Multivariate Regression-Based Fault Detection and Recovery of UAV Flight Data
With the wide applications of the unmanned aerial vehicle (UAV), operating safety becomes a critical issue. Thus, fault detection (FD) has been focused, which can realize fault alarm and schedule maintenance in time. Since the accurate physical model of UAV is usually difficult to obtain and flight...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 69; no. 6; pp. 3527 - 3537 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the wide applications of the unmanned aerial vehicle (UAV), operating safety becomes a critical issue. Thus, fault detection (FD) has been focused, which can realize fault alarm and schedule maintenance in time. Since the accurate physical model of UAV is usually difficult to obtain and flight data with random noise has both spatial and temporal correlation, a huge challenge is posed to FD. In this article, a data-driven multivariate regression approach based on long short-term memory with residual filtering (LSTM-RF) is proposed to fulfill UAV flight data FD and recovery. First, an LSTM network is designed as a regression model, which can extract the spatial-temporal features from the flight data and obtain an estimation of the monitored parameter. Second, a filter is utilized to smooth the residuals between real flight data and estimated values, which mitigates the effect of random noise and dramatically improves the detection performance. Finally, FD is achieved by comparing the smoothed residual with a statistical threshold. Then, fault recovery is fulfilled by replacing fault data with the estimated value. To validate the effectiveness of the proposed method, experiments are conducted based on simulation data and real flight data. The experimental results demonstrate that the proposed method has good performance in FD and recovery of UAV flight data. |
---|---|
AbstractList | With the wide applications of the unmanned aerial vehicle (UAV), operating safety becomes a critical issue. Thus, fault detection (FD) has been focused, which can realize fault alarm and schedule maintenance in time. Since the accurate physical model of UAV is usually difficult to obtain and flight data with random noise has both spatial and temporal correlation, a huge challenge is posed to FD. In this article, a data-driven multivariate regression approach based on long short-term memory with residual filtering (LSTM-RF) is proposed to fulfill UAV flight data FD and recovery. First, an LSTM network is designed as a regression model, which can extract the spatial–temporal features from the flight data and obtain an estimation of the monitored parameter. Second, a filter is utilized to smooth the residuals between real flight data and estimated values, which mitigates the effect of random noise and dramatically improves the detection performance. Finally, FD is achieved by comparing the smoothed residual with a statistical threshold. Then, fault recovery is fulfilled by replacing fault data with the estimated value. To validate the effectiveness of the proposed method, experiments are conducted based on simulation data and real flight data. The experimental results demonstrate that the proposed method has good performance in FD and recovery of UAV flight data. |
Author | Liu, Datong Wang, Benkuan Peng, Yu Peng, Xiyuan |
Author_xml | – sequence: 1 givenname: Benkuan surname: Wang fullname: Wang, Benkuan organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Datong orcidid: 0000-0001-9967-5427 surname: Liu fullname: Liu, Datong email: liudatong@hit.edu.cn organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Yu surname: Peng fullname: Peng, Yu organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China – sequence: 4 givenname: Xiyuan surname: Peng fullname: Peng, Xiyuan organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China |
BookMark | eNp9kE1PAjEQhhuDiYDeTbxs4nmx7e7244goSgIxMeC1Ke0sluAutoWEf28JxIMHT5PMPO9M5umhTtM2gNAtwQNCsHyYT2YDiokcUFlUFWcXqEtSzSVjtIO6GBORy7JiV6gXwhpjzFnJu2g2222i22vvdITsHVYeQnBtkz_qADYb6zTOniCCiamb6cYmyLR78IesrbPF8CMbb9zqM0E66mt0WetNgJtz7aPF-Hk-es2nby-T0XCaGypJzAtNDMaGcimlkWZJOCbGGmFMWRJSM7CFMGJZANGlpbZiVnCOK0mMrC1YWfTR_Wnv1rffOwhRrdudb9JJRUtMSykkKRLFTpTxbQgeamVc1Mc_otduowhWR3UqqVNHdeqsLgXxn-DWuy_tD_9F7k4RBwC_uBCJobz4AdHaer0 |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_3390_s25061924 crossref_primary_10_1016_j_aei_2025_103255 crossref_primary_10_1016_j_microrel_2020_113857 crossref_primary_10_1088_1361_6501_ad2051 crossref_primary_10_1007_s11431_022_2213_8 crossref_primary_10_1142_S2301385024500250 crossref_primary_10_3390_aerospace11050393 crossref_primary_10_1109_TIM_2020_3006776 crossref_primary_10_1109_TIM_2024_3502815 crossref_primary_10_1109_TR_2021_3134369 crossref_primary_10_1109_JSEN_2020_2994589 crossref_primary_10_1007_s10846_024_02101_7 crossref_primary_10_3390_drones8100534 crossref_primary_10_1016_j_comcom_2024_03_002 crossref_primary_10_1109_TIM_2024_3385822 crossref_primary_10_1109_MIM_2022_9832822 crossref_primary_10_1016_j_psep_2022_01_062 crossref_primary_10_1109_COMST_2021_3097916 crossref_primary_10_3846_aviation_2024_22173 crossref_primary_10_1109_ACCESS_2021_3052317 crossref_primary_10_1007_s00521_023_08213_9 crossref_primary_10_1016_j_aei_2024_102440 crossref_primary_10_1371_journal_pone_0256200 crossref_primary_10_1016_j_jss_2023_111768 crossref_primary_10_1016_j_microrel_2021_114292 crossref_primary_10_1109_TIM_2024_3440379 crossref_primary_10_3390_machines10111088 crossref_primary_10_3390_math10213970 crossref_primary_10_2514_1_I011231 crossref_primary_10_1016_j_eswa_2024_126156 crossref_primary_10_3390_app12084044 crossref_primary_10_3390_drones7070437 crossref_primary_10_1088_1361_6501_ad4732 crossref_primary_10_1109_JSEN_2024_3406760 crossref_primary_10_1109_TIM_2024_3450064 crossref_primary_10_1145_3706121 crossref_primary_10_1038_s41598_025_93343_4 crossref_primary_10_1016_j_heliyon_2024_e30821 crossref_primary_10_3390_app11083586 crossref_primary_10_1109_JSEN_2023_3280571 crossref_primary_10_1109_TIM_2022_3225040 crossref_primary_10_1109_TIM_2024_3440387 crossref_primary_10_1007_s11431_022_2312_8 crossref_primary_10_1109_TIM_2024_3472809 crossref_primary_10_3390_electronics12081806 crossref_primary_10_1109_TIM_2022_3219489 crossref_primary_10_1007_s00521_023_08791_8 crossref_primary_10_1109_JSEN_2019_2957413 crossref_primary_10_1016_j_ress_2025_111068 crossref_primary_10_1108_AA_06_2021_0076 crossref_primary_10_1109_TIM_2022_3210933 crossref_primary_10_1109_TIM_2022_3169165 crossref_primary_10_1016_j_measurement_2022_112217 crossref_primary_10_1109_TIM_2024_3369149 crossref_primary_10_1109_TVT_2023_3301678 crossref_primary_10_3390_app122211497 crossref_primary_10_1109_TITS_2023_3237159 crossref_primary_10_3390_drones7050286 crossref_primary_10_2478_amns_2024_2294 crossref_primary_10_3390_drones6110330 crossref_primary_10_1088_1361_6501_ad24b6 crossref_primary_10_1007_s10846_024_02176_2 crossref_primary_10_1016_j_ress_2021_107654 crossref_primary_10_1109_TIM_2024_3428649 crossref_primary_10_3390_app14209487 crossref_primary_10_1109_TIE_2023_3294631 crossref_primary_10_1109_TIM_2020_3001659 crossref_primary_10_3390_act11110307 crossref_primary_10_1016_j_cclet_2025_111058 crossref_primary_10_1093_jcde_qwae023 |
Cites_doi | 10.1109/ICUAS.2017.7991322 10.1109/TIM.2017.2754698 10.1109/TIM.2018.2863499 10.1109/TMECH.2013.2258678 10.3233/JIFS-169532 10.3390/s19040771 10.1109/TIM.2018.2838718 10.1145/3219819.3219845 10.1016/j.rser.2019.03.040 10.2514/6.2013-5217 10.1007/978-3-030-05755-8_37 10.1016/j.isatra.2016.11.005 10.1016/j.jclepro.2018.06.182 10.1109/ACCESS.2019.2914236 10.1109/AHS.2014.6880167 10.1007/s10115-014-0754-y 10.1109/JIOT.2017.2737479 10.1162/neco.1997.9.8.1735 10.3390/s18113921 10.1109/TIM.2017.2735663 10.1109/TIE.2015.2499722 10.1109/JSEN.2018.2875864 10.1109/TIM.2019.2910342 10.1111/sjos.12353 10.3390/s18030712 10.23919/WAC.2018.8430428 10.1016/j.ymssp.2018.05.050 10.3390/s19030722 10.1016/j.ijepes.2019.02.046 10.1109/DASC.2017.8102037 10.1007/s12555-010-0105-z 10.1109/ICNSURV.2016.7486356 10.1109/AUS.2016.7748049 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2019.2935576 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 3537 |
ExternalDocumentID | 10_1109_TIM_2019_2935576 8801927 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61571160; 61803121; 61771157 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-3a1c00c27999c9cb1701cdc8cc4411f6ed38c8b3e1a4d2d56d8770591c9fded93 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:12:36 EDT 2025 Tue Jul 01 02:02:37 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Wed Aug 27 02:42:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-3a1c00c27999c9cb1701cdc8cc4411f6ed38c8b3e1a4d2d56d8770591c9fded93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9967-5427 |
PQID | 2402498913 |
PQPubID | 85462 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TIM_2019_2935576 ieee_primary_8801927 proquest_journals_2402498913 crossref_primary_10_1109_TIM_2019_2935576 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 filonov (ref31) 2016 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref8 doi: 10.1109/ICUAS.2017.7991322 – ident: ref17 doi: 10.1109/TIM.2017.2754698 – ident: ref18 doi: 10.1109/TIM.2018.2863499 – ident: ref26 doi: 10.1109/TMECH.2013.2258678 – ident: ref14 doi: 10.3233/JIFS-169532 – ident: ref27 doi: 10.3390/s19040771 – ident: ref7 doi: 10.1109/TIM.2018.2838718 – ident: ref22 doi: 10.1145/3219819.3219845 – ident: ref23 doi: 10.1016/j.rser.2019.03.040 – ident: ref6 doi: 10.2514/6.2013-5217 – ident: ref29 doi: 10.1007/978-3-030-05755-8_37 – ident: ref12 doi: 10.1016/j.isatra.2016.11.005 – ident: ref24 doi: 10.1016/j.jclepro.2018.06.182 – ident: ref25 doi: 10.1109/ACCESS.2019.2914236 – ident: ref10 doi: 10.1109/AHS.2014.6880167 – ident: ref16 doi: 10.1007/s10115-014-0754-y – ident: ref4 doi: 10.1109/JIOT.2017.2737479 – ident: ref28 doi: 10.1162/neco.1997.9.8.1735 – ident: ref5 doi: 10.3390/s18113921 – ident: ref9 doi: 10.1109/TIM.2017.2735663 – ident: ref33 doi: 10.1109/TIE.2015.2499722 – ident: ref3 doi: 10.1109/JSEN.2018.2875864 – year: 2016 ident: ref31 article-title: Multivariate industrial time series with cyber-attack simulation: Fault detection using an LSTM-based predictive data model publication-title: arXiv 1612 06676 – ident: ref30 doi: 10.1109/TIM.2019.2910342 – ident: ref34 doi: 10.1111/sjos.12353 – ident: ref2 doi: 10.3390/s18030712 – ident: ref15 doi: 10.23919/WAC.2018.8430428 – ident: ref19 doi: 10.1016/j.ymssp.2018.05.050 – ident: ref32 doi: 10.3390/s19030722 – ident: ref20 doi: 10.1016/j.ijepes.2019.02.046 – ident: ref13 doi: 10.1109/DASC.2017.8102037 – ident: ref1 doi: 10.1007/s12555-010-0105-z – ident: ref21 doi: 10.1109/ICNSURV.2016.7486356 – ident: ref11 doi: 10.1109/AUS.2016.7748049 |
SSID | ssj0007647 |
Score | 2.5689752 |
Snippet | With the wide applications of the unmanned aerial vehicle (UAV), operating safety becomes a critical issue. Thus, fault detection (FD) has been focused, which... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3527 |
SubjectTerms | Aircraft accidents & safety Computer simulation Data models Data recovery Fault detection Fault detection (FD) fault recovery Feature extraction Gyroscopes long short-term memory (LSTM) Mathematical model Monitoring Multivariate analysis multivariate regression Parameter estimation Random noise Regression models Schedules Statistical analysis unmanned aerial vehicle (UAV) Unmanned aerial vehicles |
Title | Multivariate Regression-Based Fault Detection and Recovery of UAV Flight Data |
URI | https://ieeexplore.ieee.org/document/8801927 https://www.proquest.com/docview/2402498913 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qQdCDj6pYrZKDF8Ftm33nWK2lCvUgrfS2ZCdZD8pWdCvor3eS3ZaiIh4WFjZZQiaP78vMfAE4k8RMVOATcpMyJoIilCMy7juBR1wAs1RxbhKcR3fhcOLfToNpDS6WuTBaaxt8ptvm1fry1Qzn5qisQ2ONAEm0BmtE3MpcreWqG4V-qY_JaQITKli4JLuiM74ZmRgu0XaNmLhRF1nZguydKj8WYru7DLZhtGhXGVTy1J4XaRs_v0k2_rfhO7BVwUzWK8fFLtR03oDNFfHBBqzb4E9824ORzcJ9J9ZMwJPd68cyNjZ3LmmLU2wg6TPr68JGbeVM5ooZ1kqT4IPNMjbpPbDBsyH5rC8LuQ-TwfX4auhU1yw46ApeOJ7k2O2iGxFWRIGpUWhHhTEiQSWehVp5Mcapp7n0lauCUMVRRKiMo8iUVsI7gHo-y_UhMEXLLs-kwkBKnx4ZRyn9Q7uSmxBG2YTOoucTrDTIzVUYz4nlIl2RkK0SY6ukslUTzpc1Xkr9jT_K7pmuX5arer0JrYVxk2qCviXGqeQL46M9-r3WMWy4hlrbA5cW1IvXuT4h_FGkp3bgfQG2ytWm |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB5FRahwANpSESiwh_bQg5Psxo69Bw6FECWk6aFKqt7c9eyaA5GDiAMqz8Kr8G7MrJ2oKhW3ShwsWfLakndmZ7_5-xbg0JBnYqOQkJsxCTko2gY6l2EQdckXwDyzUnKD8-SsN5yFny6jywb82vTCOOd88Zlr8a3P5dsFrjhU1iZdI0AS1yWUY3f9gxy05btRn6R5pNTg4_TDMKjPEAhQaVkGXSOx00EVExBCjRnTj6PFBJFwgMx7znYTTLKukya0ykY9m8QxQQ6JOrfOMtUSGfgHhDMiVXWHbex83AsrRk5JJoNwyDoJ2tHt6WjCVWO6pZi-nPlMbmx6_hSXv0y_388GT-H3eiaqMpYvrVWZtfDnLZLI_3WqnsGTGkiLk0rzd6Dhil14fINecRce-vJWXO7BxPcZfze02konzt3nqvq3CN7TJm7FwNBj0Xelr0srhCmsYL-clvm1WORidnIhBnMOY4i-Kc1zmN3Ln-3DVrEo3AsQljYWmRuLkTEhXSaJM_qGU0ZykaZpQnst6RRrlnU-7GOeem-ro1PSjZR1I611ownHmze-Vgwj_xi7x6LejKul3ISDtTKltQlappw2CzVnoV_e_dZb2B5OJ6fp6ehs_AoeKQ4k-PDSAWyV31buNaGtMnvjlV7A1X2rzh_htDQV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Regression-Based+Fault+Detection+and+Recovery+of+UAV+Flight+Data&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Benkuan&rft.au=Liu%2C+Datong&rft.au=Peng%2C+Yu&rft.au=Peng%2C+Xiyuan&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=69&rft.issue=6&rft.spage=3527&rft.epage=3537&rft_id=info:doi/10.1109%2FTIM.2019.2935576&rft.externalDocID=8801927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |