Novel Learning-Based Multiuser Detection Algorithms for Spatially Correlated MTC

Emerging massive machine-type communications service class needs to support many devices while ensuring that scarce radio resources are utilized efficiently. Nonorthogonal multiple access is proposed to minimize the signaling overhead and optimize resource allocation. However, during the initial acc...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 12; no. 13; pp. 23169 - 23181
Main Authors Sivalingam, Thushan, Gunarathne, Samitha, Mahmood, Nurul Huda, Ali, Samad, Rajatheva, Nandana, Latva-Aho, Matti
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2025.3552215

Cover

Abstract Emerging massive machine-type communications service class needs to support many devices while ensuring that scarce radio resources are utilized efficiently. Nonorthogonal multiple access is proposed to minimize the signaling overhead and optimize resource allocation. However, during the initial access, the base station (BS) is presented with the challenge of identifying sparsely active devices in the absence of knowledge about the sparsity and channel state information. The user channels in most practical scenarios have common reflection paths, making them partially correlated, which can be exploited to improve the detection performance at the BS. In this context, we formulate a novel multiuser detection (MUD) problem in spatially correlated Rician channels, which we reformulate as a multilabel classification problem utilizing deep learning techniques. We propose two diverse approaches to tackle this problem: 1) ViT-Net, a vision transformer-based architecture, and 2) FAR-Net, a fully activated deep neural network featuring residual connections. Our analysis highlights the significance of spatial correlation for MUD, which can accord around 13% higher overloading ratio compared to the noncorrelated scenario. Numerical evaluations demonstrate the effectiveness of the proposed model in addressing spatial correlation compared to the existing deep-learning models.
AbstractList Emerging massive machine-type communications service class needs to support many devices while ensuring that scarce radio resources are utilized efficiently. Nonorthogonal multiple access is proposed to minimize the signaling overhead and optimize resource allocation. However, during the initial access, the base station (BS) is presented with the challenge of identifying sparsely active devices in the absence of knowledge about the sparsity and channel state information. The user channels in most practical scenarios have common reflection paths, making them partially correlated, which can be exploited to improve the detection performance at the BS. In this context, we formulate a novel multiuser detection (MUD) problem in spatially correlated Rician channels, which we reformulate as a multilabel classification problem utilizing deep learning techniques. We propose two diverse approaches to tackle this problem: 1) ViT-Net, a vision transformer-based architecture, and 2) FAR-Net, a fully activated deep neural network featuring residual connections. Our analysis highlights the significance of spatial correlation for MUD, which can accord around 13% higher overloading ratio compared to the noncorrelated scenario. Numerical evaluations demonstrate the effectiveness of the proposed model in addressing spatial correlation compared to the existing deep-learning models.
Author Rajatheva, Nandana
Gunarathne, Samitha
Mahmood, Nurul Huda
Latva-Aho, Matti
Ali, Samad
Sivalingam, Thushan
Author_xml – sequence: 1
  givenname: Thushan
  orcidid: 0000-0001-6790-3464
  surname: Sivalingam
  fullname: Sivalingam, Thushan
  email: thushan.sivalingam@oulu.fi
  organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
– sequence: 2
  givenname: Samitha
  orcidid: 0000-0003-1242-8584
  surname: Gunarathne
  fullname: Gunarathne, Samitha
  email: samitha.gunarathne@oulu.fi
  organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
– sequence: 3
  givenname: Nurul Huda
  orcidid: 0000-0002-1478-2272
  surname: Mahmood
  fullname: Mahmood, Nurul Huda
  email: nurulhuda.mahmood@oulu.fi
  organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
– sequence: 4
  givenname: Samad
  orcidid: 0000-0002-1171-8435
  surname: Ali
  fullname: Ali, Samad
  email: samad.ali@oulu.fi
  organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
– sequence: 5
  givenname: Nandana
  orcidid: 0000-0002-7029-5583
  surname: Rajatheva
  fullname: Rajatheva, Nandana
  email: nandana.rajatheva@oulu.fi
  organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
– sequence: 6
  givenname: Matti
  orcidid: 0000-0002-6261-0969
  surname: Latva-Aho
  fullname: Latva-Aho, Matti
  email: matti.latva-aho@oulu.fi
  organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
BookMark eNpNkMtOwzAQRS1UJErpByCxiMQ6xY_YTZYlvIoKRaKsLdcel1RpXGwHqX9PorLoamZxzx3NuUSDxjWA0DXBE0Jwcfc6X64mFFM-YZxTSvgZGlJGp2kmBB2c7BdoHMIWY9xhnBRiiD7e3S_UyQKUb6pmk96rACZ5a-tYtQF88gARdKxck8zqjfNV_N6FxDqffO5VrFRdH5LSeQ-1ij23Kq_QuVV1gPH_HKGvp8dV-ZIuls_zcrZINS1ITBlfG2zWeWEwF5m2GQWdZTnlDCgxRuWKgxUgBBTaGsZM99VaZ5rkxlqdazZCt8fevXc_LYQot671TXdSMkqpmOKcTrsUOaa0dyF4sHLvq53yB0mw7N3J3p3s3cl_dx1zc2QqADjJFwxnnLE_Zkts1A
CODEN IITJAU
Cites_doi 10.1109/TIT.2013.2252232
10.1109/TCOMM.2020.2969184
10.1109/TIT.2011.2173241
10.1109/TWC.2024.3495812
10.1109/TMLCN.2023.3283350
10.1109/PIMRC.2002.1046707
10.1109/TCOMM.2015.2462350
10.1109/JIOT.2024.3375337
10.21236/ada164453
10.1109/COMST.2020.2996032
10.1017/CBO9780511807213
10.1109/OJCOMS.2024.3452591
10.1109/LCOMM.2023.3336985
10.1109/MCOM.2016.7565189
10.48550/ARXIV.1706.03762
10.1109/JSEN.2022.3179535
10.1109/tvt.2024.3513439
10.1109/TWC.2015.2414413
10.1109/JSAC.2002.801223
10.1109/LCOMM.2021.3091841
10.1109/TCOMM.2019.2893221
10.1109/LWC.2022.3153085
10.1109/tmc.2025.3526166
10.1109/jstars.2024.3415729
10.1109/TWC.2022.3149111
10.1109/TWC.2009.080723
10.1109/LCOMM.2022.3170735
10.1109/TCOMM.2019.2945792
10.1109/LSP.2018.2885919
10.1109/VTCFall.2014.6966170
10.1162/neco.1997.9.8.1735
10.1109/GCWkshps58843.2023.10464770
10.1109/TPAMI.2022.3152247
10.1109/GLOBECOM42002.2020.9322507
10.1109/LCOMM.2024.3369480
10.1109/ACCESS.2024.3460480
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3552215
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 23181
ExternalDocumentID 10_1109_JIOT_2025_3552215
10930453
Genre orig-research
GrantInformation_xml – fundername: Riita and Jorma J. Takasen Foundation
– fundername: Business Finland via the 6GBridge - Local 6G project
  grantid: 8002/31/2022
– fundername: Nokia Foundation Doctoral Grant
– fundername: Research Council of Finland through the 6G Flagship
  grantid: 369116
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-35bd0db89d0564cf42ec448253e21dda8a5ef6e66e9cfd33d215bc4c18dffc8c3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Tue Sep 09 15:10:49 EDT 2025
Thu Jul 03 08:28:55 EDT 2025
Wed Aug 27 01:46:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-35bd0db89d0564cf42ec448253e21dda8a5ef6e66e9cfd33d215bc4c18dffc8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1478-2272
0000-0003-1242-8584
0000-0002-1171-8435
0000-0001-6790-3464
0000-0002-6261-0969
0000-0002-7029-5583
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10930453
PQID 3222670827
PQPubID 2040421
PageCount 13
ParticipantIDs ieee_primary_10930453
crossref_primary_10_1109_JIOT_2025_3552215
proquest_journals_3222670827
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
(ref39) 2017
ref17
ref16
ref38
ref19
ref18
Dosovitskiy (ref25)
Mahmood (ref1) 2020
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref20
  doi: 10.1109/TIT.2013.2252232
– ident: ref16
  doi: 10.1109/TCOMM.2020.2969184
– ident: ref21
  doi: 10.1109/TIT.2011.2173241
– ident: ref37
  doi: 10.1109/TWC.2024.3495812
– ident: ref18
  doi: 10.1109/TMLCN.2023.3283350
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref25
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
– ident: ref10
  doi: 10.1109/PIMRC.2002.1046707
– year: 2017
  ident: ref39
  article-title: Spatial channel model for multiple input multiple output (MIMO) simulations, Version 14.0.0
– ident: ref8
  doi: 10.1109/TCOMM.2015.2462350
– ident: ref31
  doi: 10.1109/JIOT.2024.3375337
– ident: ref23
  doi: 10.21236/ada164453
– ident: ref3
  doi: 10.1109/COMST.2020.2996032
– ident: ref14
  doi: 10.1017/CBO9780511807213
– ident: ref34
  doi: 10.1109/OJCOMS.2024.3452591
– ident: ref36
  doi: 10.1109/LCOMM.2023.3336985
– ident: ref2
  doi: 10.1109/MCOM.2016.7565189
– volume-title: White paper on critical and massive machine type communication towards 6G: 6G research visions
  year: 2020
  ident: ref1
– ident: ref22
  doi: 10.48550/ARXIV.1706.03762
– ident: ref28
  doi: 10.1109/JSEN.2022.3179535
– ident: ref33
  doi: 10.1109/tvt.2024.3513439
– ident: ref9
  doi: 10.1109/TWC.2015.2414413
– ident: ref7
  doi: 10.1109/JSAC.2002.801223
– ident: ref17
  doi: 10.1109/LCOMM.2021.3091841
– ident: ref38
  doi: 10.1109/TCOMM.2019.2893221
– ident: ref27
  doi: 10.1109/LWC.2022.3153085
– ident: ref30
  doi: 10.1109/tmc.2025.3526166
– ident: ref32
  doi: 10.1109/jstars.2024.3415729
– ident: ref6
  doi: 10.1109/TWC.2022.3149111
– ident: ref15
  doi: 10.1109/TWC.2009.080723
– ident: ref13
  doi: 10.1109/LCOMM.2022.3170735
– ident: ref5
  doi: 10.1109/TCOMM.2019.2945792
– ident: ref19
  doi: 10.1109/LSP.2018.2885919
– ident: ref4
  doi: 10.1109/VTCFall.2014.6966170
– ident: ref24
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref26
  doi: 10.1109/GCWkshps58843.2023.10464770
– ident: ref29
  doi: 10.1109/TPAMI.2022.3152247
– ident: ref12
  doi: 10.1109/GLOBECOM42002.2020.9322507
– ident: ref11
  doi: 10.1109/LCOMM.2024.3369480
– ident: ref35
  doi: 10.1109/ACCESS.2024.3460480
SSID ssj0001105196
Score 2.3436797
Snippet Emerging massive machine-type communications service class needs to support many devices while ensuring that scarce radio resources are utilized efficiently....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 23169
SubjectTerms 6G mobile communication
Artificial neural networks
Channels
Computer architecture
Convergence
Correlation
Deep learning
Internet of Things
Iterative methods
Machine learning
Mud
Multiple user detection
Multiuser detection
NOMA
Nonorthogonal multiple access
Resource allocation
Rician channels
sparse code multiple access (SCMA)
spatial correlation
Transformers
vision-transformer
Title Novel Learning-Based Multiuser Detection Algorithms for Spatially Correlated MTC
URI https://ieeexplore.ieee.org/document/10930453
https://www.proquest.com/docview/3222670827
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4IJy_iAyOKZg-eTArt9rU9IkqQRPQACbemnZ2iEcFAMdFf7-y2RKIx8dbD7mQzM9v5ZnYejF1KhW5mo7QgCQLLc1BZqWvbFoD0Q5EQgjWh7Pth0B97g4k_KYvVTS0MIprkM2zpT_OWrxaw1qGytm59RBDErbAK6VlRrPUdUHE0GgnKl0ta2h7cPYzIAxR-i4yqEHry7ZbtMcNUfv2BjVnp1dhwc6Aim-Sltc7TFnz-6NX47xPvs70SYPJOoREHbAfnh6y2Gd7Ay7t8xB6Hi3ec8bK_6tS6JnOmuKnH1YELfoO5ydKa885sulg-50-vK04Il-shxqS0sw_e1ZM9ZgRWad-oW2fj3u2o27fK8QoWiMjJLddPla1SGSkCQR5knkAgZ034LgpHqUQmPmYBBgFGkCnXVcTBFDxwpMoykOAes-p8MccTxgEy9FLHJxpEghzTkBiubBlKSEQaQYNdbRgfvxVdNGLjfdhRrKUUaynFpZQarK4ZubWw4GGDNTeyisuLtor1Q1EQEo4JT__YdsZ2NfUixbbJqvlyjecEJPL0wijQF_UGxtQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGGDhjSgU8MCElJI4L2eEAmp5FIYisUXJ-QKI0iJIkeDXc3ZSgUBIbBlsx7qzfd-9AfaUJr9wSTmYRZETeKSd3HddB1GFscwYwVpT9mUv6twEZ7fhbZ2sbnNhiMgGn1HLfFpfvh7h2JjKDkzpI4Yg_jTMsuAPwipd68uk4hk8EtW-Sx58cNa96rMOKMMWi1UpTe_bb9LHtlP59QZbwXK6CL3Jlqp4ksfWuMxb-PGjWuO_97wECzXEFIfVmViGKRquwOKkfYOob_MqXPdGbzQQdYXVO-eIBZoWNiPXmC7EMZU2TmsoDgd3o5eH8v7pVTDGFaaNMR_bwbtom94eA4arPK_fXoOb05N-u-PUDRYclIlXOn6Ya1fnKtEMgwIsAknI6poMfZKe1pnKQioiiiJKsNC-r5mCOQboKV0UqNBfh5nhaEgbIBALCnIv5DV4CVZNYya4dlWsMJN5gg3YnxA-fa7qaKRW_3CT1HApNVxKay41YM0Q8tvAioYNaE54ldZX7TU1rqIoZiQTb_4xbRfmOv3Li_Si2zvfgnnzpyrgtgkz5cuYthlWlPmOPUyfiIfKIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Learning-Based+Multiuser+Detection+Algorithms+for+Spatially+Correlated+MTC&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Sivalingam%2C+Thushan&rft.au=Gunarathne%2C+Samitha&rft.au=Mahmood%2C+Nurul+Huda&rft.au=Samad%2C+Ali&rft.date=2025-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=16&rft.spage=23169&rft.epage=23181&rft_id=info:doi/10.1109%2FJIOT.2025.3552215&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon