Search-Based Motion Planning for Aggressive Flight in SE(3)
Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this letter, we develop a search-based trajectory planning algorithm that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered...
Saved in:
Published in | IEEE robotics and automation letters Vol. 3; no. 3; pp. 2439 - 2446 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2377-3766 2377-3766 |
DOI | 10.1109/LRA.2018.2795654 |
Cover
Loading…
Abstract | Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this letter, we develop a search-based trajectory planning algorithm that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered environments. We model the quadrotor body as an ellipsoid and compute its flight attitude along trajectories in order to check for collisions against obstacles. The ellipsoid model allows the quadrotor to pass through gaps that are smaller than its diameter with nonzero pitch or roll angles. Without any prior information about the location of gaps and associated attitude constraints, our algorithm is able to find a safe and optimal trajectory that guides the robot to its goal as fast as possible. To accelerate planning, we first perform a lower dimensional search and use it as a heuristic to guide the generation of a final dynamically feasible trajectory. We analyze critical discretization parameters of motion primitive planning and demonstrate the feasibility of the generated trajectories in various simulations and real-world experiments. |
---|---|
AbstractList | Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this letter, we develop a search-based trajectory planning algorithm that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered environments. We model the quadrotor body as an ellipsoid and compute its flight attitude along trajectories in order to check for collisions against obstacles. The ellipsoid model allows the quadrotor to pass through gaps that are smaller than its diameter with nonzero pitch or roll angles. Without any prior information about the location of gaps and associated attitude constraints, our algorithm is able to find a safe and optimal trajectory that guides the robot to its goal as fast as possible. To accelerate planning, we first perform a lower dimensional search and use it as a heuristic to guide the generation of a final dynamically feasible trajectory. We analyze critical discretization parameters of motion primitive planning and demonstrate the feasibility of the generated trajectories in various simulations and real-world experiments. |
Author | Mohta, Kartik Liu, Sikang Kumar, Vijay Atanasov, Nikolay |
Author_xml | – sequence: 1 givenname: Sikang orcidid: 0000-0002-5646-9567 surname: Liu fullname: Liu, Sikang email: sikang@seas.upenn.edu organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA – sequence: 2 givenname: Kartik orcidid: 0000-0002-0932-6475 surname: Mohta fullname: Mohta, Kartik email: kmohta@seas.upenn.edu organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA – sequence: 3 givenname: Nikolay orcidid: 0000-0003-0272-7580 surname: Atanasov fullname: Atanasov, Nikolay email: natanasov@ucsd.edu organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA – sequence: 4 givenname: Vijay surname: Kumar fullname: Kumar, Vijay email: kumar@cis.upenn.edu organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA |
BookMark | eNp9kMFLwzAUh4NMcM7dBS8FL3rofEnapMHTNjYVJorTc0jbpMuo6Uw6wf_ejg0RD57eO_y-9_h9p6jnGqcROscwwhjEzeJlPCKAsxHhImVpcoT6hHIeU85Y79d-goYhrAEAp4RTkfbR7VIrX6ziiQq6jB6b1jYueq6Vc9ZVkWl8NK4qr0Ownzqa17ZatZF10XJ2Ra_P0LFRddDDwxygt_nsdXofL57uHqbjRVwQgduYqgygzIHnqdBam5LzsiCEMAY8TTjLSygJZiYxlOfAstwYwDShOidKFYrRAbrc39345mOrQyvXzda77qUkRAjKAUTSpdg-VfgmBK-NLGyrdn1ar2wtMcidK9m5kjtX8uCqA-EPuPH2Xfmv_5CLPWK7Qj_xjLCuTka_AaUyc7g |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1109_TIE_2021_3114744 crossref_primary_10_1016_j_robot_2022_104292 crossref_primary_10_1007_s10846_021_01310_8 crossref_primary_10_1109_ACCESS_2022_3164434 crossref_primary_10_1109_TIE_2022_3140533 crossref_primary_10_1109_TIV_2022_3229723 crossref_primary_10_1007_s10846_022_01708_y crossref_primary_10_1109_ACCESS_2019_2950324 crossref_primary_10_3390_electronics10192330 crossref_primary_10_1146_annurev_control_061623_094742 crossref_primary_10_1109_LRA_2022_3154013 crossref_primary_10_1109_LRA_2021_3062332 crossref_primary_10_1007_s10846_024_02214_z crossref_primary_10_3390_rs13050972 crossref_primary_10_3390_drones8060256 crossref_primary_10_1109_TCST_2023_3283446 crossref_primary_10_1002_rob_21997 crossref_primary_10_1007_s11431_022_2264_5 crossref_primary_10_1109_TMECH_2024_3393144 crossref_primary_10_1109_TRO_2021_3100142 crossref_primary_10_1126_scirobotics_abh1221 crossref_primary_10_1109_TRO_2024_3502505 crossref_primary_10_1109_TRO_2022_3173711 crossref_primary_10_1007_s10846_020_01231_y crossref_primary_10_1109_TRO_2024_3400838 crossref_primary_10_1109_LRA_2022_3154047 crossref_primary_10_1109_LRA_2022_3181755 crossref_primary_10_1115_1_4053243 crossref_primary_10_1109_ACCESS_2018_2889533 crossref_primary_10_1080_23335777_2019_1590460 crossref_primary_10_1177_1729881420905150 crossref_primary_10_1109_LCSYS_2021_3088406 crossref_primary_10_1016_j_ast_2021_107154 crossref_primary_10_1016_j_engappai_2023_105893 crossref_primary_10_1016_j_ifacol_2023_10_799 crossref_primary_10_1109_LRA_2025_3534519 crossref_primary_10_1109_TRO_2020_2992987 crossref_primary_10_1002_rob_21949 crossref_primary_10_1109_LRA_2022_3153987 crossref_primary_10_1016_j_jksuci_2023_101889 crossref_primary_10_1109_TIE_2024_3440496 crossref_primary_10_1017_S0263574720000387 crossref_primary_10_1109_TIV_2023_3327263 crossref_primary_10_1109_TIE_2024_3368151 crossref_primary_10_4218_etrij_2020_0085 crossref_primary_10_1007_s10846_022_01574_8 crossref_primary_10_1007_s12555_019_0727_8 crossref_primary_10_1177_17298806241229257 crossref_primary_10_1109_LRA_2021_3113976 crossref_primary_10_1109_TRO_2025_3526102 crossref_primary_10_1109_LRA_2018_2883375 crossref_primary_10_1109_LRA_2021_3067298 crossref_primary_10_1109_TIE_2022_3144586 crossref_primary_10_3390_drones7080514 crossref_primary_10_1002_aisy_202400363 crossref_primary_10_1007_s10846_022_01676_3 crossref_primary_10_1177_0278364920921943 crossref_primary_10_1016_j_ifacol_2019_11_069 crossref_primary_10_1109_TRO_2022_3141602 crossref_primary_10_1126_scirobotics_abg5810 crossref_primary_10_1109_ACCESS_2021_3109125 crossref_primary_10_1109_TRO_2023_3238911 crossref_primary_10_1109_LRA_2023_3308490 crossref_primary_10_1109_TRO_2019_2926390 |
Cites_doi | 10.1109/LRA.2017.2663526 10.1109/IROS.2017.8206119 10.1109/ICAMechS.2014.6911574 10.1177/0278364915594029 10.1109/ICRA.2011.5980567 10.1109/IROS.2016.7759784 10.1109/ICRA.2015.7138978 10.1109/LRA.2016.2633290 10.1109/TRO.2015.2479878 10.3182/20110828-6-IT-1002.03178 10.1007/978-3-319-16595-0_12 10.1177/0278364911406761 10.1109/ROBOT.2009.5152817 10.1109/SFCS.1988.21947 10.1109/ICRA.2013.6631131 10.1002/rob.20285 10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.3.CO;2-N 10.1613/jair.2096 10.1109/ICRA.2011.5980409 10.1109/CDC.2010.5717652 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LRA.2018.2795654 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 2446 |
ExternalDocumentID | 10_1109_LRA_2018_2795654 8264768 |
Genre | orig-research |
GrantInformation_xml | – fundername: ONR grantid: N00014-07-1-0829 – fundername: ARL grantid: W911NF-08-2-0004 – fundername: DARPA grantid: HR001151626; HR0011516850 – fundername: ARO grantid: W911NF-13-1-0350 |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-3a800db07b59eeefd77dc22266075476bd0d216f4f37b068bff01343eb2aaca63 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Mon Jun 30 12:05:18 EDT 2025 Thu Apr 24 22:52:47 EDT 2025 Tue Jul 01 03:53:54 EDT 2025 Wed Aug 27 02:49:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-3a800db07b59eeefd77dc22266075476bd0d216f4f37b068bff01343eb2aaca63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0932-6475 0000-0003-0272-7580 0000-0002-5646-9567 |
PQID | 2299370094 |
PQPubID | 4437225 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2299370094 crossref_citationtrail_10_1109_LRA_2018_2795654 ieee_primary_8264768 crossref_primary_10_1109_LRA_2018_2795654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref11 ref10 ref17 ref16 wilt (ref23) 0 ref19 ref18 chen (ref13) 0 richter (ref2) 2016 falanga (ref6) 2016 ref25 ref20 ref22 hehn (ref26) 0; 44 ref27 ref8 ref7 likhachev (ref21) 0 ref9 ref4 ref3 ref5 ichnowski (ref14) 2015 liu (ref1) 0 gochev (ref24) 0 |
References_xml | – start-page: 649 year: 2016 ident: ref2 article-title: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments – ident: ref12 doi: 10.1109/LRA.2017.2663526 – ident: ref9 doi: 10.1109/IROS.2017.8206119 – ident: ref8 doi: 10.1109/ICAMechS.2014.6911574 – ident: ref22 doi: 10.1177/0278364915594029 – ident: ref27 doi: 10.1109/ICRA.2011.5980567 – ident: ref3 doi: 10.1109/IROS.2016.7759784 – ident: ref4 doi: 10.1109/ICRA.2015.7138978 – ident: ref7 doi: 10.1109/LRA.2016.2633290 – ident: ref18 doi: 10.1109/TRO.2015.2479878 – volume: 44 start-page: 1485 year: 0 ident: ref26 article-title: Quadrocopter trajectory generation and control publication-title: IFAC Proc Volumes doi: 10.3182/20110828-6-IT-1002.03178 – year: 0 ident: ref24 article-title: Path planning with adaptive dimensionality publication-title: Proc 4th Annu Symp Combinatorial Search – year: 2016 ident: ref6 article-title: Aggressive quadrotor flight through narrow gaps with onboard sensing and computing publication-title: arXiv 1612 00291 – start-page: 197 year: 2015 ident: ref14 article-title: Fast nearest neighbor search in SE (3) for sampling-based motion planning publication-title: Algorithmic Foundations of Robotics XI doi: 10.1007/978-3-319-16595-0_12 – ident: ref19 doi: 10.1177/0278364911406761 – ident: ref15 doi: 10.1109/ROBOT.2009.5152817 – start-page: 1476 year: 0 ident: ref13 article-title: Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments publication-title: Proc IEEE Int Conf Robot Autom – ident: ref5 doi: 10.1109/SFCS.1988.21947 – ident: ref17 doi: 10.1109/ICRA.2013.6631131 – ident: ref16 doi: 10.1002/rob.20285 – ident: ref10 doi: 10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.3.CO;2-N – ident: ref20 doi: 10.1613/jair.2096 – start-page: 137 year: 0 ident: ref23 article-title: When does weighted A* fail? publication-title: Proc Symp Combin Search – ident: ref11 doi: 10.1109/ICRA.2011.5980409 – start-page: 1484 year: 0 ident: ref1 article-title: High speed navigation for quadrotors with limited onboard sensing publication-title: Proc IEEE Int Conf Robot Autom – start-page: 767 year: 0 ident: ref21 article-title: ARA*: Anytime A* with Provable Bounds on Sub-Optimality publication-title: Proc Adv Neural Inf Process Syst – ident: ref25 doi: 10.1109/CDC.2010.5717652 |
SSID | ssj0001527395 |
Score | 2.4814193 |
Snippet | Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this letter, we develop a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2439 |
SubjectTerms | Acceleration aerial systems: applications Algorithms Angular velocity Attitude (inclination) autonomous vehicle navigation Collision avoidance Computer simulation Feasibility Maneuverability Motion and path planning Motion planning Pitch (inclination) Planning Robots Rolling motion Rotary wing aircraft Searching Trajectory Trajectory analysis Trajectory planning Vehicle dynamics |
Title | Search-Based Motion Planning for Aggressive Flight in SE(3) |
URI | https://ieeexplore.ieee.org/document/8264768 https://www.proquest.com/docview/2299370094 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFUnlgoBJp09iJEzEV1KpChAGo1C2K4xghqhRBujDw2zk7SXkKsWWwo9Od7fs--x4Ax3IgBBeI3GLKbItRh1qxZNwKbKEzJQWV5sItvPYmU3Y5c2c1OF3lwqRpaoLP0p7-NG_5cpEs9VVZH6EwQ3hchzoStyJX6-M-RVcSC9zqJdIO-lc3Qx265fccjiTAZV88j2ml8uP8NU5lvAlhJU4RS_LYW-ail7x-q9T4X3m3YKNEl2RYLIdtqKXZDqx_qjnYhLMiwNg6R_clSWia-JCqdRFBCEuG94aD4zFIxnPN3clDRm5HJ7S7C9Px6O5iYpUdFKzECQa5RWPEg1LYXLgBSqck5zJBROB5iBRQNCFt6Qw8xRTlwvZ8oRRCQkaRbsdxEnt0DxrZIkv3gQTKk5RJH-kaY4GSQlHkhjxBAOJIn9MW9CvtRklZXlx3uZhHhmbYQYT2iLQ9otIeLeiuZjwVpTX-GNvU6l2NKzXbgnZlwKjcey-R42jMpUMmD36fdQhr-t9F0G0bGvnzMj1CaJGLDtTDt1HHrKx3uenKAA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IoFPDAQCXSprETJ2IqqFWBpgO0ElsUxwlCVCmCdOHXc3aS8hRiy2Arpzvb9332PQBOZEcILhC5hZSZBqMWNULJuOGZQmVKCir1hZs_cgYTdn1v31fgbJELE8exDj6LW-pTv-XLWTRXV2VthMIM4fESLNsqGTfP1vq4UVG1xDy7fIs0vfbwtquCt9yWxZEG2OyL79HNVH6cwNqt9DfALwXKo0meWvNMtKK3b7Ua_yvxJqwX-JJ08wWxBZU43Ya1T1UHa3CehxgbF-jAJPF1Gx9SNi8iCGJJ90GzcDwISX-q2Dt5TMld75Q2d2DS740vB0bRQ8GILK-TGTRERCiFyYXtoXSJ5FxGiAkcB7ECiiakKa2Ok7CEcmE6rkgSBIWMIuEOwyh06C5U01ka7wHxEkdSJl0kbIx5iRQJRXbII4QglnQ5rUO71G4QFQXGVZ-LaaCJhukFaI9A2SMo7FGH5mLGc15c44-xNaXexbhCs3VolAYMit33GliWQl0qaHL_91nHsDIY-8NgeDW6OYBV9Z88BLcB1exlHh8i0MjEkV5f76YqzBc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Search-Based+Motion+Planning+for+Aggressive+Flight+in+SE%283%29&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Liu%2C+Sikang&rft.au=Mohta%2C+Kartik&rft.au=Atanasov%2C+Nikolay&rft.au=Kumar%2C+Vijay&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=3&rft.issue=3&rft.spage=2439&rft.epage=2446&rft_id=info:doi/10.1109%2FLRA.2018.2795654&rft.externalDocID=8264768 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |