Novel Learning-Based Multiuser Detection Algorithms for Spatially Correlated MTC
Emerging massive machine-type communications service class needs to support many devices while ensuring that scarce radio resources are utilized efficiently. Nonorthogonal multiple access is proposed to minimize the signaling overhead and optimize resource allocation. However, during the initial acc...
Saved in:
Published in | IEEE internet of things journal Vol. 12; no. 13; pp. 23169 - 23181 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2025.3552215 |
Cover
Abstract | Emerging massive machine-type communications service class needs to support many devices while ensuring that scarce radio resources are utilized efficiently. Nonorthogonal multiple access is proposed to minimize the signaling overhead and optimize resource allocation. However, during the initial access, the base station (BS) is presented with the challenge of identifying sparsely active devices in the absence of knowledge about the sparsity and channel state information. The user channels in most practical scenarios have common reflection paths, making them partially correlated, which can be exploited to improve the detection performance at the BS. In this context, we formulate a novel multiuser detection (MUD) problem in spatially correlated Rician channels, which we reformulate as a multilabel classification problem utilizing deep learning techniques. We propose two diverse approaches to tackle this problem: 1) ViT-Net, a vision transformer-based architecture, and 2) FAR-Net, a fully activated deep neural network featuring residual connections. Our analysis highlights the significance of spatial correlation for MUD, which can accord around 13% higher overloading ratio compared to the noncorrelated scenario. Numerical evaluations demonstrate the effectiveness of the proposed model in addressing spatial correlation compared to the existing deep-learning models. |
---|---|
AbstractList | Emerging massive machine-type communications service class needs to support many devices while ensuring that scarce radio resources are utilized efficiently. Nonorthogonal multiple access is proposed to minimize the signaling overhead and optimize resource allocation. However, during the initial access, the base station (BS) is presented with the challenge of identifying sparsely active devices in the absence of knowledge about the sparsity and channel state information. The user channels in most practical scenarios have common reflection paths, making them partially correlated, which can be exploited to improve the detection performance at the BS. In this context, we formulate a novel multiuser detection (MUD) problem in spatially correlated Rician channels, which we reformulate as a multilabel classification problem utilizing deep learning techniques. We propose two diverse approaches to tackle this problem: 1) ViT-Net, a vision transformer-based architecture, and 2) FAR-Net, a fully activated deep neural network featuring residual connections. Our analysis highlights the significance of spatial correlation for MUD, which can accord around 13% higher overloading ratio compared to the noncorrelated scenario. Numerical evaluations demonstrate the effectiveness of the proposed model in addressing spatial correlation compared to the existing deep-learning models. |
Author | Rajatheva, Nandana Gunarathne, Samitha Mahmood, Nurul Huda Latva-Aho, Matti Ali, Samad Sivalingam, Thushan |
Author_xml | – sequence: 1 givenname: Thushan orcidid: 0000-0001-6790-3464 surname: Sivalingam fullname: Sivalingam, Thushan email: thushan.sivalingam@oulu.fi organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland – sequence: 2 givenname: Samitha orcidid: 0000-0003-1242-8584 surname: Gunarathne fullname: Gunarathne, Samitha email: samitha.gunarathne@oulu.fi organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland – sequence: 3 givenname: Nurul Huda orcidid: 0000-0002-1478-2272 surname: Mahmood fullname: Mahmood, Nurul Huda email: nurulhuda.mahmood@oulu.fi organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland – sequence: 4 givenname: Samad orcidid: 0000-0002-1171-8435 surname: Ali fullname: Ali, Samad email: samad.ali@oulu.fi organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland – sequence: 5 givenname: Nandana orcidid: 0000-0002-7029-5583 surname: Rajatheva fullname: Rajatheva, Nandana email: nandana.rajatheva@oulu.fi organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland – sequence: 6 givenname: Matti orcidid: 0000-0002-6261-0969 surname: Latva-Aho fullname: Latva-Aho, Matti email: matti.latva-aho@oulu.fi organization: Center for Wireless Communications, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland |
BookMark | eNpNkMtOwzAQRS1UJErpByCxiMQ6xY_YTZYlvIoKRaKsLdcel1RpXGwHqX9PorLoamZxzx3NuUSDxjWA0DXBE0Jwcfc6X64mFFM-YZxTSvgZGlJGp2kmBB2c7BdoHMIWY9xhnBRiiD7e3S_UyQKUb6pmk96rACZ5a-tYtQF88gARdKxck8zqjfNV_N6FxDqffO5VrFRdH5LSeQ-1ij23Kq_QuVV1gPH_HKGvp8dV-ZIuls_zcrZINS1ITBlfG2zWeWEwF5m2GQWdZTnlDCgxRuWKgxUgBBTaGsZM99VaZ5rkxlqdazZCt8fevXc_LYQot671TXdSMkqpmOKcTrsUOaa0dyF4sHLvq53yB0mw7N3J3p3s3cl_dx1zc2QqADjJFwxnnLE_Zkts1A |
CODEN | IITJAU |
Cites_doi | 10.1109/TIT.2013.2252232 10.1109/TCOMM.2020.2969184 10.1109/TIT.2011.2173241 10.1109/TWC.2024.3495812 10.1109/TMLCN.2023.3283350 10.1109/PIMRC.2002.1046707 10.1109/TCOMM.2015.2462350 10.1109/JIOT.2024.3375337 10.21236/ada164453 10.1109/COMST.2020.2996032 10.1017/CBO9780511807213 10.1109/OJCOMS.2024.3452591 10.1109/LCOMM.2023.3336985 10.1109/MCOM.2016.7565189 10.48550/ARXIV.1706.03762 10.1109/JSEN.2022.3179535 10.1109/tvt.2024.3513439 10.1109/TWC.2015.2414413 10.1109/JSAC.2002.801223 10.1109/LCOMM.2021.3091841 10.1109/TCOMM.2019.2893221 10.1109/LWC.2022.3153085 10.1109/tmc.2025.3526166 10.1109/jstars.2024.3415729 10.1109/TWC.2022.3149111 10.1109/TWC.2009.080723 10.1109/LCOMM.2022.3170735 10.1109/TCOMM.2019.2945792 10.1109/LSP.2018.2885919 10.1109/VTCFall.2014.6966170 10.1162/neco.1997.9.8.1735 10.1109/GCWkshps58843.2023.10464770 10.1109/TPAMI.2022.3152247 10.1109/GLOBECOM42002.2020.9322507 10.1109/LCOMM.2024.3369480 10.1109/ACCESS.2024.3460480 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2025.3552215 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 23181 |
ExternalDocumentID | 10_1109_JIOT_2025_3552215 10930453 |
Genre | orig-research |
GrantInformation_xml | – fundername: Riita and Jorma J. Takasen Foundation – fundername: Business Finland via the 6GBridge - Local 6G project grantid: 8002/31/2022 – fundername: Nokia Foundation Doctoral Grant – fundername: Research Council of Finland through the 6G Flagship grantid: 369116 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-35bd0db89d0564cf42ec448253e21dda8a5ef6e66e9cfd33d215bc4c18dffc8c3 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Tue Sep 09 15:10:49 EDT 2025 Thu Jul 03 08:28:55 EDT 2025 Wed Aug 27 01:46:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-35bd0db89d0564cf42ec448253e21dda8a5ef6e66e9cfd33d215bc4c18dffc8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1478-2272 0000-0003-1242-8584 0000-0002-1171-8435 0000-0001-6790-3464 0000-0002-6261-0969 0000-0002-7029-5583 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10930453 |
PQID | 3222670827 |
PQPubID | 2040421 |
PageCount | 13 |
ParticipantIDs | ieee_primary_10930453 crossref_primary_10_1109_JIOT_2025_3552215 proquest_journals_3222670827 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 (ref39) 2017 ref17 ref16 ref38 ref19 ref18 Dosovitskiy (ref25) Mahmood (ref1) 2020 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref20 doi: 10.1109/TIT.2013.2252232 – ident: ref16 doi: 10.1109/TCOMM.2020.2969184 – ident: ref21 doi: 10.1109/TIT.2011.2173241 – ident: ref37 doi: 10.1109/TWC.2024.3495812 – ident: ref18 doi: 10.1109/TMLCN.2023.3283350 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref25 article-title: An image is worth 16×16 words: Transformers for image recognition at scale – ident: ref10 doi: 10.1109/PIMRC.2002.1046707 – year: 2017 ident: ref39 article-title: Spatial channel model for multiple input multiple output (MIMO) simulations, Version 14.0.0 – ident: ref8 doi: 10.1109/TCOMM.2015.2462350 – ident: ref31 doi: 10.1109/JIOT.2024.3375337 – ident: ref23 doi: 10.21236/ada164453 – ident: ref3 doi: 10.1109/COMST.2020.2996032 – ident: ref14 doi: 10.1017/CBO9780511807213 – ident: ref34 doi: 10.1109/OJCOMS.2024.3452591 – ident: ref36 doi: 10.1109/LCOMM.2023.3336985 – ident: ref2 doi: 10.1109/MCOM.2016.7565189 – volume-title: White paper on critical and massive machine type communication towards 6G: 6G research visions year: 2020 ident: ref1 – ident: ref22 doi: 10.48550/ARXIV.1706.03762 – ident: ref28 doi: 10.1109/JSEN.2022.3179535 – ident: ref33 doi: 10.1109/tvt.2024.3513439 – ident: ref9 doi: 10.1109/TWC.2015.2414413 – ident: ref7 doi: 10.1109/JSAC.2002.801223 – ident: ref17 doi: 10.1109/LCOMM.2021.3091841 – ident: ref38 doi: 10.1109/TCOMM.2019.2893221 – ident: ref27 doi: 10.1109/LWC.2022.3153085 – ident: ref30 doi: 10.1109/tmc.2025.3526166 – ident: ref32 doi: 10.1109/jstars.2024.3415729 – ident: ref6 doi: 10.1109/TWC.2022.3149111 – ident: ref15 doi: 10.1109/TWC.2009.080723 – ident: ref13 doi: 10.1109/LCOMM.2022.3170735 – ident: ref5 doi: 10.1109/TCOMM.2019.2945792 – ident: ref19 doi: 10.1109/LSP.2018.2885919 – ident: ref4 doi: 10.1109/VTCFall.2014.6966170 – ident: ref24 doi: 10.1162/neco.1997.9.8.1735 – ident: ref26 doi: 10.1109/GCWkshps58843.2023.10464770 – ident: ref29 doi: 10.1109/TPAMI.2022.3152247 – ident: ref12 doi: 10.1109/GLOBECOM42002.2020.9322507 – ident: ref11 doi: 10.1109/LCOMM.2024.3369480 – ident: ref35 doi: 10.1109/ACCESS.2024.3460480 |
SSID | ssj0001105196 |
Score | 2.3436797 |
Snippet | Emerging massive machine-type communications service class needs to support many devices while ensuring that scarce radio resources are utilized efficiently.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 23169 |
SubjectTerms | 6G mobile communication Artificial neural networks Channels Computer architecture Convergence Correlation Deep learning Internet of Things Iterative methods Machine learning Mud Multiple user detection Multiuser detection NOMA Nonorthogonal multiple access Resource allocation Rician channels sparse code multiple access (SCMA) spatial correlation Transformers vision-transformer |
Title | Novel Learning-Based Multiuser Detection Algorithms for Spatially Correlated MTC |
URI | https://ieeexplore.ieee.org/document/10930453 https://www.proquest.com/docview/3222670827 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4IJy_iAyOKZg-eTArt9rU9IkqQRPQACbemnZ2iEcFAMdFf7-y2RKIx8dbD7mQzM9v5ZnYejF1KhW5mo7QgCQLLc1BZqWvbFoD0Q5EQgjWh7Pth0B97g4k_KYvVTS0MIprkM2zpT_OWrxaw1qGytm59RBDErbAK6VlRrPUdUHE0GgnKl0ta2h7cPYzIAxR-i4yqEHry7ZbtMcNUfv2BjVnp1dhwc6Aim-Sltc7TFnz-6NX47xPvs70SYPJOoREHbAfnh6y2Gd7Ay7t8xB6Hi3ec8bK_6tS6JnOmuKnH1YELfoO5ydKa885sulg-50-vK04Il-shxqS0sw_e1ZM9ZgRWad-oW2fj3u2o27fK8QoWiMjJLddPla1SGSkCQR5knkAgZ034LgpHqUQmPmYBBgFGkCnXVcTBFDxwpMoykOAes-p8MccTxgEy9FLHJxpEghzTkBiubBlKSEQaQYNdbRgfvxVdNGLjfdhRrKUUaynFpZQarK4ZubWw4GGDNTeyisuLtor1Q1EQEo4JT__YdsZ2NfUixbbJqvlyjecEJPL0wijQF_UGxtQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGGDhjSgU8MCElJI4L2eEAmp5FIYisUXJ-QKI0iJIkeDXc3ZSgUBIbBlsx7qzfd-9AfaUJr9wSTmYRZETeKSd3HddB1GFscwYwVpT9mUv6twEZ7fhbZ2sbnNhiMgGn1HLfFpfvh7h2JjKDkzpI4Yg_jTMsuAPwipd68uk4hk8EtW-Sx58cNa96rMOKMMWi1UpTe_bb9LHtlP59QZbwXK6CL3Jlqp4ksfWuMxb-PGjWuO_97wECzXEFIfVmViGKRquwOKkfYOob_MqXPdGbzQQdYXVO-eIBZoWNiPXmC7EMZU2TmsoDgd3o5eH8v7pVTDGFaaNMR_bwbtom94eA4arPK_fXoOb05N-u-PUDRYclIlXOn6Ya1fnKtEMgwIsAknI6poMfZKe1pnKQioiiiJKsNC-r5mCOQboKV0UqNBfh5nhaEgbIBALCnIv5DV4CVZNYya4dlWsMJN5gg3YnxA-fa7qaKRW_3CT1HApNVxKay41YM0Q8tvAioYNaE54ldZX7TU1rqIoZiQTb_4xbRfmOv3Li_Si2zvfgnnzpyrgtgkz5cuYthlWlPmOPUyfiIfKIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Learning-Based+Multiuser+Detection+Algorithms+for+Spatially+Correlated+MTC&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Sivalingam%2C+Thushan&rft.au=Gunarathne%2C+Samitha&rft.au=Mahmood%2C+Nurul+Huda&rft.au=Samad%2C+Ali&rft.date=2025-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=16&rft.spage=23169&rft.epage=23181&rft_id=info:doi/10.1109%2FJIOT.2025.3552215&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |