State-of-Charge Estimation of Lithium-Ion Batteries Subject to Random Sensor Data Unavailability: A Recursive Filtering Approach

In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of the sensor measured data, the data missing phenomenon with respect to the sensor measurement (e.g., the terminal voltage) is taken into accoun...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 69; no. 5; pp. 5175 - 5184
Main Authors Chen, Hui, Tian, Engang, Wang, Licheng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of the sensor measured data, the data missing phenomenon with respect to the sensor measurement (e.g., the terminal voltage) is taken into account for the addressed estimation issue. By introducing a stochastic variable obeying the Bernoulli distribution with a known probability, the random occurrence of the sensor measurement unavailability is well characterized. The second-order resistor-capacitor equivalent circuit model, where the model parameters are identified by the recursive least-squares method, is developed to govern the dynamical behaviors of a Lithium-ion battery. A data-unavailability-resistant nonlinear recursive filtering algorithm is proposed to estimate the real SOC in an unreliable industrial environment. An upper bound of the filtering error covariance is obtained, which is further minimized at each sampling instant. In addition, the filter gain is recursively parameterized by solving an optimization problem with respect to two coupled recursive Riccati-like equations, thereby being suitable for the online implementation. Finally, extensive experiments are conducted to demonstrate the validity of the proposed filtering approach.
AbstractList In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of the sensor measured data, the data missing phenomenon with respect to the sensor measurement (e.g., the terminal voltage) is taken into account for the addressed estimation issue. By introducing a stochastic variable obeying the Bernoulli distribution with a known probability, the random occurrence of the sensor measurement unavailability is well characterized. The second-order resistor-capacitor equivalent circuit model, where the model parameters are identified by the recursive least-squares method, is developed to govern the dynamical behaviors of a Lithium-ion battery. A data-unavailability-resistant nonlinear recursive filtering algorithm is proposed to estimate the real SOC in an unreliable industrial environment. An upper bound of the filtering error covariance is obtained, which is further minimized at each sampling instant. In addition, the filter gain is recursively parameterized by solving an optimization problem with respect to two coupled recursive Riccati-like equations, thereby being suitable for the online implementation. Finally, extensive experiments are conducted to demonstrate the validity of the proposed filtering approach.
In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of the sensor measured data, the data missing phenomenon with respect to the sensor measurement (e.g., the terminal voltage) is taken into account for the addressed estimation issue. By introducing a stochastic variable obeying the Bernoulli distribution with a known probability, the random occurrence of the sensor measurement unavailability is well characterized. The second-order resistor–capacitor equivalent circuit model, where the model parameters are identified by the recursive least-squares method, is developed to govern the dynamical behaviors of a Lithium-ion battery. A data-unavailability-resistant nonlinear recursive filtering algorithm is proposed to estimate the real SOC in an unreliable industrial environment. An upper bound of the filtering error covariance is obtained, which is further minimized at each sampling instant. In addition, the filter gain is recursively parameterized by solving an optimization problem with respect to two coupled recursive Riccati-like equations, thereby being suitable for the online implementation. Finally, extensive experiments are conducted to demonstrate the validity of the proposed filtering approach.
Author Tian, Engang
Wang, Licheng
Chen, Hui
Author_xml – sequence: 1
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
  email: 193770644@st.usst.edu.cn
  organization: Shanghai Key Laboratory of Modern Optical System, Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 2
  givenname: Engang
  orcidid: 0000-0002-8169-5347
  surname: Tian
  fullname: Tian, Engang
  email: teg@usst.edu.cn
  organization: School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 3
  givenname: Licheng
  orcidid: 0000-0001-5333-5881
  surname: Wang
  fullname: Wang, Licheng
  email: lichengwang@usst.edu.cn
  organization: Shanghai Key Laboratory of Modern Optical System, Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
BookMark eNp9kM1LAzEQxYMoWD_ugpeA56352M1uvNVatVAQrJ6XyW5iU9pNTbIFb_7pplY8ePA0DPPeG97vBB12rtMIXVAypJTI65fpZMgIo0NOyoqX4gANaFGUmZR5dYgGhJVVRkgujtFJCEtCaF7QYoA-5xGizpzJxgvwbxpPQrRriNZ12Bk8s3Fh-3U2TestxKi91QHPe7XUTcTR4WfoWrfGc90F5_EdRMCvHWzBrkDZlY0fN3iEn3XT-2C3Gt_b1S6je8OjzcY7aBZn6MjAKujzn3mKXu8nL-PHbPb0MB2PZlnDJI0Zb3KqVCrWVIILKlsjWqVEyaRQlanKllFRAWGKAxWihKrNc2DSEMFBK2P4Kbra56a3770OsV663nfpZc1SHmG8LGRSib2q8S4Er03d2PhNI_rUqaak3tGuE-16R7v-oZ2M5I9x4xNH__Gf5XJvsVrrX7nM050Q_gVGKo0c
CODEN ITIED6
CitedBy_id crossref_primary_10_1080_00207721_2023_2209846
crossref_primary_10_1016_j_prime_2025_100902
crossref_primary_10_1109_TII_2022_3202949
crossref_primary_10_1149_1945_7111_aca6a5
crossref_primary_10_1177_09596518231182308
crossref_primary_10_2139_ssrn_4110681
crossref_primary_10_1002_er_8286
crossref_primary_10_1002_rnc_6633
crossref_primary_10_1109_TIM_2025_3547129
crossref_primary_10_1109_TTE_2024_3362339
crossref_primary_10_1109_TII_2024_3452212
crossref_primary_10_3390_pr13040929
crossref_primary_10_1109_TII_2022_3220862
crossref_primary_10_1016_j_est_2022_105830
crossref_primary_10_1002_acs_3853
crossref_primary_10_1109_TASE_2023_3271893
crossref_primary_10_1049_rpg2_12432
crossref_primary_10_1109_TTE_2023_3348753
crossref_primary_10_1007_s00202_024_02580_9
crossref_primary_10_1016_j_rser_2024_115204
crossref_primary_10_1002_rnc_7274
crossref_primary_10_1109_TASE_2024_3471253
crossref_primary_10_1177_01423312221128526
crossref_primary_10_1016_j_energy_2023_126998
crossref_primary_10_1109_TNNLS_2022_3230056
crossref_primary_10_1016_j_energy_2022_124770
crossref_primary_10_20964_2022_12_55
crossref_primary_10_3390_batteries9020099
crossref_primary_10_1109_TSG_2022_3202811
crossref_primary_10_1109_JSEN_2023_3312111
crossref_primary_10_1109_JSEN_2024_3373452
crossref_primary_10_3390_batteries9010063
crossref_primary_10_1002_er_8436
crossref_primary_10_1016_j_inffus_2023_02_032
crossref_primary_10_1109_TCSI_2022_3187725
Cites_doi 10.1016/j.conengprac.2013.11.012
10.1109/TVT.2014.2383402
10.1109/TSMCA.2005.843383
10.1109/TIE.2018.2838109
10.1016/j.apenergy.2013.07.008
10.1016/j.rser.2015.10.117
10.1109/TVT.2012.2235474
10.1016/j.automatica.2012.03.027
10.1016/j.automatica.2020.108908
10.1109/TIE.2012.2186771
10.1109/TIE.2017.2750629
10.1109/TSMC.2018.2866906
10.1016/j.rser.2015.12.009
10.1109/TPEL.2019.2948253
10.1016/j.automatica.2008.10.028
10.1109/TIE.2017.2703685
10.1109/TITS.2020.3029946
10.1016/j.apenergy.2008.11.021
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2021.3078376
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 5184
ExternalDocumentID 10_1109_TIE_2021_3078376
9430700
Genre orig-research
GrantInformation_xml – fundername: Program for Professor of Special Appointment
– fundername: China Postdoctoral Science Foundation
  grantid: 2019TQ0202; 2020M671172
  funderid: 10.13039/501100002858
– fundername: Shanghai Institutions of Higher Learning
– fundername: Shanghai Pujiang Program
  grantid: 19PJ1408100
– fundername: National Natural Science Foundation of China
  grantid: 61773218; 61903252; 62003213
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-3c41bb837c863619df6dbb67296b8f87d2168a02b3a1667a8d44a29f063aebff3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:08:27 EDT 2025
Tue Jul 01 00:16:42 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Wed Aug 27 03:03:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-3c41bb837c863619df6dbb67296b8f87d2168a02b3a1667a8d44a29f063aebff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8169-5347
0000-0001-5333-5881
PQID 2619023759
PQPubID 85464
PageCount 10
ParticipantIDs proquest_journals_2619023759
crossref_primary_10_1109_TIE_2021_3078376
crossref_citationtrail_10_1109_TIE_2021_3078376
ieee_primary_9430700
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Plett (ref3) 2019; 10
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref13
  doi: 10.1016/j.conengprac.2013.11.012
– ident: ref14
  doi: 10.1109/TVT.2014.2383402
– ident: ref17
  doi: 10.1109/TSMCA.2005.843383
– ident: ref2
  doi: 10.1109/TIE.2018.2838109
– ident: ref6
  doi: 10.1016/j.apenergy.2013.07.008
– volume: 10
  start-page: 249
  year: 2019
  ident: ref3
  article-title: Review and some perspectives on different methods to estimate state of charge of lithium-ion batteries
  publication-title: J. Automot. Saf. Energy
– ident: ref19
  doi: 10.1016/j.rser.2015.10.117
– ident: ref8
  doi: 10.1109/TVT.2012.2235474
– ident: ref16
  doi: 10.1016/j.automatica.2012.03.027
– ident: ref11
  doi: 10.1016/j.automatica.2020.108908
– ident: ref5
  doi: 10.1109/TIE.2012.2186771
– ident: ref1
  doi: 10.1109/TIE.2017.2750629
– ident: ref10
  doi: 10.1109/TSMC.2018.2866906
– ident: ref7
  doi: 10.1016/j.rser.2015.12.009
– ident: ref15
  doi: 10.1109/TPEL.2019.2948253
– ident: ref9
  doi: 10.1016/j.automatica.2008.10.028
– ident: ref18
  doi: 10.1109/TIE.2017.2703685
– ident: ref12
  doi: 10.1109/TITS.2020.3029946
– ident: ref4
  doi: 10.1016/j.apenergy.2008.11.021
SSID ssj0014515
Score 2.534787
Snippet In this article, the estimation problem of the state of charge (SOC) of Lithium-ion batteries is investigated. In order to truly reflect the unreliability of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5175
SubjectTerms Algorithms
Availability
Batteries
Battery charge measurement
Electronic countermeasures
Equivalent circuits
Estimation
Filtration
Integrated circuit modeling
Least squares method
Lithium
Lithium-ion batteries
Lithium-ion battery
Mathematical model
measurement unavailability
Optimization
Parameter identification
Rechargeable batteries
recursive filtering
Sensors
State of charge
state of charge (SOC)
Upper bounds
Title State-of-Charge Estimation of Lithium-Ion Batteries Subject to Random Sensor Data Unavailability: A Recursive Filtering Approach
URI https://ieeexplore.ieee.org/document/9430700
https://www.proquest.com/docview/2619023759
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8QwEA3qSQ9-i-sXOXgRzG6bpmnrbdFdVNSDuuCtJE2ii9qKdgU9-dOdabuLqIi3FhIaOpPkvczMCyG7mvsqDDVnNlQxEzbWLLFYK6M0eFQECDvDauTzC3k8EKc34c0U2Z_Uwlhrq-Qz28bHKpZvimyER2UdlAqPPCDo00Dc6lqtScRAhPVtBRwVY4H0jUOSXtK5PukBEeR-O8CYFaqLfNmCqjtVfizE1e7SXyDn43HVSSX37VGp29n7N8nG_w58kcw3MJN2a79YIlM2XyZzX8QHV8hHhTNZ4RiG3G8t7cFsrwsZaeHo2bC8G44e2Qm81iKcwKkprDN4cEPLgl6q3BSP9Ap4cPFMj1Sp6CBXr2r4UEt_vx3QLr3E43zMkKf9Icbl4cu028iYr5JBv3d9eMya-xhYxhO_ZEEmfK3hD2axDIB4GSeN1hLgudSxiyPDfRkrj-tA-VJGKjZCKJ44QEHKaueCNTKTF7ldJ1QBanPCeYkRwPBMqLQNYlzwTJJZI2SLdMYmSrNGrBzvzHhIK9LiJSkYNUWjpo1RW2Rv0uOpFur4o-0K2mjSrjFPi2yNvSBtZvJLigwTcE0UJhu_99oksxxLIqokyC0yUz6P7DYAlVLvVB76CWJt5MM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB2VcgAOfJWKQIE9wIGDE3u9XttIHCKaKKFpDyWRejO73l2waG3UOKBy4ofwV_hvzNhOVAHiVombLe3a0vp5dt7OzBuA55oHKoo092ykEk_YRHuppVoZpRFRMXrYOVUjHx7JyUK8PYlOtuDHphbGWtskn9k-XTaxfFPlKzoqG5BUeOz7XQrlgb34igRt-Xq6j1_zBefj0fzNxOt6CHg5T4PaC3MRaI0sLE9kiGTBOGm0luhSSp24JDY8kInyuQ5VIGWsEiOE4qnDnVtZ7VyIz70G19HPiHhbHbaJUYio7Y_ASaMWaeY6COqng_l0hNSTB_2QomSkZ3Jp02u6uPxh-pv9bHwHfq5Xok1j-dRf1bqff_tNJPJ_Xaq7cLtzpNmwRf492LLlfbh1SV5xB743nrRXOY-SCj5YNkJ71pZqssqxWVF_LFZn3hRvW5nRwi4ZWlI6mmJ1xY5Vaaoz9g6ZfnXO9lWt2KJUX1Rx2oqbX7xiQ3ZMAQuqAWDjgjIP8M1s2Am1P4DFlSzBLmyXVWkfAlPolzrh_NQI5LAmUtqGCZl0k-bWCNmDwRoSWd7JsVNXkNOsoWV-miGIMgJR1oGoBy83Mz63UiT_GLtDmNiM6-DQg7016rLOVi0z4tDoucVR-ujvs57Bjcn8cJbNpkcHj-EmpwKQJuVzD7br85V9gm5ZrZ82fweD91eNsV89N0Ie
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-Charge+Estimation+of+Lithium-Ion+Batteries+Subject+to+Random+Sensor+Data+Unavailability%3A+A+Recursive+Filtering+Approach&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Chen%2C+Hui&rft.au=Tian%2C+Engang&rft.au=Wang%2C+Licheng&rft.date=2022-05-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=69&rft.issue=5&rft.spage=5175&rft.epage=5184&rft_id=info:doi/10.1109%2FTIE.2021.3078376&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2021_3078376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon