0001527395 |
Score | 2.4680054 |
Snippet | We study an emerging problem named "grasping the invisible" in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object... We study an emerging problem named “grasping the invisible” in robotic manipulation, in which a robot is tasked to grasp an initially invisible target object... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2231 |
SubjectTerms | Classifiers Clutter computer vision for automation Deep learning deep learning in robotics and automation Dexterous manipulation Grasping (robotics) Machine learning Pushing Robots Visual observation |
Title | A Deep Learning Approach to Grasping the Invisible |
URI | https://ieeexplore.ieee.org/document/8976257 https://www.proquest.com/docview/2359908280 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFUnlgQSJtYjtJPVbQUhBlQEXqFvnJQJVWbbow8Nuxk7Q8hdgy2JHlu-S7z777DuA8tqhmYSPwuDHUoxwbT0TUeNKIKJDaRRGuOHn0EA2f6N0knFTgclMLo7XOk8902z3md_lqJlfuqKzTtdhpXawKVUvcilqtj_MUpyTGwvVNpM869489y_-w38Ys9iOMvyBP3krlx_83B5XBLozWyylySV7aq0y05es3pcb_rncPdsroEvUKd9iHik4PYPuT5mAdcA9daz1HpbDqM-qVquIom6GbBV-6Aipkw0J0m7rCczHVhzAe9MdXQ69snOBJzILMI1ITIbRF81hFJrKUioeECRsaKCoCQyNpSZ8xlipoHhBOBfGpiBVmUik_xuQIauks1ceAmNLESBUKSWLKOeYMG8UDZXjgC0NpAzrrPU1kKSrueltMk5xc-CyxVkicFZLSCg242MyYF4Iaf4ytu03djCv3swHNtdmS8otbJpiEzLVv7_onv886hS337iLrpgm1bLHSZzagyEQLqqO3fiv3p3ciWMjP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHtSDLzSiqD14MXFht-3u0iNRERQ4GEy8bfr0IAECy8Vfb7u74DPGWw9ttpmZ7TfTznwDcBFbVLOwEXjcGOpRjo0nImo8aUQUSO28CFec3B9EnSd6_xw-l-BqVQujtc6Sz3TdDbO3fDWRC3dV1mha7LQmtgbrFvfDIK_W-rhRcVxiLFy-Rfqs0Xts2QgQ-3XMYj_C-Av2ZM1UfpzAGay0d6C_3FCeTfJaX6SiLt--cTX-d8e7sF34l6iVG8QelPR4H7Y-sQ5WALfQjdZTVFCrvqBWwSuO0gm6m_G5K6FC1jFE3bErPRcjfQDD9u3wuuMVrRM8iVmQekRqIoS2eB6ryEQ2qOIhYcI6B4qKwNBI2rDPGBssaB4QTgXxqYgVZlIpP8bkEMrjyVgfAWJKEyNVKCSJKeeYM2wUD5ThgS8MpVVoLGWayIJW3HW3GCVZeOGzxGohcVpICi1U4XK1YppTavwxt-KEuppXyLMKtaXakuKfmyeYhMw1cG_6x7-vOoeNzrDfS3rdwcMJbLrv5Dk4NSins4U-te5FKs4yq3oHB9DK5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+to+Grasping+the+Invisible&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Yang%2C+Yang&rft.au=Liang%2C+Hengyue&rft.au=Choi%2C+Changhyun&rft.date=2020-04-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=2231&rft.epage=2238&rft_id=info:doi/10.1109%2FLRA.2020.2970622&rft.externalDocID=8976257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |