State-of-Charge Estimation of Lithium-Ion Batteries Subject to Random Sensor Data Unavailability: A Recursive Filtering Approach
In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of the sensor measured data, the data missing phenomenon with respect to the sensor measurement (e.g., the terminal voltage) is taken into accoun...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 69; no. 5; pp. 5175 - 5184 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of the sensor measured data, the data missing phenomenon with respect to the sensor measurement (e.g., the terminal voltage) is taken into account for the addressed estimation issue. By introducing a stochastic variable obeying the Bernoulli distribution with a known probability, the random occurrence of the sensor measurement unavailability is well characterized. The second-order resistor-capacitor equivalent circuit model, where the model parameters are identified by the recursive least-squares method, is developed to govern the dynamical behaviors of a Lithium-ion battery. A data-unavailability-resistant nonlinear recursive filtering algorithm is proposed to estimate the real SOC in an unreliable industrial environment. An upper bound of the filtering error covariance is obtained, which is further minimized at each sampling instant. In addition, the filter gain is recursively parameterized by solving an optimization problem with respect to two coupled recursive Riccati-like equations, thereby being suitable for the online implementation. Finally, extensive experiments are conducted to demonstrate the validity of the proposed filtering approach. |
---|---|
AbstractList | In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of the sensor measured data, the data missing phenomenon with respect to the sensor measurement (e.g., the terminal voltage) is taken into account for the addressed estimation issue. By introducing a stochastic variable obeying the Bernoulli distribution with a known probability, the random occurrence of the sensor measurement unavailability is well characterized. The second-order resistor-capacitor equivalent circuit model, where the model parameters are identified by the recursive least-squares method, is developed to govern the dynamical behaviors of a Lithium-ion battery. A data-unavailability-resistant nonlinear recursive filtering algorithm is proposed to estimate the real SOC in an unreliable industrial environment. An upper bound of the filtering error covariance is obtained, which is further minimized at each sampling instant. In addition, the filter gain is recursively parameterized by solving an optimization problem with respect to two coupled recursive Riccati-like equations, thereby being suitable for the online implementation. Finally, extensive experiments are conducted to demonstrate the validity of the proposed filtering approach. In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of the sensor measured data, the data missing phenomenon with respect to the sensor measurement (e.g., the terminal voltage) is taken into account for the addressed estimation issue. By introducing a stochastic variable obeying the Bernoulli distribution with a known probability, the random occurrence of the sensor measurement unavailability is well characterized. The second-order resistor–capacitor equivalent circuit model, where the model parameters are identified by the recursive least-squares method, is developed to govern the dynamical behaviors of a Lithium-ion battery. A data-unavailability-resistant nonlinear recursive filtering algorithm is proposed to estimate the real SOC in an unreliable industrial environment. An upper bound of the filtering error covariance is obtained, which is further minimized at each sampling instant. In addition, the filter gain is recursively parameterized by solving an optimization problem with respect to two coupled recursive Riccati-like equations, thereby being suitable for the online implementation. Finally, extensive experiments are conducted to demonstrate the validity of the proposed filtering approach. |
Author | Tian, Engang Wang, Licheng Chen, Hui |
Author_xml | – sequence: 1 givenname: Hui surname: Chen fullname: Chen, Hui email: 193770644@st.usst.edu.cn organization: Shanghai Key Laboratory of Modern Optical System, Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China – sequence: 2 givenname: Engang orcidid: 0000-0002-8169-5347 surname: Tian fullname: Tian, Engang email: teg@usst.edu.cn organization: School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China – sequence: 3 givenname: Licheng orcidid: 0000-0001-5333-5881 surname: Wang fullname: Wang, Licheng email: lichengwang@usst.edu.cn organization: Shanghai Key Laboratory of Modern Optical System, Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China |
BookMark | eNp9kM1LAzEQxYMoWD_ugpeA56352M1uvNVatVAQrJ6XyW5iU9pNTbIFb_7pplY8ePA0DPPeG97vBB12rtMIXVAypJTI65fpZMgIo0NOyoqX4gANaFGUmZR5dYgGhJVVRkgujtFJCEtCaF7QYoA-5xGizpzJxgvwbxpPQrRriNZ12Bk8s3Fh-3U2TestxKi91QHPe7XUTcTR4WfoWrfGc90F5_EdRMCvHWzBrkDZlY0fN3iEn3XT-2C3Gt_b1S6je8OjzcY7aBZn6MjAKujzn3mKXu8nL-PHbPb0MB2PZlnDJI0Zb3KqVCrWVIILKlsjWqVEyaRQlanKllFRAWGKAxWihKrNc2DSEMFBK2P4Kbra56a3770OsV663nfpZc1SHmG8LGRSib2q8S4Er03d2PhNI_rUqaak3tGuE-16R7v-oZ2M5I9x4xNH__Gf5XJvsVrrX7nM050Q_gVGKo0c |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1080_00207721_2023_2209846 crossref_primary_10_1016_j_prime_2025_100902 crossref_primary_10_1109_TII_2022_3202949 crossref_primary_10_1149_1945_7111_aca6a5 crossref_primary_10_1177_09596518231182308 crossref_primary_10_2139_ssrn_4110681 crossref_primary_10_1002_er_8286 crossref_primary_10_1002_rnc_6633 crossref_primary_10_1109_TIM_2025_3547129 crossref_primary_10_1109_TTE_2024_3362339 crossref_primary_10_1109_TII_2024_3452212 crossref_primary_10_3390_pr13040929 crossref_primary_10_1109_TII_2022_3220862 crossref_primary_10_1016_j_est_2022_105830 crossref_primary_10_1002_acs_3853 crossref_primary_10_1109_TASE_2023_3271893 crossref_primary_10_1049_rpg2_12432 crossref_primary_10_1109_TTE_2023_3348753 crossref_primary_10_1007_s00202_024_02580_9 crossref_primary_10_1016_j_rser_2024_115204 crossref_primary_10_1002_rnc_7274 crossref_primary_10_1109_TASE_2024_3471253 crossref_primary_10_1177_01423312221128526 crossref_primary_10_1016_j_energy_2023_126998 crossref_primary_10_1109_TNNLS_2022_3230056 crossref_primary_10_1016_j_energy_2022_124770 crossref_primary_10_20964_2022_12_55 crossref_primary_10_3390_batteries9020099 crossref_primary_10_1109_TSG_2022_3202811 crossref_primary_10_1109_JSEN_2023_3312111 crossref_primary_10_1109_JSEN_2024_3373452 crossref_primary_10_3390_batteries9010063 crossref_primary_10_1002_er_8436 crossref_primary_10_1016_j_inffus_2023_02_032 crossref_primary_10_1109_TCSI_2022_3187725 |
Cites_doi | 10.1016/j.conengprac.2013.11.012 10.1109/TVT.2014.2383402 10.1109/TSMCA.2005.843383 10.1109/TIE.2018.2838109 10.1016/j.apenergy.2013.07.008 10.1016/j.rser.2015.10.117 10.1109/TVT.2012.2235474 10.1016/j.automatica.2012.03.027 10.1016/j.automatica.2020.108908 10.1109/TIE.2012.2186771 10.1109/TIE.2017.2750629 10.1109/TSMC.2018.2866906 10.1016/j.rser.2015.12.009 10.1109/TPEL.2019.2948253 10.1016/j.automatica.2008.10.028 10.1109/TIE.2017.2703685 10.1109/TITS.2020.3029946 10.1016/j.apenergy.2008.11.021 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2021.3078376 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 5184 |
ExternalDocumentID | 10_1109_TIE_2021_3078376 9430700 |
Genre | orig-research |
GrantInformation_xml | – fundername: Program for Professor of Special Appointment – fundername: China Postdoctoral Science Foundation grantid: 2019TQ0202; 2020M671172 funderid: 10.13039/501100002858 – fundername: Shanghai Institutions of Higher Learning – fundername: Shanghai Pujiang Program grantid: 19PJ1408100 – fundername: National Natural Science Foundation of China grantid: 61773218; 61903252; 62003213 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-3c41bb837c863619df6dbb67296b8f87d2168a02b3a1667a8d44a29f063aebff3 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:08:27 EDT 2025 Tue Jul 01 00:16:42 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Wed Aug 27 03:03:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-3c41bb837c863619df6dbb67296b8f87d2168a02b3a1667a8d44a29f063aebff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8169-5347 0000-0001-5333-5881 |
PQID | 2619023759 |
PQPubID | 85464 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2619023759 crossref_primary_10_1109_TIE_2021_3078376 crossref_citationtrail_10_1109_TIE_2021_3078376 ieee_primary_9430700 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Plett (ref3) 2019; 10 ref8 ref7 ref9 ref4 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1016/j.conengprac.2013.11.012 – ident: ref14 doi: 10.1109/TVT.2014.2383402 – ident: ref17 doi: 10.1109/TSMCA.2005.843383 – ident: ref2 doi: 10.1109/TIE.2018.2838109 – ident: ref6 doi: 10.1016/j.apenergy.2013.07.008 – volume: 10 start-page: 249 year: 2019 ident: ref3 article-title: Review and some perspectives on different methods to estimate state of charge of lithium-ion batteries publication-title: J. Automot. Saf. Energy – ident: ref19 doi: 10.1016/j.rser.2015.10.117 – ident: ref8 doi: 10.1109/TVT.2012.2235474 – ident: ref16 doi: 10.1016/j.automatica.2012.03.027 – ident: ref11 doi: 10.1016/j.automatica.2020.108908 – ident: ref5 doi: 10.1109/TIE.2012.2186771 – ident: ref1 doi: 10.1109/TIE.2017.2750629 – ident: ref10 doi: 10.1109/TSMC.2018.2866906 – ident: ref7 doi: 10.1016/j.rser.2015.12.009 – ident: ref15 doi: 10.1109/TPEL.2019.2948253 – ident: ref9 doi: 10.1016/j.automatica.2008.10.028 – ident: ref18 doi: 10.1109/TIE.2017.2703685 – ident: ref12 doi: 10.1109/TITS.2020.3029946 – ident: ref4 doi: 10.1016/j.apenergy.2008.11.021 |
SSID | ssj0014515 |
Score | 2.534787 |
Snippet | In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5175 |
SubjectTerms | Algorithms Availability Batteries Battery charge measurement Electronic countermeasures Equivalent circuits Estimation Filtration Integrated circuit modeling Least squares method Lithium Lithium-ion batteries Lithium-ion battery Mathematical model measurement unavailability Optimization Parameter identification Rechargeable batteries recursive filtering Sensors State of charge state of charge (SOC) Upper bounds |
Title | State-of-Charge Estimation of Lithium-Ion Batteries Subject to Random Sensor Data Unavailability: A Recursive Filtering Approach |
URI | https://ieeexplore.ieee.org/document/9430700 https://www.proquest.com/docview/2619023759 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8QwEA3qSQ9-i-sXOXgRzG6bpmnrbdFdVNSDuuCtJE2ii9qKdgU9-dOdabuLqIi3FhIaOpPkvczMCyG7mvsqDDVnNlQxEzbWLLFYK6M0eFQECDvDauTzC3k8EKc34c0U2Z_Uwlhrq-Qz28bHKpZvimyER2UdlAqPPCDo00Dc6lqtScRAhPVtBRwVY4H0jUOSXtK5PukBEeR-O8CYFaqLfNmCqjtVfizE1e7SXyDn43HVSSX37VGp29n7N8nG_w58kcw3MJN2a79YIlM2XyZzX8QHV8hHhTNZ4RiG3G8t7cFsrwsZaeHo2bC8G44e2Qm81iKcwKkprDN4cEPLgl6q3BSP9Ap4cPFMj1Sp6CBXr2r4UEt_vx3QLr3E43zMkKf9Icbl4cu028iYr5JBv3d9eMya-xhYxhO_ZEEmfK3hD2axDIB4GSeN1hLgudSxiyPDfRkrj-tA-VJGKjZCKJ44QEHKaueCNTKTF7ldJ1QBanPCeYkRwPBMqLQNYlzwTJJZI2SLdMYmSrNGrBzvzHhIK9LiJSkYNUWjpo1RW2Rv0uOpFur4o-0K2mjSrjFPi2yNvSBtZvJLigwTcE0UJhu_99oksxxLIqokyC0yUz6P7DYAlVLvVB76CWJt5MM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB2VcgAOfJWKQIE9wIGDE3u9XttIHCKaKKFpDyWRejO73l2waG3UOKBy4ofwV_hvzNhOVAHiVombLe3a0vp5dt7OzBuA55oHKoo092ykEk_YRHuppVoZpRFRMXrYOVUjHx7JyUK8PYlOtuDHphbGWtskn9k-XTaxfFPlKzoqG5BUeOz7XQrlgb34igRt-Xq6j1_zBefj0fzNxOt6CHg5T4PaC3MRaI0sLE9kiGTBOGm0luhSSp24JDY8kInyuQ5VIGWsEiOE4qnDnVtZ7VyIz70G19HPiHhbHbaJUYio7Y_ASaMWaeY6COqng_l0hNSTB_2QomSkZ3Jp02u6uPxh-pv9bHwHfq5Xok1j-dRf1bqff_tNJPJ_Xaq7cLtzpNmwRf492LLlfbh1SV5xB743nrRXOY-SCj5YNkJ71pZqssqxWVF_LFZn3hRvW5nRwi4ZWlI6mmJ1xY5Vaaoz9g6ZfnXO9lWt2KJUX1Rx2oqbX7xiQ3ZMAQuqAWDjgjIP8M1s2Am1P4DFlSzBLmyXVWkfAlPolzrh_NQI5LAmUtqGCZl0k-bWCNmDwRoSWd7JsVNXkNOsoWV-miGIMgJR1oGoBy83Mz63UiT_GLtDmNiM6-DQg7016rLOVi0z4tDoucVR-ujvs57Bjcn8cJbNpkcHj-EmpwKQJuVzD7br85V9gm5ZrZ82fweD91eNsV89N0Ie |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-Charge+Estimation+of+Lithium-Ion+Batteries+Subject+to+Random+Sensor+Data+Unavailability%3A+A+Recursive+Filtering+Approach&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Chen%2C+Hui&rft.au=Tian%2C+Engang&rft.au=Wang%2C+Licheng&rft.date=2022-05-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=69&rft.issue=5&rft.spage=5175&rft.epage=5184&rft_id=info:doi/10.1109%2FTIE.2021.3078376&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2021_3078376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |