Sharp Variance-Entropy Comparison for Nonnegative Gaussian Quadratic Forms
In this article we study weighted sums of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> i.i.d. Gamma(<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>) random variables with...
Saved in:
Published in | IEEE transactions on information theory Vol. 67; no. 12; pp. 7740 - 7751 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article we study weighted sums of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> i.i.d. Gamma(<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>) random variables with nonnegative weights. We show that for <inline-formula> <tex-math notation="LaTeX">n \geq 1/\alpha </tex-math></inline-formula> the sum with equal coefficients maximizes differential entropy when variance is fixed. As a consequence, we prove that among nonnegative quadratic forms in <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> independent standard Gaussian random variables, a diagonal form with equal coefficients maximizes differential entropy, under a fixed variance. This provides a sharp lower bound for the relative entropy between a nonnegative quadratic form and a Gaussian random variable. Bounds on capacities of transmission channels subjects to <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> independent additive gamma noises are also derived. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2021.3113281 |