Affine Formation Maneuver Control of Multiagent Systems

A multiagent formation control task usually consists of two subtasks. The first is to steer the agents to form a desired geometric pattern, and the second is to achieve desired collective maneuvers so that the centroid, orientation, scale, and other geometric parameters of the formation can be chang...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 63; no. 12; pp. 4140 - 4155
Main Author Zhao, Shiyu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A multiagent formation control task usually consists of two subtasks. The first is to steer the agents to form a desired geometric pattern, and the second is to achieve desired collective maneuvers so that the centroid, orientation, scale, and other geometric parameters of the formation can be changed continuously. This paper proposes a novel affine formation maneuver control approach to achieve the two subtasks simultaneously. The proposed approach relies on stress matrices, which can be viewed as generalized graph Laplacian matrices with both positive and negative edge weights. The proposed control laws can track any target formation that is a time-varying affine transformation of a nominal configuration. The centroid, orientation, scales in different directions, and even geometric pattern of the formation can all be changed continuously. The desired formation maneuvers are only known by a small number of agents called leaders, and the rest of the agents called followers only need to follow the leaders. The proposed control laws are globally stable and do not require global reference frames if the required measurements can be measured in each agent's local reference frame.
AbstractList A multiagent formation control task usually consists of two subtasks. The first is to steer the agents to form a desired geometric pattern, and the second is to achieve desired collective maneuvers so that the centroid, orientation, scale, and other geometric parameters of the formation can be changed continuously. This paper proposes a novel affine formation maneuver control approach to achieve the two subtasks simultaneously. The proposed approach relies on stress matrices, which can be viewed as generalized graph Laplacian matrices with both positive and negative edge weights. The proposed control laws can track any target formation that is a time-varying affine transformation of a nominal configuration. The centroid, orientation, scales in different directions, and even geometric pattern of the formation can all be changed continuously. The desired formation maneuvers are only known by a small number of agents called leaders, and the rest of the agents called followers only need to follow the leaders. The proposed control laws are globally stable and do not require global reference frames if the required measurements can be measured in each agent's local reference frame.
Author Zhao, Shiyu
Author_xml – sequence: 1
  givenname: Shiyu
  orcidid: 0000-0003-3098-8059
  surname: Zhao
  fullname: Zhao, Shiyu
  email: szhao@sheffield.ac.uk
  organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K
BookMark eNp9kE1Lw0AQhhepYFu9C14CnlP3I9lMjiVYFVo8WM_LNplISrpbdzdC_71bWzx48DQM8z4zzDMhI2MNEnLL6IwxWj6s59WMUwYzXpQANL8gY5bnkPKcixEZ0zhKSw7yiky838ZWZhkbk2Letp3BZGHdTofOmmSlDQ5f6JLKmuBsn9g2WQ196PQHmpC8HXzAnb8ml63uPd6c65S8Lx7X1XO6fH16qebLtOYlC6mQjPICYZM1mgkQsoWswExwQCZqmW_ykjeoNxQaLmlNY7SmoAFzWkPDWjEl96e9e2c_B_RBbe3gTDypOMtAMFmUMqbkKVU7673DVtVd-HknON31ilF1lKSiJHWUpM6SIkj_gHvX7bQ7_IfcnZAOEX_jwAsqKYhvk55yZA
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TASE_2024_3433020
crossref_primary_10_1007_s12555_020_0274_3
crossref_primary_10_1109_TNSE_2023_3234720
crossref_primary_10_1007_s11431_018_9457_9
crossref_primary_10_1109_TCSII_2022_3186395
crossref_primary_10_1049_cth2_12692
crossref_primary_10_1109_LRA_2023_3320430
crossref_primary_10_1109_TCNS_2020_2993253
crossref_primary_10_3390_electronics13010036
crossref_primary_10_1016_j_oceaneng_2024_117123
crossref_primary_10_1109_TAC_2020_3012630
crossref_primary_10_1016_j_ast_2024_109911
crossref_primary_10_1109_TCYB_2020_2965657
crossref_primary_10_1016_j_ifacol_2020_12_024
crossref_primary_10_1109_TCNS_2020_3028021
crossref_primary_10_3390_jmse11091811
crossref_primary_10_1007_s11432_023_4031_y
crossref_primary_10_3390_app132011581
crossref_primary_10_1080_00207721_2025_2473488
crossref_primary_10_1109_TCYB_2021_3125149
crossref_primary_10_1007_s11432_019_2770_8
crossref_primary_10_1109_ACCESS_2019_2923852
crossref_primary_10_1109_TAC_2021_3066388
crossref_primary_10_1109_TITS_2024_3488752
crossref_primary_10_1109_JAS_2022_105749
crossref_primary_10_1109_TCYB_2023_3263475
crossref_primary_10_1109_TASE_2024_3460811
crossref_primary_10_1007_s11432_022_3638_9
crossref_primary_10_1088_1742_6596_2849_1_012127
crossref_primary_10_1109_TITS_2022_3229386
crossref_primary_10_1109_TSMC_2024_3431295
crossref_primary_10_1016_j_automatica_2024_111935
crossref_primary_10_1007_s11431_018_9328_2
crossref_primary_10_1109_TRO_2020_3014022
crossref_primary_10_1109_ACCESS_2019_2898974
crossref_primary_10_1109_TCNS_2019_2913619
crossref_primary_10_1109_TSMC_2024_3373475
crossref_primary_10_3390_app14062292
crossref_primary_10_1109_TAC_2020_2986684
crossref_primary_10_1109_TNNLS_2020_3025807
crossref_primary_10_1109_ACCESS_2024_3456826
crossref_primary_10_1016_j_jfranklin_2021_07_019
crossref_primary_10_3934_mbe_2024207
crossref_primary_10_1109_TAC_2022_3190054
crossref_primary_10_1109_TCYB_2020_2988911
crossref_primary_10_1137_20M1328130
crossref_primary_10_1109_LCSYS_2023_3267123
crossref_primary_10_1016_j_ast_2023_108241
crossref_primary_10_1016_j_amc_2024_128841
crossref_primary_10_23919_JSEE_2023_000049
crossref_primary_10_1109_JAS_2021_1004263
crossref_primary_10_1109_TSMC_2020_2998013
crossref_primary_10_1016_j_ast_2024_109812
crossref_primary_10_1142_S2301385024500274
crossref_primary_10_1109_ACCESS_2019_2932234
crossref_primary_10_1115_1_4066632
crossref_primary_10_1016_j_jfranklin_2018_11_029
crossref_primary_10_1016_j_oceaneng_2024_119099
crossref_primary_10_1109_TFUZZ_2023_3308573
crossref_primary_10_1142_S2301385023410017
crossref_primary_10_1109_TIV_2023_3271667
crossref_primary_10_1109_TAC_2019_2958563
crossref_primary_10_1007_s10489_022_03933_2
crossref_primary_10_1007_s11071_022_07638_6
crossref_primary_10_1016_j_ifacol_2020_12_2449
crossref_primary_10_1016_j_oceaneng_2022_112607
crossref_primary_10_1038_s41467_023_39251_5
crossref_primary_10_1109_TCNS_2018_2873204
crossref_primary_10_1109_TCYB_2020_3030270
crossref_primary_10_1115_1_4066129
crossref_primary_10_1109_TVT_2024_3423771
crossref_primary_10_1109_TCNS_2022_3153885
crossref_primary_10_1109_TCST_2022_3144031
crossref_primary_10_1109_TNSE_2024_3382400
crossref_primary_10_1016_j_physa_2024_129969
crossref_primary_10_1109_TCST_2022_3208466
crossref_primary_10_1109_TVT_2023_3242657
crossref_primary_10_1360_SST_2023_0363
crossref_primary_10_1080_00207179_2021_1978554
crossref_primary_10_1007_s11431_020_1797_5
crossref_primary_10_1002_oca_2802
crossref_primary_10_1109_LCSYS_2021_3087095
crossref_primary_10_1109_TCYB_2020_3022535
crossref_primary_10_3390_app15042234
crossref_primary_10_1080_00207721_2024_2343733
crossref_primary_10_1109_TCST_2024_3397018
crossref_primary_10_1109_TNSE_2020_3029078
crossref_primary_10_1109_TAC_2021_3084247
crossref_primary_10_1109_TTE_2024_3414188
crossref_primary_10_1002_rnc_6241
crossref_primary_10_1142_S2301385019400053
crossref_primary_10_1109_TCYB_2019_2923119
crossref_primary_10_1016_j_isatra_2025_02_016
crossref_primary_10_1016_j_isatra_2025_02_017
crossref_primary_10_1177_01423312241273832
crossref_primary_10_1016_j_oceaneng_2022_113521
crossref_primary_10_1016_j_oceaneng_2024_117721
crossref_primary_10_1109_TAC_2019_2893978
crossref_primary_10_1109_TMECH_2021_3055654
crossref_primary_10_1016_j_oceaneng_2023_116473
crossref_primary_10_1109_LCSYS_2023_3287950
crossref_primary_10_1109_LRA_2024_3490407
crossref_primary_10_1109_LCSYS_2023_3287951
crossref_primary_10_1016_j_oceaneng_2021_109817
crossref_primary_10_1016_j_automatica_2024_111903
crossref_primary_10_1016_j_ifacol_2020_12_2540
crossref_primary_10_1109_TCNS_2024_3487621
crossref_primary_10_1109_JSYST_2024_3502074
crossref_primary_10_1186_s13662_021_03467_w
crossref_primary_10_1109_TAC_2023_3327932
crossref_primary_10_1177_0954410019861474
crossref_primary_10_1016_j_neucom_2020_02_021
crossref_primary_10_1177_09544100211063669
crossref_primary_10_1016_j_cja_2019_04_016
crossref_primary_10_1007_s12555_023_0716_9
crossref_primary_10_1109_LCSYS_2023_3331245
crossref_primary_10_1109_TVT_2022_3197267
crossref_primary_10_1002_rnc_7121
crossref_primary_10_1109_TSMC_2023_3250199
crossref_primary_10_3390_electronics10182265
crossref_primary_10_1109_TCST_2024_3449008
crossref_primary_10_2139_ssrn_4070226
crossref_primary_10_1109_TCYB_2020_3034931
crossref_primary_10_3390_math13010086
crossref_primary_10_1002_acs_3972
crossref_primary_10_59782_aai_v1i3_318
crossref_primary_10_1016_j_neucom_2023_126795
crossref_primary_10_1016_j_oceaneng_2024_120232
crossref_primary_10_1109_LRA_2023_3316889
crossref_primary_10_3390_act13120493
crossref_primary_10_1016_j_ifacol_2023_10_070
crossref_primary_10_1109_LRA_2024_3363928
crossref_primary_10_1016_j_adhoc_2024_103456
crossref_primary_10_1016_j_cja_2024_04_028
crossref_primary_10_1016_j_jfranklin_2023_11_014
crossref_primary_10_1109_TAC_2019_2903290
crossref_primary_10_1016_j_ifacol_2020_12_1505
crossref_primary_10_1109_TAC_2023_3330801
crossref_primary_10_1109_TRO_2023_3301295
crossref_primary_10_1109_TCST_2020_3047422
crossref_primary_10_1177_09544062231153742
crossref_primary_10_1109_TRO_2022_3193301
crossref_primary_10_1007_s43684_023_00049_3
crossref_primary_10_1007_s11071_021_06818_0
crossref_primary_10_1109_LRA_2024_3396643
crossref_primary_10_1109_TAC_2023_3309325
crossref_primary_10_1016_j_automatica_2020_109004
crossref_primary_10_1109_TCST_2022_3172872
crossref_primary_10_1109_LRA_2022_3188883
crossref_primary_10_1631_FITEE_2100109
crossref_primary_10_1109_LCSYS_2020_2999972
crossref_primary_10_1109_TITS_2023_3322689
crossref_primary_10_1016_j_jfranklin_2020_08_024
crossref_primary_10_1016_j_neucom_2020_02_003
crossref_primary_10_1109_LRA_2023_3316079
crossref_primary_10_1109_TVT_2024_3382489
crossref_primary_10_1016_j_neucom_2018_11_023
crossref_primary_10_1016_j_neunet_2025_107288
crossref_primary_10_1109_JSYST_2021_3107779
crossref_primary_10_1002_asjc_3516
crossref_primary_10_1080_00207721_2019_1692094
crossref_primary_10_1109_TAC_2019_2938318
crossref_primary_10_1142_S0218126622501535
crossref_primary_10_1109_LRA_2024_3471460
crossref_primary_10_1002_adc2_36
crossref_primary_10_1002_rnc_6953
crossref_primary_10_1016_j_ast_2024_109840
crossref_primary_10_1002_acs_3078
crossref_primary_10_3390_math12070954
crossref_primary_10_1109_ACCESS_2023_3296741
crossref_primary_10_1109_TCYB_2019_2910534
crossref_primary_10_1360_SSI_2022_0409
crossref_primary_10_1016_j_ifacol_2022_05_031
crossref_primary_10_1109_TCYB_2020_3044581
crossref_primary_10_1109_TAC_2023_3237484
crossref_primary_10_1109_TCSII_2021_3072652
crossref_primary_10_3390_g12040075
crossref_primary_10_1016_j_automatica_2021_109813
crossref_primary_10_1016_j_ifacol_2022_05_035
crossref_primary_10_1109_TIE_2023_3335448
crossref_primary_10_1109_ACCESS_2024_3392577
crossref_primary_10_1016_j_automatica_2023_111492
crossref_primary_10_1109_JSYST_2025_3529502
crossref_primary_10_1109_TAC_2021_3136140
crossref_primary_10_1016_j_jfranklin_2018_12_030
crossref_primary_10_3390_fractalfract8100563
crossref_primary_10_1016_j_automatica_2024_112084
crossref_primary_10_1016_j_jfranklin_2024_107018
crossref_primary_10_1080_01691864_2022_2093616
Cites_doi 10.1109/TAC.2008.924961
10.1109/TRA.2003.819598
10.1007/s00454-014-9590-9
10.1109/TCYB.2015.2477107
10.1109/TCNS.2015.2485458
10.1007/s00454-004-1124-4
10.1109/TAC.2015.2459191
10.1109/TAC.2017.2750924
10.1109/TAC.2014.2309031
10.1109/MCS.2007.338264
10.1016/S0898-1221(01)00278-4
10.1016/j.automatica.2016.12.031
10.1016/j.automatica.2014.10.022
10.1016/j.laa.2012.08.031
10.1016/j.automatica.2012.06.083
10.1109/TAC.2015.2504265
10.1109/TCYB.2017.2684461
10.1109/TAC.2004.841121
10.1002/rnc.1847
10.1002/rnc.2800
10.1007/s10107-011-0480-0
10.1109/TCST.2014.2314460
10.1109/TRO.2016.2559511
10.1109/70.976023
10.1109/TCST.2010.2053542
10.1109/70.736776
10.1109/TCNS.2015.2507547
10.1016/j.sysconle.2007.01.002
10.1109/TII.2012.2219061
10.1109/TAC.2012.2224251
10.1109/TRA.2002.803463
10.1016/j.laa.2007.08.040
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2018.2798805
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 4155
ExternalDocumentID 10_1109_TAC_2018_2798805
8270608
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-361027e8b4da13836f847e4328e13c65b592deab08d260c07e8c08a8e50c8d1f3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:14:09 EDT 2025
Tue Jul 01 03:36:22 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Wed Aug 27 02:51:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-361027e8b4da13836f847e4328e13c65b592deab08d260c07e8c08a8e50c8d1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3098-8059
PQID 2148316796
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_2148316796
crossref_citationtrail_10_1109_TAC_2018_2798805
ieee_primary_8270608
crossref_primary_10_1109_TAC_2018_2798805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
khalil (ref31) 2002
zelazo (ref18) 2015
ren (ref6) 2007; 27
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
connelly (ref25) 2015
References_xml – ident: ref12
  doi: 10.1109/TAC.2008.924961
– year: 2015
  ident: ref25
  publication-title: Frameworks Tensegrities and Symmetry Understanding Stable Structures
– ident: ref4
  doi: 10.1109/TRA.2003.819598
– ident: ref26
  doi: 10.1007/s00454-014-9590-9
– ident: ref21
  doi: 10.1109/TCYB.2015.2477107
– ident: ref35
  doi: 10.1109/TCNS.2015.2485458
– ident: ref23
  doi: 10.1007/s00454-004-1124-4
– ident: ref9
  doi: 10.1109/TAC.2015.2459191
– ident: ref30
  doi: 10.1109/TAC.2017.2750924
– ident: ref20
  doi: 10.1109/TAC.2014.2309031
– volume: 27
  start-page: 71
  year: 2007
  ident: ref6
  article-title: Information consensus in multivehicle cooperative control
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2007.338264
– ident: ref29
  doi: 10.1016/S0898-1221(01)00278-4
– ident: ref14
  doi: 10.1016/j.automatica.2016.12.031
– ident: ref8
  doi: 10.1016/j.automatica.2014.10.022
– ident: ref27
  doi: 10.1016/j.laa.2012.08.031
– ident: ref15
  doi: 10.1016/j.automatica.2012.06.083
– ident: ref22
  doi: 10.1109/TAC.2015.2504265
– ident: ref19
  doi: 10.1109/TCYB.2017.2684461
– ident: ref5
  doi: 10.1109/TAC.2004.841121
– ident: ref33
  doi: 10.1002/rnc.1847
– ident: ref16
  doi: 10.1002/rnc.2800
– ident: ref28
  doi: 10.1007/s10107-011-0480-0
– ident: ref17
  doi: 10.1109/TCST.2014.2314460
– year: 2002
  ident: ref31
  publication-title: Nonlinear Systems
– ident: ref13
  doi: 10.1109/TRO.2016.2559511
– ident: ref2
  doi: 10.1109/70.976023
– ident: ref32
  doi: 10.1109/TCST.2010.2053542
– start-page: 6121
  year: 2015
  ident: ref18
  article-title: Formation control using a SE(2) rigidity theory
  publication-title: Proc 54th IEEE Conf Decis Control
– ident: ref1
  doi: 10.1109/70.736776
– ident: ref10
  doi: 10.1109/TCNS.2015.2507547
– ident: ref11
  doi: 10.1016/j.sysconle.2007.01.002
– ident: ref7
  doi: 10.1109/TII.2012.2219061
– ident: ref34
  doi: 10.1109/TAC.2012.2224251
– ident: ref3
  doi: 10.1109/TRA.2002.803463
– ident: ref24
  doi: 10.1016/j.laa.2007.08.040
SSID ssj0016441
Score 2.669957
Snippet A multiagent formation control task usually consists of two subtasks. The first is to steer the agents to form a desired geometric pattern, and the second is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4140
SubjectTerms Affine transformation
Affine transformations
Control systems
formation control
Laplace equations
Maneuvers
Mobile agents
Multiagent systems
Stress
stress matrices
Target tracking
Task analysis
Tracking
Transmission line matrix methods
Title Affine Formation Maneuver Control of Multiagent Systems
URI https://ieeexplore.ieee.org/document/8270608
https://www.proquest.com/docview/2148316796
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjywIJHUcV7OWFVUFVKZWqlb5OcCahEkC7-ec16qACG2RLGjyGf77ovv-w7gTqVSKCuMJ6PIIkCh2hMyDLyQS3yQ8EQwx3dePieLdfS0iTc9eOi4MMaYKvnM-O6yOsvXO1W6X2UTzpzWC-9DH4FbzdXqTgycX693XVzAjHdHkjSbrKYzl8PFfebEuVyhuj0XVNVU-bERV95lfgzL9rvqpJIXvyykrz6_STb-98NP4KgJM8m0nhen0DPbMzjcEx8cQjq1Fu_IvKUvkqXYmhKnNpnV-etkZ0lF0BWOf0UacfNzWM8fV7OF15RR8BTLgsILMUJiqeEy0iJAQJpY9EgmChk3QaiSWMYZ00ZIyjWCG0WxqaJccBNTxXVgwwsYbHdbcwlEWk2No13alEdcBRLDCY0RC5o1ROTFRjBpRzZXjca4K3XxmldYg2Y52iJ3tsgbW4zgvuvxVutr_NF26Ia2a9eM6gjGrfHyZgF-5AxhniP5Z8nV772u4cC9u85MGcOgeC_NDcYXhbytJtYXpqjK_w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADb0ShQAYWJNImzssZq4qqQNOplbpZtmMvoBRBsvDrOeelChBiSxRbsXy2785333cAtzISXGqubOH7Gh0UJ7W58FzbowI_hDTkxOCdk3k4XfpPq2DVgfsWC6OUKpPP1MA8lrH8dC0Lc1U2pMRwvdAt2Ea9H7gVWquNGRjNXp27uIUJbYOSTjxcjMYmi4sOiKHnMqXqNpRQWVXlx1Fc6pfJASTNyKq0kpdBkYuB_PxG2vjfoR_Cfm1oWqNqZRxBR2XHsLdBP3gC0UhrfLMmDYDRSnimClzc1rjKYLfW2iohutwgsKya3vwUlpOHxXhq14UUbEliN7c9tJFIpKjwU-6iSxpq1EnK9whVrifDQAQxSRUXDk3RvZEONpUO5VQFjqSpq70z6GbrTJ2DJXTqKAO81BH1qXQFGhQp2iwoWA99L9KDYTOzTNYs46bYxSsrvQ0nZigLZmTBaln04K7t8VYxbPzR9sRMbduuntUe9BvhsXoLfjCCjp6B-cfhxe-9bmBnukhmbPY4f76EXfOfKk-lD938vVBXaG3k4rpcZF9tpM5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affine+Formation+Maneuver+Control+of+Multiagent+Systems&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Zhao%2C+Shiyu&rft.date=2018-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=63&rft.issue=12&rft.spage=4140&rft_id=info:doi/10.1109%2FTAC.2018.2798805&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon