Multivariate Regression-Based Fault Detection and Recovery of UAV Flight Data

With the wide applications of the unmanned aerial vehicle (UAV), operating safety becomes a critical issue. Thus, fault detection (FD) has been focused, which can realize fault alarm and schedule maintenance in time. Since the accurate physical model of UAV is usually difficult to obtain and flight...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 69; no. 6; pp. 3527 - 3537
Main Authors Wang, Benkuan, Liu, Datong, Peng, Yu, Peng, Xiyuan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the wide applications of the unmanned aerial vehicle (UAV), operating safety becomes a critical issue. Thus, fault detection (FD) has been focused, which can realize fault alarm and schedule maintenance in time. Since the accurate physical model of UAV is usually difficult to obtain and flight data with random noise has both spatial and temporal correlation, a huge challenge is posed to FD. In this article, a data-driven multivariate regression approach based on long short-term memory with residual filtering (LSTM-RF) is proposed to fulfill UAV flight data FD and recovery. First, an LSTM network is designed as a regression model, which can extract the spatial-temporal features from the flight data and obtain an estimation of the monitored parameter. Second, a filter is utilized to smooth the residuals between real flight data and estimated values, which mitigates the effect of random noise and dramatically improves the detection performance. Finally, FD is achieved by comparing the smoothed residual with a statistical threshold. Then, fault recovery is fulfilled by replacing fault data with the estimated value. To validate the effectiveness of the proposed method, experiments are conducted based on simulation data and real flight data. The experimental results demonstrate that the proposed method has good performance in FD and recovery of UAV flight data.
AbstractList With the wide applications of the unmanned aerial vehicle (UAV), operating safety becomes a critical issue. Thus, fault detection (FD) has been focused, which can realize fault alarm and schedule maintenance in time. Since the accurate physical model of UAV is usually difficult to obtain and flight data with random noise has both spatial and temporal correlation, a huge challenge is posed to FD. In this article, a data-driven multivariate regression approach based on long short-term memory with residual filtering (LSTM-RF) is proposed to fulfill UAV flight data FD and recovery. First, an LSTM network is designed as a regression model, which can extract the spatial–temporal features from the flight data and obtain an estimation of the monitored parameter. Second, a filter is utilized to smooth the residuals between real flight data and estimated values, which mitigates the effect of random noise and dramatically improves the detection performance. Finally, FD is achieved by comparing the smoothed residual with a statistical threshold. Then, fault recovery is fulfilled by replacing fault data with the estimated value. To validate the effectiveness of the proposed method, experiments are conducted based on simulation data and real flight data. The experimental results demonstrate that the proposed method has good performance in FD and recovery of UAV flight data.
Author Liu, Datong
Wang, Benkuan
Peng, Yu
Peng, Xiyuan
Author_xml – sequence: 1
  givenname: Benkuan
  surname: Wang
  fullname: Wang, Benkuan
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Datong
  orcidid: 0000-0001-9967-5427
  surname: Liu
  fullname: Liu, Datong
  email: liudatong@hit.edu.cn
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Yu
  surname: Peng
  fullname: Peng, Yu
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Xiyuan
  surname: Peng
  fullname: Peng, Xiyuan
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
BookMark eNp9kE1PAjEQhhuDiYDeTbxs4nmx7e7244goSgIxMeC1Ke0sluAutoWEf28JxIMHT5PMPO9M5umhTtM2gNAtwQNCsHyYT2YDiokcUFlUFWcXqEtSzSVjtIO6GBORy7JiV6gXwhpjzFnJu2g2222i22vvdITsHVYeQnBtkz_qADYb6zTOniCCiamb6cYmyLR78IesrbPF8CMbb9zqM0E66mt0WetNgJtz7aPF-Hk-es2nby-T0XCaGypJzAtNDMaGcimlkWZJOCbGGmFMWRJSM7CFMGJZANGlpbZiVnCOK0mMrC1YWfTR_Wnv1rffOwhRrdudb9JJRUtMSykkKRLFTpTxbQgeamVc1Mc_otduowhWR3UqqVNHdeqsLgXxn-DWuy_tD_9F7k4RBwC_uBCJobz4AdHaer0
CODEN IEIMAO
CitedBy_id crossref_primary_10_3390_s25061924
crossref_primary_10_1016_j_aei_2025_103255
crossref_primary_10_1016_j_microrel_2020_113857
crossref_primary_10_1088_1361_6501_ad2051
crossref_primary_10_1007_s11431_022_2213_8
crossref_primary_10_1142_S2301385024500250
crossref_primary_10_3390_aerospace11050393
crossref_primary_10_1109_TIM_2020_3006776
crossref_primary_10_1109_TIM_2024_3502815
crossref_primary_10_1109_TR_2021_3134369
crossref_primary_10_1109_JSEN_2020_2994589
crossref_primary_10_1007_s10846_024_02101_7
crossref_primary_10_3390_drones8100534
crossref_primary_10_1016_j_comcom_2024_03_002
crossref_primary_10_1109_TIM_2024_3385822
crossref_primary_10_1109_MIM_2022_9832822
crossref_primary_10_1016_j_psep_2022_01_062
crossref_primary_10_1109_COMST_2021_3097916
crossref_primary_10_3846_aviation_2024_22173
crossref_primary_10_1109_ACCESS_2021_3052317
crossref_primary_10_1007_s00521_023_08213_9
crossref_primary_10_1016_j_aei_2024_102440
crossref_primary_10_1371_journal_pone_0256200
crossref_primary_10_1016_j_jss_2023_111768
crossref_primary_10_1016_j_microrel_2021_114292
crossref_primary_10_1109_TIM_2024_3440379
crossref_primary_10_3390_machines10111088
crossref_primary_10_3390_math10213970
crossref_primary_10_2514_1_I011231
crossref_primary_10_1016_j_eswa_2024_126156
crossref_primary_10_3390_app12084044
crossref_primary_10_3390_drones7070437
crossref_primary_10_1088_1361_6501_ad4732
crossref_primary_10_1109_JSEN_2024_3406760
crossref_primary_10_1109_TIM_2024_3450064
crossref_primary_10_1145_3706121
crossref_primary_10_1038_s41598_025_93343_4
crossref_primary_10_1016_j_heliyon_2024_e30821
crossref_primary_10_3390_app11083586
crossref_primary_10_1109_JSEN_2023_3280571
crossref_primary_10_1109_TIM_2022_3225040
crossref_primary_10_1109_TIM_2024_3440387
crossref_primary_10_1007_s11431_022_2312_8
crossref_primary_10_1109_TIM_2024_3472809
crossref_primary_10_3390_electronics12081806
crossref_primary_10_1109_TIM_2022_3219489
crossref_primary_10_1007_s00521_023_08791_8
crossref_primary_10_1109_JSEN_2019_2957413
crossref_primary_10_1016_j_ress_2025_111068
crossref_primary_10_1108_AA_06_2021_0076
crossref_primary_10_1109_TIM_2022_3210933
crossref_primary_10_1109_TIM_2022_3169165
crossref_primary_10_1016_j_measurement_2022_112217
crossref_primary_10_1109_TIM_2024_3369149
crossref_primary_10_1109_TVT_2023_3301678
crossref_primary_10_3390_app122211497
crossref_primary_10_1109_TITS_2023_3237159
crossref_primary_10_3390_drones7050286
crossref_primary_10_2478_amns_2024_2294
crossref_primary_10_3390_drones6110330
crossref_primary_10_1088_1361_6501_ad24b6
crossref_primary_10_1007_s10846_024_02176_2
crossref_primary_10_1016_j_ress_2021_107654
crossref_primary_10_1109_TIM_2024_3428649
crossref_primary_10_3390_app14209487
crossref_primary_10_1109_TIE_2023_3294631
crossref_primary_10_1109_TIM_2020_3001659
crossref_primary_10_3390_act11110307
crossref_primary_10_1016_j_cclet_2025_111058
crossref_primary_10_1093_jcde_qwae023
Cites_doi 10.1109/ICUAS.2017.7991322
10.1109/TIM.2017.2754698
10.1109/TIM.2018.2863499
10.1109/TMECH.2013.2258678
10.3233/JIFS-169532
10.3390/s19040771
10.1109/TIM.2018.2838718
10.1145/3219819.3219845
10.1016/j.rser.2019.03.040
10.2514/6.2013-5217
10.1007/978-3-030-05755-8_37
10.1016/j.isatra.2016.11.005
10.1016/j.jclepro.2018.06.182
10.1109/ACCESS.2019.2914236
10.1109/AHS.2014.6880167
10.1007/s10115-014-0754-y
10.1109/JIOT.2017.2737479
10.1162/neco.1997.9.8.1735
10.3390/s18113921
10.1109/TIM.2017.2735663
10.1109/TIE.2015.2499722
10.1109/JSEN.2018.2875864
10.1109/TIM.2019.2910342
10.1111/sjos.12353
10.3390/s18030712
10.23919/WAC.2018.8430428
10.1016/j.ymssp.2018.05.050
10.3390/s19030722
10.1016/j.ijepes.2019.02.046
10.1109/DASC.2017.8102037
10.1007/s12555-010-0105-z
10.1109/ICNSURV.2016.7486356
10.1109/AUS.2016.7748049
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2019.2935576
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 3537
ExternalDocumentID 10_1109_TIM_2019_2935576
8801927
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61571160; 61803121; 61771157
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-3a1c00c27999c9cb1701cdc8cc4411f6ed38c8b3e1a4d2d56d8770591c9fded93
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:12:36 EDT 2025
Tue Jul 01 02:02:37 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
Wed Aug 27 02:42:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-3a1c00c27999c9cb1701cdc8cc4411f6ed38c8b3e1a4d2d56d8770591c9fded93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9967-5427
PQID 2402498913
PQPubID 85462
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIM_2019_2935576
ieee_primary_8801927
proquest_journals_2402498913
crossref_primary_10_1109_TIM_2019_2935576
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
filonov (ref31) 2016
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1109/ICUAS.2017.7991322
– ident: ref17
  doi: 10.1109/TIM.2017.2754698
– ident: ref18
  doi: 10.1109/TIM.2018.2863499
– ident: ref26
  doi: 10.1109/TMECH.2013.2258678
– ident: ref14
  doi: 10.3233/JIFS-169532
– ident: ref27
  doi: 10.3390/s19040771
– ident: ref7
  doi: 10.1109/TIM.2018.2838718
– ident: ref22
  doi: 10.1145/3219819.3219845
– ident: ref23
  doi: 10.1016/j.rser.2019.03.040
– ident: ref6
  doi: 10.2514/6.2013-5217
– ident: ref29
  doi: 10.1007/978-3-030-05755-8_37
– ident: ref12
  doi: 10.1016/j.isatra.2016.11.005
– ident: ref24
  doi: 10.1016/j.jclepro.2018.06.182
– ident: ref25
  doi: 10.1109/ACCESS.2019.2914236
– ident: ref10
  doi: 10.1109/AHS.2014.6880167
– ident: ref16
  doi: 10.1007/s10115-014-0754-y
– ident: ref4
  doi: 10.1109/JIOT.2017.2737479
– ident: ref28
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref5
  doi: 10.3390/s18113921
– ident: ref9
  doi: 10.1109/TIM.2017.2735663
– ident: ref33
  doi: 10.1109/TIE.2015.2499722
– ident: ref3
  doi: 10.1109/JSEN.2018.2875864
– year: 2016
  ident: ref31
  article-title: Multivariate industrial time series with cyber-attack simulation: Fault detection using an LSTM-based predictive data model
  publication-title: arXiv 1612 06676
– ident: ref30
  doi: 10.1109/TIM.2019.2910342
– ident: ref34
  doi: 10.1111/sjos.12353
– ident: ref2
  doi: 10.3390/s18030712
– ident: ref15
  doi: 10.23919/WAC.2018.8430428
– ident: ref19
  doi: 10.1016/j.ymssp.2018.05.050
– ident: ref32
  doi: 10.3390/s19030722
– ident: ref20
  doi: 10.1016/j.ijepes.2019.02.046
– ident: ref13
  doi: 10.1109/DASC.2017.8102037
– ident: ref1
  doi: 10.1007/s12555-010-0105-z
– ident: ref21
  doi: 10.1109/ICNSURV.2016.7486356
– ident: ref11
  doi: 10.1109/AUS.2016.7748049
SSID ssj0007647
Score 2.5689752
Snippet With the wide applications of the unmanned aerial vehicle (UAV), operating safety becomes a critical issue. Thus, fault detection (FD) has been focused, which...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3527
SubjectTerms Aircraft accidents & safety
Computer simulation
Data models
Data recovery
Fault detection
Fault detection (FD)
fault recovery
Feature extraction
Gyroscopes
long short-term memory (LSTM)
Mathematical model
Monitoring
Multivariate analysis
multivariate regression
Parameter estimation
Random noise
Regression models
Schedules
Statistical analysis
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Title Multivariate Regression-Based Fault Detection and Recovery of UAV Flight Data
URI https://ieeexplore.ieee.org/document/8801927
https://www.proquest.com/docview/2402498913
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qQdCDj6pYrZKDF8Ftm33nWK2lCvUgrfS2ZCdZD8pWdCvor3eS3ZaiIh4WFjZZQiaP78vMfAE4k8RMVOATcpMyJoIilCMy7juBR1wAs1RxbhKcR3fhcOLfToNpDS6WuTBaaxt8ptvm1fry1Qzn5qisQ2ONAEm0BmtE3MpcreWqG4V-qY_JaQITKli4JLuiM74ZmRgu0XaNmLhRF1nZguydKj8WYru7DLZhtGhXGVTy1J4XaRs_v0k2_rfhO7BVwUzWK8fFLtR03oDNFfHBBqzb4E9824ORzcJ9J9ZMwJPd68cyNjZ3LmmLU2wg6TPr68JGbeVM5ooZ1kqT4IPNMjbpPbDBsyH5rC8LuQ-TwfX4auhU1yw46ApeOJ7k2O2iGxFWRIGpUWhHhTEiQSWehVp5Mcapp7n0lauCUMVRRKiMo8iUVsI7gHo-y_UhMEXLLs-kwkBKnx4ZRyn9Q7uSmxBG2YTOoucTrDTIzVUYz4nlIl2RkK0SY6ukslUTzpc1Xkr9jT_K7pmuX5arer0JrYVxk2qCviXGqeQL46M9-r3WMWy4hlrbA5cW1IvXuT4h_FGkp3bgfQG2ytWm
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB5FRahwANpSESiwh_bQg5Psxo69Bw6FECWk6aFKqt7c9eyaA5GDiAMqz8Kr8G7MrJ2oKhW3ShwsWfLakndmZ7_5-xbg0JBnYqOQkJsxCTko2gY6l2EQdckXwDyzUnKD8-SsN5yFny6jywb82vTCOOd88Zlr8a3P5dsFrjhU1iZdI0AS1yWUY3f9gxy05btRn6R5pNTg4_TDMKjPEAhQaVkGXSOx00EVExBCjRnTj6PFBJFwgMx7znYTTLKukya0ykY9m8QxQQ6JOrfOMtUSGfgHhDMiVXWHbex83AsrRk5JJoNwyDoJ2tHt6WjCVWO6pZi-nPlMbmx6_hSXv0y_388GT-H3eiaqMpYvrVWZtfDnLZLI_3WqnsGTGkiLk0rzd6Dhil14fINecRce-vJWXO7BxPcZfze02konzt3nqvq3CN7TJm7FwNBj0Xelr0srhCmsYL-clvm1WORidnIhBnMOY4i-Kc1zmN3Ln-3DVrEo3AsQljYWmRuLkTEhXSaJM_qGU0ZykaZpQnst6RRrlnU-7GOeem-ro1PSjZR1I611ownHmze-Vgwj_xi7x6LejKul3ISDtTKltQlappw2CzVnoV_e_dZb2B5OJ6fp6ehs_AoeKQ4k-PDSAWyV31buNaGtMnvjlV7A1X2rzh_htDQV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Regression-Based+Fault+Detection+and+Recovery+of+UAV+Flight+Data&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Benkuan&rft.au=Liu%2C+Datong&rft.au=Peng%2C+Yu&rft.au=Peng%2C+Xiyuan&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=69&rft.issue=6&rft.spage=3527&rft.epage=3537&rft_id=info:doi/10.1109%2FTIM.2019.2935576&rft.externalDocID=8801927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon