Affine Formation Maneuver Control of Multiagent Systems
A multiagent formation control task usually consists of two subtasks. The first is to steer the agents to form a desired geometric pattern, and the second is to achieve desired collective maneuvers so that the centroid, orientation, scale, and other geometric parameters of the formation can be chang...
Saved in:
Published in | IEEE transactions on automatic control Vol. 63; no. 12; pp. 4140 - 4155 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A multiagent formation control task usually consists of two subtasks. The first is to steer the agents to form a desired geometric pattern, and the second is to achieve desired collective maneuvers so that the centroid, orientation, scale, and other geometric parameters of the formation can be changed continuously. This paper proposes a novel affine formation maneuver control approach to achieve the two subtasks simultaneously. The proposed approach relies on stress matrices, which can be viewed as generalized graph Laplacian matrices with both positive and negative edge weights. The proposed control laws can track any target formation that is a time-varying affine transformation of a nominal configuration. The centroid, orientation, scales in different directions, and even geometric pattern of the formation can all be changed continuously. The desired formation maneuvers are only known by a small number of agents called leaders, and the rest of the agents called followers only need to follow the leaders. The proposed control laws are globally stable and do not require global reference frames if the required measurements can be measured in each agent's local reference frame. |
---|---|
AbstractList | A multiagent formation control task usually consists of two subtasks. The first is to steer the agents to form a desired geometric pattern, and the second is to achieve desired collective maneuvers so that the centroid, orientation, scale, and other geometric parameters of the formation can be changed continuously. This paper proposes a novel affine formation maneuver control approach to achieve the two subtasks simultaneously. The proposed approach relies on stress matrices, which can be viewed as generalized graph Laplacian matrices with both positive and negative edge weights. The proposed control laws can track any target formation that is a time-varying affine transformation of a nominal configuration. The centroid, orientation, scales in different directions, and even geometric pattern of the formation can all be changed continuously. The desired formation maneuvers are only known by a small number of agents called leaders, and the rest of the agents called followers only need to follow the leaders. The proposed control laws are globally stable and do not require global reference frames if the required measurements can be measured in each agent's local reference frame. |
Author | Zhao, Shiyu |
Author_xml | – sequence: 1 givenname: Shiyu orcidid: 0000-0003-3098-8059 surname: Zhao fullname: Zhao, Shiyu email: szhao@sheffield.ac.uk organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K |
BookMark | eNp9kE1Lw0AQhhepYFu9C14CnlP3I9lMjiVYFVo8WM_LNplISrpbdzdC_71bWzx48DQM8z4zzDMhI2MNEnLL6IwxWj6s59WMUwYzXpQANL8gY5bnkPKcixEZ0zhKSw7yiky838ZWZhkbk2Letp3BZGHdTofOmmSlDQ5f6JLKmuBsn9g2WQ196PQHmpC8HXzAnb8ml63uPd6c65S8Lx7X1XO6fH16qebLtOYlC6mQjPICYZM1mgkQsoWswExwQCZqmW_ykjeoNxQaLmlNY7SmoAFzWkPDWjEl96e9e2c_B_RBbe3gTDypOMtAMFmUMqbkKVU7673DVtVd-HknON31ilF1lKSiJHWUpM6SIkj_gHvX7bQ7_IfcnZAOEX_jwAsqKYhvk55yZA |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1109_TASE_2024_3433020 crossref_primary_10_1007_s12555_020_0274_3 crossref_primary_10_1109_TNSE_2023_3234720 crossref_primary_10_1007_s11431_018_9457_9 crossref_primary_10_1109_TCSII_2022_3186395 crossref_primary_10_1049_cth2_12692 crossref_primary_10_1109_LRA_2023_3320430 crossref_primary_10_1109_TCNS_2020_2993253 crossref_primary_10_3390_electronics13010036 crossref_primary_10_1016_j_oceaneng_2024_117123 crossref_primary_10_1109_TAC_2020_3012630 crossref_primary_10_1016_j_ast_2024_109911 crossref_primary_10_1109_TCYB_2020_2965657 crossref_primary_10_1016_j_ifacol_2020_12_024 crossref_primary_10_1109_TCNS_2020_3028021 crossref_primary_10_3390_jmse11091811 crossref_primary_10_1007_s11432_023_4031_y crossref_primary_10_3390_app132011581 crossref_primary_10_1080_00207721_2025_2473488 crossref_primary_10_1109_TCYB_2021_3125149 crossref_primary_10_1007_s11432_019_2770_8 crossref_primary_10_1109_ACCESS_2019_2923852 crossref_primary_10_1109_TAC_2021_3066388 crossref_primary_10_1109_TITS_2024_3488752 crossref_primary_10_1109_JAS_2022_105749 crossref_primary_10_1109_TCYB_2023_3263475 crossref_primary_10_1109_TASE_2024_3460811 crossref_primary_10_1007_s11432_022_3638_9 crossref_primary_10_1088_1742_6596_2849_1_012127 crossref_primary_10_1109_TITS_2022_3229386 crossref_primary_10_1109_TSMC_2024_3431295 crossref_primary_10_1016_j_automatica_2024_111935 crossref_primary_10_1007_s11431_018_9328_2 crossref_primary_10_1109_TRO_2020_3014022 crossref_primary_10_1109_ACCESS_2019_2898974 crossref_primary_10_1109_TCNS_2019_2913619 crossref_primary_10_1109_TSMC_2024_3373475 crossref_primary_10_3390_app14062292 crossref_primary_10_1109_TAC_2020_2986684 crossref_primary_10_1109_TNNLS_2020_3025807 crossref_primary_10_1109_ACCESS_2024_3456826 crossref_primary_10_1016_j_jfranklin_2021_07_019 crossref_primary_10_3934_mbe_2024207 crossref_primary_10_1109_TAC_2022_3190054 crossref_primary_10_1109_TCYB_2020_2988911 crossref_primary_10_1137_20M1328130 crossref_primary_10_1109_LCSYS_2023_3267123 crossref_primary_10_1016_j_ast_2023_108241 crossref_primary_10_1016_j_amc_2024_128841 crossref_primary_10_23919_JSEE_2023_000049 crossref_primary_10_1109_JAS_2021_1004263 crossref_primary_10_1109_TSMC_2020_2998013 crossref_primary_10_1016_j_ast_2024_109812 crossref_primary_10_1142_S2301385024500274 crossref_primary_10_1109_ACCESS_2019_2932234 crossref_primary_10_1115_1_4066632 crossref_primary_10_1016_j_jfranklin_2018_11_029 crossref_primary_10_1016_j_oceaneng_2024_119099 crossref_primary_10_1109_TFUZZ_2023_3308573 crossref_primary_10_1142_S2301385023410017 crossref_primary_10_1109_TIV_2023_3271667 crossref_primary_10_1109_TAC_2019_2958563 crossref_primary_10_1007_s10489_022_03933_2 crossref_primary_10_1007_s11071_022_07638_6 crossref_primary_10_1016_j_ifacol_2020_12_2449 crossref_primary_10_1016_j_oceaneng_2022_112607 crossref_primary_10_1038_s41467_023_39251_5 crossref_primary_10_1109_TCNS_2018_2873204 crossref_primary_10_1109_TCYB_2020_3030270 crossref_primary_10_1115_1_4066129 crossref_primary_10_1109_TVT_2024_3423771 crossref_primary_10_1109_TCNS_2022_3153885 crossref_primary_10_1109_TCST_2022_3144031 crossref_primary_10_1109_TNSE_2024_3382400 crossref_primary_10_1016_j_physa_2024_129969 crossref_primary_10_1109_TCST_2022_3208466 crossref_primary_10_1109_TVT_2023_3242657 crossref_primary_10_1360_SST_2023_0363 crossref_primary_10_1080_00207179_2021_1978554 crossref_primary_10_1007_s11431_020_1797_5 crossref_primary_10_1002_oca_2802 crossref_primary_10_1109_LCSYS_2021_3087095 crossref_primary_10_1109_TCYB_2020_3022535 crossref_primary_10_3390_app15042234 crossref_primary_10_1080_00207721_2024_2343733 crossref_primary_10_1109_TCST_2024_3397018 crossref_primary_10_1109_TNSE_2020_3029078 crossref_primary_10_1109_TAC_2021_3084247 crossref_primary_10_1109_TTE_2024_3414188 crossref_primary_10_1002_rnc_6241 crossref_primary_10_1142_S2301385019400053 crossref_primary_10_1109_TCYB_2019_2923119 crossref_primary_10_1016_j_isatra_2025_02_016 crossref_primary_10_1016_j_isatra_2025_02_017 crossref_primary_10_1177_01423312241273832 crossref_primary_10_1016_j_oceaneng_2022_113521 crossref_primary_10_1016_j_oceaneng_2024_117721 crossref_primary_10_1109_TAC_2019_2893978 crossref_primary_10_1109_TMECH_2021_3055654 crossref_primary_10_1016_j_oceaneng_2023_116473 crossref_primary_10_1109_LCSYS_2023_3287950 crossref_primary_10_1109_LRA_2024_3490407 crossref_primary_10_1109_LCSYS_2023_3287951 crossref_primary_10_1016_j_oceaneng_2021_109817 crossref_primary_10_1016_j_automatica_2024_111903 crossref_primary_10_1016_j_ifacol_2020_12_2540 crossref_primary_10_1109_TCNS_2024_3487621 crossref_primary_10_1109_JSYST_2024_3502074 crossref_primary_10_1186_s13662_021_03467_w crossref_primary_10_1109_TAC_2023_3327932 crossref_primary_10_1177_0954410019861474 crossref_primary_10_1016_j_neucom_2020_02_021 crossref_primary_10_1177_09544100211063669 crossref_primary_10_1016_j_cja_2019_04_016 crossref_primary_10_1007_s12555_023_0716_9 crossref_primary_10_1109_LCSYS_2023_3331245 crossref_primary_10_1109_TVT_2022_3197267 crossref_primary_10_1002_rnc_7121 crossref_primary_10_1109_TSMC_2023_3250199 crossref_primary_10_3390_electronics10182265 crossref_primary_10_1109_TCST_2024_3449008 crossref_primary_10_2139_ssrn_4070226 crossref_primary_10_1109_TCYB_2020_3034931 crossref_primary_10_3390_math13010086 crossref_primary_10_1002_acs_3972 crossref_primary_10_59782_aai_v1i3_318 crossref_primary_10_1016_j_neucom_2023_126795 crossref_primary_10_1016_j_oceaneng_2024_120232 crossref_primary_10_1109_LRA_2023_3316889 crossref_primary_10_3390_act13120493 crossref_primary_10_1016_j_ifacol_2023_10_070 crossref_primary_10_1109_LRA_2024_3363928 crossref_primary_10_1016_j_adhoc_2024_103456 crossref_primary_10_1016_j_cja_2024_04_028 crossref_primary_10_1016_j_jfranklin_2023_11_014 crossref_primary_10_1109_TAC_2019_2903290 crossref_primary_10_1016_j_ifacol_2020_12_1505 crossref_primary_10_1109_TAC_2023_3330801 crossref_primary_10_1109_TRO_2023_3301295 crossref_primary_10_1109_TCST_2020_3047422 crossref_primary_10_1177_09544062231153742 crossref_primary_10_1109_TRO_2022_3193301 crossref_primary_10_1007_s43684_023_00049_3 crossref_primary_10_1007_s11071_021_06818_0 crossref_primary_10_1109_LRA_2024_3396643 crossref_primary_10_1109_TAC_2023_3309325 crossref_primary_10_1016_j_automatica_2020_109004 crossref_primary_10_1109_TCST_2022_3172872 crossref_primary_10_1109_LRA_2022_3188883 crossref_primary_10_1631_FITEE_2100109 crossref_primary_10_1109_LCSYS_2020_2999972 crossref_primary_10_1109_TITS_2023_3322689 crossref_primary_10_1016_j_jfranklin_2020_08_024 crossref_primary_10_1016_j_neucom_2020_02_003 crossref_primary_10_1109_LRA_2023_3316079 crossref_primary_10_1109_TVT_2024_3382489 crossref_primary_10_1016_j_neucom_2018_11_023 crossref_primary_10_1016_j_neunet_2025_107288 crossref_primary_10_1109_JSYST_2021_3107779 crossref_primary_10_1002_asjc_3516 crossref_primary_10_1080_00207721_2019_1692094 crossref_primary_10_1109_TAC_2019_2938318 crossref_primary_10_1142_S0218126622501535 crossref_primary_10_1109_LRA_2024_3471460 crossref_primary_10_1002_adc2_36 crossref_primary_10_1002_rnc_6953 crossref_primary_10_1016_j_ast_2024_109840 crossref_primary_10_1002_acs_3078 crossref_primary_10_3390_math12070954 crossref_primary_10_1109_ACCESS_2023_3296741 crossref_primary_10_1109_TCYB_2019_2910534 crossref_primary_10_1360_SSI_2022_0409 crossref_primary_10_1016_j_ifacol_2022_05_031 crossref_primary_10_1109_TCYB_2020_3044581 crossref_primary_10_1109_TAC_2023_3237484 crossref_primary_10_1109_TCSII_2021_3072652 crossref_primary_10_3390_g12040075 crossref_primary_10_1016_j_automatica_2021_109813 crossref_primary_10_1016_j_ifacol_2022_05_035 crossref_primary_10_1109_TIE_2023_3335448 crossref_primary_10_1109_ACCESS_2024_3392577 crossref_primary_10_1016_j_automatica_2023_111492 crossref_primary_10_1109_JSYST_2025_3529502 crossref_primary_10_1109_TAC_2021_3136140 crossref_primary_10_1016_j_jfranklin_2018_12_030 crossref_primary_10_3390_fractalfract8100563 crossref_primary_10_1016_j_automatica_2024_112084 crossref_primary_10_1016_j_jfranklin_2024_107018 crossref_primary_10_1080_01691864_2022_2093616 |
Cites_doi | 10.1109/TAC.2008.924961 10.1109/TRA.2003.819598 10.1007/s00454-014-9590-9 10.1109/TCYB.2015.2477107 10.1109/TCNS.2015.2485458 10.1007/s00454-004-1124-4 10.1109/TAC.2015.2459191 10.1109/TAC.2017.2750924 10.1109/TAC.2014.2309031 10.1109/MCS.2007.338264 10.1016/S0898-1221(01)00278-4 10.1016/j.automatica.2016.12.031 10.1016/j.automatica.2014.10.022 10.1016/j.laa.2012.08.031 10.1016/j.automatica.2012.06.083 10.1109/TAC.2015.2504265 10.1109/TCYB.2017.2684461 10.1109/TAC.2004.841121 10.1002/rnc.1847 10.1002/rnc.2800 10.1007/s10107-011-0480-0 10.1109/TCST.2014.2314460 10.1109/TRO.2016.2559511 10.1109/70.976023 10.1109/TCST.2010.2053542 10.1109/70.736776 10.1109/TCNS.2015.2507547 10.1016/j.sysconle.2007.01.002 10.1109/TII.2012.2219061 10.1109/TAC.2012.2224251 10.1109/TRA.2002.803463 10.1016/j.laa.2007.08.040 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2018.2798805 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 4155 |
ExternalDocumentID | 10_1109_TAC_2018_2798805 8270608 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-361027e8b4da13836f847e4328e13c65b592deab08d260c07e8c08a8e50c8d1f3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:14:09 EDT 2025 Tue Jul 01 03:36:22 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Wed Aug 27 02:51:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-361027e8b4da13836f847e4328e13c65b592deab08d260c07e8c08a8e50c8d1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3098-8059 |
PQID | 2148316796 |
PQPubID | 85475 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2148316796 crossref_citationtrail_10_1109_TAC_2018_2798805 ieee_primary_8270608 crossref_primary_10_1109_TAC_2018_2798805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 khalil (ref31) 2002 zelazo (ref18) 2015 ren (ref6) 2007; 27 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 connelly (ref25) 2015 |
References_xml | – ident: ref12 doi: 10.1109/TAC.2008.924961 – year: 2015 ident: ref25 publication-title: Frameworks Tensegrities and Symmetry Understanding Stable Structures – ident: ref4 doi: 10.1109/TRA.2003.819598 – ident: ref26 doi: 10.1007/s00454-014-9590-9 – ident: ref21 doi: 10.1109/TCYB.2015.2477107 – ident: ref35 doi: 10.1109/TCNS.2015.2485458 – ident: ref23 doi: 10.1007/s00454-004-1124-4 – ident: ref9 doi: 10.1109/TAC.2015.2459191 – ident: ref30 doi: 10.1109/TAC.2017.2750924 – ident: ref20 doi: 10.1109/TAC.2014.2309031 – volume: 27 start-page: 71 year: 2007 ident: ref6 article-title: Information consensus in multivehicle cooperative control publication-title: IEEE Control Syst Mag doi: 10.1109/MCS.2007.338264 – ident: ref29 doi: 10.1016/S0898-1221(01)00278-4 – ident: ref14 doi: 10.1016/j.automatica.2016.12.031 – ident: ref8 doi: 10.1016/j.automatica.2014.10.022 – ident: ref27 doi: 10.1016/j.laa.2012.08.031 – ident: ref15 doi: 10.1016/j.automatica.2012.06.083 – ident: ref22 doi: 10.1109/TAC.2015.2504265 – ident: ref19 doi: 10.1109/TCYB.2017.2684461 – ident: ref5 doi: 10.1109/TAC.2004.841121 – ident: ref33 doi: 10.1002/rnc.1847 – ident: ref16 doi: 10.1002/rnc.2800 – ident: ref28 doi: 10.1007/s10107-011-0480-0 – ident: ref17 doi: 10.1109/TCST.2014.2314460 – year: 2002 ident: ref31 publication-title: Nonlinear Systems – ident: ref13 doi: 10.1109/TRO.2016.2559511 – ident: ref2 doi: 10.1109/70.976023 – ident: ref32 doi: 10.1109/TCST.2010.2053542 – start-page: 6121 year: 2015 ident: ref18 article-title: Formation control using a SE(2) rigidity theory publication-title: Proc 54th IEEE Conf Decis Control – ident: ref1 doi: 10.1109/70.736776 – ident: ref10 doi: 10.1109/TCNS.2015.2507547 – ident: ref11 doi: 10.1016/j.sysconle.2007.01.002 – ident: ref7 doi: 10.1109/TII.2012.2219061 – ident: ref34 doi: 10.1109/TAC.2012.2224251 – ident: ref3 doi: 10.1109/TRA.2002.803463 – ident: ref24 doi: 10.1016/j.laa.2007.08.040 |
SSID | ssj0016441 |
Score | 2.669957 |
Snippet | A multiagent formation control task usually consists of two subtasks. The first is to steer the agents to form a desired geometric pattern, and the second is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4140 |
SubjectTerms | Affine transformation Affine transformations Control systems formation control Laplace equations Maneuvers Mobile agents Multiagent systems Stress stress matrices Target tracking Task analysis Tracking Transmission line matrix methods |
Title | Affine Formation Maneuver Control of Multiagent Systems |
URI | https://ieeexplore.ieee.org/document/8270608 https://www.proquest.com/docview/2148316796 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjywIJHUcV7OWFVUFVKZWqlb5OcCahEkC7-ec16qACG2RLGjyGf77ovv-w7gTqVSKCuMJ6PIIkCh2hMyDLyQS3yQ8EQwx3dePieLdfS0iTc9eOi4MMaYKvnM-O6yOsvXO1W6X2UTzpzWC-9DH4FbzdXqTgycX693XVzAjHdHkjSbrKYzl8PFfebEuVyhuj0XVNVU-bERV95lfgzL9rvqpJIXvyykrz6_STb-98NP4KgJM8m0nhen0DPbMzjcEx8cQjq1Fu_IvKUvkqXYmhKnNpnV-etkZ0lF0BWOf0UacfNzWM8fV7OF15RR8BTLgsILMUJiqeEy0iJAQJpY9EgmChk3QaiSWMYZ00ZIyjWCG0WxqaJccBNTxXVgwwsYbHdbcwlEWk2No13alEdcBRLDCY0RC5o1ROTFRjBpRzZXjca4K3XxmldYg2Y52iJ3tsgbW4zgvuvxVutr_NF26Ia2a9eM6gjGrfHyZgF-5AxhniP5Z8nV772u4cC9u85MGcOgeC_NDcYXhbytJtYXpqjK_w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADb0ShQAYWJNImzssZq4qqQNOplbpZtmMvoBRBsvDrOeelChBiSxRbsXy2785333cAtzISXGqubOH7Gh0UJ7W58FzbowI_hDTkxOCdk3k4XfpPq2DVgfsWC6OUKpPP1MA8lrH8dC0Lc1U2pMRwvdAt2Ea9H7gVWquNGRjNXp27uIUJbYOSTjxcjMYmi4sOiKHnMqXqNpRQWVXlx1Fc6pfJASTNyKq0kpdBkYuB_PxG2vjfoR_Cfm1oWqNqZRxBR2XHsLdBP3gC0UhrfLMmDYDRSnimClzc1rjKYLfW2iohutwgsKya3vwUlpOHxXhq14UUbEliN7c9tJFIpKjwU-6iSxpq1EnK9whVrifDQAQxSRUXDk3RvZEONpUO5VQFjqSpq70z6GbrTJ2DJXTqKAO81BH1qXQFGhQp2iwoWA99L9KDYTOzTNYs46bYxSsrvQ0nZigLZmTBaln04K7t8VYxbPzR9sRMbduuntUe9BvhsXoLfjCCjp6B-cfhxe-9bmBnukhmbPY4f76EXfOfKk-lD938vVBXaG3k4rpcZF9tpM5I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affine+Formation+Maneuver+Control+of+Multiagent+Systems&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Zhao%2C+Shiyu&rft.date=2018-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=63&rft.issue=12&rft.spage=4140&rft_id=info:doi/10.1109%2FTAC.2018.2798805&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |