Search-Based Motion Planning for Aggressive Flight in SE(3)

Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this letter, we develop a search-based trajectory planning algorithm that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 3; no. 3; pp. 2439 - 2446
Main Authors Liu, Sikang, Mohta, Kartik, Atanasov, Nikolay, Kumar, Vijay
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2018.2795654

Cover

Loading…
Abstract Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this letter, we develop a search-based trajectory planning algorithm that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered environments. We model the quadrotor body as an ellipsoid and compute its flight attitude along trajectories in order to check for collisions against obstacles. The ellipsoid model allows the quadrotor to pass through gaps that are smaller than its diameter with nonzero pitch or roll angles. Without any prior information about the location of gaps and associated attitude constraints, our algorithm is able to find a safe and optimal trajectory that guides the robot to its goal as fast as possible. To accelerate planning, we first perform a lower dimensional search and use it as a heuristic to guide the generation of a final dynamically feasible trajectory. We analyze critical discretization parameters of motion primitive planning and demonstrate the feasibility of the generated trajectories in various simulations and real-world experiments.
AbstractList Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this letter, we develop a search-based trajectory planning algorithm that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered environments. We model the quadrotor body as an ellipsoid and compute its flight attitude along trajectories in order to check for collisions against obstacles. The ellipsoid model allows the quadrotor to pass through gaps that are smaller than its diameter with nonzero pitch or roll angles. Without any prior information about the location of gaps and associated attitude constraints, our algorithm is able to find a safe and optimal trajectory that guides the robot to its goal as fast as possible. To accelerate planning, we first perform a lower dimensional search and use it as a heuristic to guide the generation of a final dynamically feasible trajectory. We analyze critical discretization parameters of motion primitive planning and demonstrate the feasibility of the generated trajectories in various simulations and real-world experiments.
Author Mohta, Kartik
Liu, Sikang
Kumar, Vijay
Atanasov, Nikolay
Author_xml – sequence: 1
  givenname: Sikang
  orcidid: 0000-0002-5646-9567
  surname: Liu
  fullname: Liu, Sikang
  email: sikang@seas.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Kartik
  orcidid: 0000-0002-0932-6475
  surname: Mohta
  fullname: Mohta, Kartik
  email: kmohta@seas.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: Nikolay
  orcidid: 0000-0003-0272-7580
  surname: Atanasov
  fullname: Atanasov, Nikolay
  email: natanasov@ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
– sequence: 4
  givenname: Vijay
  surname: Kumar
  fullname: Kumar, Vijay
  email: kumar@cis.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
BookMark eNp9kMFLwzAUh4NMcM7dBS8FL3rofEnapMHTNjYVJorTc0jbpMuo6Uw6wf_ejg0RD57eO_y-9_h9p6jnGqcROscwwhjEzeJlPCKAsxHhImVpcoT6hHIeU85Y79d-goYhrAEAp4RTkfbR7VIrX6ziiQq6jB6b1jYueq6Vc9ZVkWl8NK4qr0Ownzqa17ZatZF10XJ2Ra_P0LFRddDDwxygt_nsdXofL57uHqbjRVwQgduYqgygzIHnqdBam5LzsiCEMAY8TTjLSygJZiYxlOfAstwYwDShOidKFYrRAbrc39345mOrQyvXzda77qUkRAjKAUTSpdg-VfgmBK-NLGyrdn1ar2wtMcidK9m5kjtX8uCqA-EPuPH2Xfmv_5CLPWK7Qj_xjLCuTka_AaUyc7g
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_TIE_2021_3114744
crossref_primary_10_1016_j_robot_2022_104292
crossref_primary_10_1007_s10846_021_01310_8
crossref_primary_10_1109_ACCESS_2022_3164434
crossref_primary_10_1109_TIE_2022_3140533
crossref_primary_10_1109_TIV_2022_3229723
crossref_primary_10_1007_s10846_022_01708_y
crossref_primary_10_1109_ACCESS_2019_2950324
crossref_primary_10_3390_electronics10192330
crossref_primary_10_1146_annurev_control_061623_094742
crossref_primary_10_1109_LRA_2022_3154013
crossref_primary_10_1109_LRA_2021_3062332
crossref_primary_10_1007_s10846_024_02214_z
crossref_primary_10_3390_rs13050972
crossref_primary_10_3390_drones8060256
crossref_primary_10_1109_TCST_2023_3283446
crossref_primary_10_1002_rob_21997
crossref_primary_10_1007_s11431_022_2264_5
crossref_primary_10_1109_TMECH_2024_3393144
crossref_primary_10_1109_TRO_2021_3100142
crossref_primary_10_1126_scirobotics_abh1221
crossref_primary_10_1109_TRO_2024_3502505
crossref_primary_10_1109_TRO_2022_3173711
crossref_primary_10_1007_s10846_020_01231_y
crossref_primary_10_1109_TRO_2024_3400838
crossref_primary_10_1109_LRA_2022_3154047
crossref_primary_10_1109_LRA_2022_3181755
crossref_primary_10_1115_1_4053243
crossref_primary_10_1109_ACCESS_2018_2889533
crossref_primary_10_1080_23335777_2019_1590460
crossref_primary_10_1177_1729881420905150
crossref_primary_10_1109_LCSYS_2021_3088406
crossref_primary_10_1016_j_ast_2021_107154
crossref_primary_10_1016_j_engappai_2023_105893
crossref_primary_10_1016_j_ifacol_2023_10_799
crossref_primary_10_1109_LRA_2025_3534519
crossref_primary_10_1109_TRO_2020_2992987
crossref_primary_10_1002_rob_21949
crossref_primary_10_1109_LRA_2022_3153987
crossref_primary_10_1016_j_jksuci_2023_101889
crossref_primary_10_1109_TIE_2024_3440496
crossref_primary_10_1017_S0263574720000387
crossref_primary_10_1109_TIV_2023_3327263
crossref_primary_10_1109_TIE_2024_3368151
crossref_primary_10_4218_etrij_2020_0085
crossref_primary_10_1007_s10846_022_01574_8
crossref_primary_10_1007_s12555_019_0727_8
crossref_primary_10_1177_17298806241229257
crossref_primary_10_1109_LRA_2021_3113976
crossref_primary_10_1109_TRO_2025_3526102
crossref_primary_10_1109_LRA_2018_2883375
crossref_primary_10_1109_LRA_2021_3067298
crossref_primary_10_1109_TIE_2022_3144586
crossref_primary_10_3390_drones7080514
crossref_primary_10_1002_aisy_202400363
crossref_primary_10_1007_s10846_022_01676_3
crossref_primary_10_1177_0278364920921943
crossref_primary_10_1016_j_ifacol_2019_11_069
crossref_primary_10_1109_TRO_2022_3141602
crossref_primary_10_1126_scirobotics_abg5810
crossref_primary_10_1109_ACCESS_2021_3109125
crossref_primary_10_1109_TRO_2023_3238911
crossref_primary_10_1109_LRA_2023_3308490
crossref_primary_10_1109_TRO_2019_2926390
Cites_doi 10.1109/LRA.2017.2663526
10.1109/IROS.2017.8206119
10.1109/ICAMechS.2014.6911574
10.1177/0278364915594029
10.1109/ICRA.2011.5980567
10.1109/IROS.2016.7759784
10.1109/ICRA.2015.7138978
10.1109/LRA.2016.2633290
10.1109/TRO.2015.2479878
10.3182/20110828-6-IT-1002.03178
10.1007/978-3-319-16595-0_12
10.1177/0278364911406761
10.1109/ROBOT.2009.5152817
10.1109/SFCS.1988.21947
10.1109/ICRA.2013.6631131
10.1002/rob.20285
10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.3.CO;2-N
10.1613/jair.2096
10.1109/ICRA.2011.5980409
10.1109/CDC.2010.5717652
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2018.2795654
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 2446
ExternalDocumentID 10_1109_LRA_2018_2795654
8264768
Genre orig-research
GrantInformation_xml – fundername: ONR
  grantid: N00014-07-1-0829
– fundername: ARL
  grantid: W911NF-08-2-0004
– fundername: DARPA
  grantid: HR001151626; HR0011516850
– fundername: ARO
  grantid: W911NF-13-1-0350
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-3a800db07b59eeefd77dc22266075476bd0d216f4f37b068bff01343eb2aaca63
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Mon Jun 30 12:05:18 EDT 2025
Thu Apr 24 22:52:47 EDT 2025
Tue Jul 01 03:53:54 EDT 2025
Wed Aug 27 02:49:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-3a800db07b59eeefd77dc22266075476bd0d216f4f37b068bff01343eb2aaca63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0932-6475
0000-0003-0272-7580
0000-0002-5646-9567
PQID 2299370094
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2299370094
crossref_citationtrail_10_1109_LRA_2018_2795654
ieee_primary_8264768
crossref_primary_10_1109_LRA_2018_2795654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref11
ref10
ref17
ref16
wilt (ref23) 0
ref19
ref18
chen (ref13) 0
richter (ref2) 2016
falanga (ref6) 2016
ref25
ref20
ref22
hehn (ref26) 0; 44
ref27
ref8
ref7
likhachev (ref21) 0
ref9
ref4
ref3
ref5
ichnowski (ref14) 2015
liu (ref1) 0
gochev (ref24) 0
References_xml – start-page: 649
  year: 2016
  ident: ref2
  article-title: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments
– ident: ref12
  doi: 10.1109/LRA.2017.2663526
– ident: ref9
  doi: 10.1109/IROS.2017.8206119
– ident: ref8
  doi: 10.1109/ICAMechS.2014.6911574
– ident: ref22
  doi: 10.1177/0278364915594029
– ident: ref27
  doi: 10.1109/ICRA.2011.5980567
– ident: ref3
  doi: 10.1109/IROS.2016.7759784
– ident: ref4
  doi: 10.1109/ICRA.2015.7138978
– ident: ref7
  doi: 10.1109/LRA.2016.2633290
– ident: ref18
  doi: 10.1109/TRO.2015.2479878
– volume: 44
  start-page: 1485
  year: 0
  ident: ref26
  article-title: Quadrocopter trajectory generation and control
  publication-title: IFAC Proc Volumes
  doi: 10.3182/20110828-6-IT-1002.03178
– year: 0
  ident: ref24
  article-title: Path planning with adaptive dimensionality
  publication-title: Proc 4th Annu Symp Combinatorial Search
– year: 2016
  ident: ref6
  article-title: Aggressive quadrotor flight through narrow gaps with onboard sensing and computing
  publication-title: arXiv 1612 00291
– start-page: 197
  year: 2015
  ident: ref14
  article-title: Fast nearest neighbor search in SE (3) for sampling-based motion planning
  publication-title: Algorithmic Foundations of Robotics XI
  doi: 10.1007/978-3-319-16595-0_12
– ident: ref19
  doi: 10.1177/0278364911406761
– ident: ref15
  doi: 10.1109/ROBOT.2009.5152817
– start-page: 1476
  year: 0
  ident: ref13
  article-title: Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref5
  doi: 10.1109/SFCS.1988.21947
– ident: ref17
  doi: 10.1109/ICRA.2013.6631131
– ident: ref16
  doi: 10.1002/rob.20285
– ident: ref10
  doi: 10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.3.CO;2-N
– ident: ref20
  doi: 10.1613/jair.2096
– start-page: 137
  year: 0
  ident: ref23
  article-title: When does weighted A* fail?
  publication-title: Proc Symp Combin Search
– ident: ref11
  doi: 10.1109/ICRA.2011.5980409
– start-page: 1484
  year: 0
  ident: ref1
  article-title: High speed navigation for quadrotors with limited onboard sensing
  publication-title: Proc IEEE Int Conf Robot Autom
– start-page: 767
  year: 0
  ident: ref21
  article-title: ARA*: Anytime A* with Provable Bounds on Sub-Optimality
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1109/CDC.2010.5717652
SSID ssj0001527395
Score 2.4814193
Snippet Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this letter, we develop a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2439
SubjectTerms Acceleration
aerial systems: applications
Algorithms
Angular velocity
Attitude (inclination)
autonomous vehicle navigation
Collision avoidance
Computer simulation
Feasibility
Maneuverability
Motion and path planning
Motion planning
Pitch (inclination)
Planning
Robots
Rolling motion
Rotary wing aircraft
Searching
Trajectory
Trajectory analysis
Trajectory planning
Vehicle dynamics
Title Search-Based Motion Planning for Aggressive Flight in SE(3)
URI https://ieeexplore.ieee.org/document/8264768
https://www.proquest.com/docview/2299370094
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFUnlgoBJp09iJEzEV1KpChAGo1C2K4xghqhRBujDw2zk7SXkKsWWwo9Od7fs--x4Ax3IgBBeI3GLKbItRh1qxZNwKbKEzJQWV5sItvPYmU3Y5c2c1OF3lwqRpaoLP0p7-NG_5cpEs9VVZH6EwQ3hchzoStyJX6-M-RVcSC9zqJdIO-lc3Qx265fccjiTAZV88j2ml8uP8NU5lvAlhJU4RS_LYW-ail7x-q9T4X3m3YKNEl2RYLIdtqKXZDqx_qjnYhLMiwNg6R_clSWia-JCqdRFBCEuG94aD4zFIxnPN3clDRm5HJ7S7C9Px6O5iYpUdFKzECQa5RWPEg1LYXLgBSqck5zJBROB5iBRQNCFt6Qw8xRTlwvZ8oRRCQkaRbsdxEnt0DxrZIkv3gQTKk5RJH-kaY4GSQlHkhjxBAOJIn9MW9CvtRklZXlx3uZhHhmbYQYT2iLQ9otIeLeiuZjwVpTX-GNvU6l2NKzXbgnZlwKjcey-R42jMpUMmD36fdQhr-t9F0G0bGvnzMj1CaJGLDtTDt1HHrKx3uenKAA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IoFPDAQCXSprETJ2IqqFWBpgO0ElsUxwlCVCmCdOHXc3aS8hRiy2Arpzvb9332PQBOZEcILhC5hZSZBqMWNULJuOGZQmVKCir1hZs_cgYTdn1v31fgbJELE8exDj6LW-pTv-XLWTRXV2VthMIM4fESLNsqGTfP1vq4UVG1xDy7fIs0vfbwtquCt9yWxZEG2OyL79HNVH6cwNqt9DfALwXKo0meWvNMtKK3b7Ua_yvxJqwX-JJ08wWxBZU43Ya1T1UHa3CehxgbF-jAJPF1Gx9SNi8iCGJJ90GzcDwISX-q2Dt5TMld75Q2d2DS740vB0bRQ8GILK-TGTRERCiFyYXtoXSJ5FxGiAkcB7ECiiakKa2Ok7CEcmE6rkgSBIWMIuEOwyh06C5U01ka7wHxEkdSJl0kbIx5iRQJRXbII4QglnQ5rUO71G4QFQXGVZ-LaaCJhukFaI9A2SMo7FGH5mLGc15c44-xNaXexbhCs3VolAYMit33GliWQl0qaHL_91nHsDIY-8NgeDW6OYBV9Z88BLcB1exlHh8i0MjEkV5f76YqzBc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Search-Based+Motion+Planning+for+Aggressive+Flight+in+SE%283%29&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Liu%2C+Sikang&rft.au=Mohta%2C+Kartik&rft.au=Atanasov%2C+Nikolay&rft.au=Kumar%2C+Vijay&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=3&rft.issue=3&rft.spage=2439&rft.epage=2446&rft_id=info:doi/10.1109%2FLRA.2018.2795654&rft.externalDocID=8264768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon