Evaluating and Improving Unified Debugging

Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection between fault localization and program repair is that fault localization computes the potential buggy elements for program repair to patch. Rece...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on software engineering Vol. 48; no. 11; pp. 4692 - 4716
Main Authors Benton, Samuel, Li, Xia, Lou, Yiling, Zhang, Lingming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
IEEE Computer Society
Subjects
Online AccessGet full text
ISSN0098-5589
1939-3520
DOI10.1109/TSE.2021.3125203

Cover

Loading…
Abstract Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection between fault localization and program repair is that fault localization computes the potential buggy elements for program repair to patch. Recently, a pioneering work, ProFL, explored the idea of unified debugging to unify fault localization and program repair in the other direction for the first time to boost both areas. More specifically, ProFL utilizes the patch execution results from one state-of-the-art repair system, PraPR, to help improve state-of-the-art fault localization. In this way, ProFL not only improves fault localization for manual repair , but also extends the application scope of automated repair to all possible bugs (not only the small ratio of bugs that repair systems can automatically fix). However, ProFL only considers one program repair system (i.e., PraPR), and it is not clear how other existing program repair systems based on different designs contribute to unified debugging. In this work, we perform an extensive study of the unified debugging approach on 16 state-of-the-art program repair systems for the first time. Our initial experimental results on the widely studied Defects4J benchmark suite reveal various practical guidelines for unified debugging, such as (1) nearly all 16 studied repair systems positively contribute to unified debugging despite their varying repair capabilities, (2) repair systems targeting multi-edit patches can bring extraneous noise into unified debugging, (3) repair systems with more executed/plausible patches tend to perform better for unified debugging, (4) unified debugging effectiveness does not rely on the availability of correct patches from automated repair, and (5) we propose a new unified debugging technique, UniDebug++, which localizes over 20% more bugs within Top-1 than state-of-the-art unified debugging technique ProFL (evaluated against four Defects4J subjects). Furthermore, we conduct more comprehensive studies to extend the above experiments to make the following additional contributions: we (6) further perform an extensive study on 76.3% additional buggy versions from Defects4J (for Closure and Mockito) and confirm that UniDebug++ again outperforms ProFL by localizing 185 (out of 395 in total) bugs within Top-1, 14% more than ProFL, (7) investigate the impact of 33 SBFL formulae on unified debugging and observe that UniDebug++ consistently improves upon all formulae, e.g., 61% and 53% average improvement on MFR / MAR, (8) demonstrate that UniDebug++ can substantially boost state-of-the-art learning-based method-level fault localization techniques, (9) extend unified debugging to the statement level for first time and observe that UniDebug++ localizes 78 (out of 395 in total) bugs within Top-1 (22% more bugs than ProFL) and outperforms state-of-the-art learning-based fault localization techniques by 30%, and finally (10) propose a new technique, UniDebug+<inline-formula><tex-math notation="LaTeX">^\star</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mi>★</mml:mi></mml:msup></mml:math><inline-graphic xlink:href="benton-ieq1-3125203.gif"/> </inline-formula>, based on detailed patch statistics, to improve upon UniDebug++, e.g., further localizing up to 9% more bugs within Top-1 than UniDebug++.
AbstractList Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection between fault localization and program repair is that fault localization computes the potential buggy elements for program repair to patch. Recently, a pioneering work, ProFL, explored the idea of unified debugging to unify fault localization and program repair in the other direction for the first time to boost both areas. More specifically, ProFL utilizes the patch execution results from one state-of-the-art repair system, PraPR, to help improve state-of-the-art fault localization. In this way, ProFL not only improves fault localization for manual repair , but also extends the application scope of automated repair to all possible bugs (not only the small ratio of bugs that repair systems can automatically fix). However, ProFL only considers one program repair system (i.e., PraPR), and it is not clear how other existing program repair systems based on different designs contribute to unified debugging. In this work, we perform an extensive study of the unified debugging approach on 16 state-of-the-art program repair systems for the first time. Our initial experimental results on the widely studied Defects4J benchmark suite reveal various practical guidelines for unified debugging, such as (1) nearly all 16 studied repair systems positively contribute to unified debugging despite their varying repair capabilities, (2) repair systems targeting multi-edit patches can bring extraneous noise into unified debugging, (3) repair systems with more executed/plausible patches tend to perform better for unified debugging, (4) unified debugging effectiveness does not rely on the availability of correct patches from automated repair, and (5) we propose a new unified debugging technique, UniDebug++, which localizes over 20% more bugs within Top-1 than state-of-the-art unified debugging technique ProFL (evaluated against four Defects4J subjects). Furthermore, we conduct more comprehensive studies to extend the above experiments to make the following additional contributions: we (6) further perform an extensive study on 76.3% additional buggy versions from Defects4J (for Closure and Mockito) and confirm that UniDebug++ again outperforms ProFL by localizing 185 (out of 395 in total) bugs within Top-1, 14% more than ProFL, (7) investigate the impact of 33 SBFL formulae on unified debugging and observe that UniDebug++ consistently improves upon all formulae, e.g., 61% and 53% average improvement on MFR / MAR, (8) demonstrate that UniDebug++ can substantially boost state-of-the-art learning-based method-level fault localization techniques, (9) extend unified debugging to the statement level for first time and observe that UniDebug++ localizes 78 (out of 395 in total) bugs within Top-1 (22% more bugs than ProFL) and outperforms state-of-the-art learning-based fault localization techniques by 30%, and finally (10) propose a new technique, UniDebug+[Formula Omitted], based on detailed patch statistics, to improve upon UniDebug++, e.g., further localizing up to 9% more bugs within Top-1 than UniDebug++.
Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection between fault localization and program repair is that fault localization computes the potential buggy elements for program repair to patch. Recently, a pioneering work, ProFL, explored the idea of unified debugging to unify fault localization and program repair in the other direction for the first time to boost both areas. More specifically, ProFL utilizes the patch execution results from one state-of-the-art repair system, PraPR, to help improve state-of-the-art fault localization. In this way, ProFL not only improves fault localization for manual repair , but also extends the application scope of automated repair to all possible bugs (not only the small ratio of bugs that repair systems can automatically fix). However, ProFL only considers one program repair system (i.e., PraPR), and it is not clear how other existing program repair systems based on different designs contribute to unified debugging. In this work, we perform an extensive study of the unified debugging approach on 16 state-of-the-art program repair systems for the first time. Our initial experimental results on the widely studied Defects4J benchmark suite reveal various practical guidelines for unified debugging, such as (1) nearly all 16 studied repair systems positively contribute to unified debugging despite their varying repair capabilities, (2) repair systems targeting multi-edit patches can bring extraneous noise into unified debugging, (3) repair systems with more executed/plausible patches tend to perform better for unified debugging, (4) unified debugging effectiveness does not rely on the availability of correct patches from automated repair, and (5) we propose a new unified debugging technique, UniDebug++, which localizes over 20% more bugs within Top-1 than state-of-the-art unified debugging technique ProFL (evaluated against four Defects4J subjects). Furthermore, we conduct more comprehensive studies to extend the above experiments to make the following additional contributions: we (6) further perform an extensive study on 76.3% additional buggy versions from Defects4J (for Closure and Mockito) and confirm that UniDebug++ again outperforms ProFL by localizing 185 (out of 395 in total) bugs within Top-1, 14% more than ProFL, (7) investigate the impact of 33 SBFL formulae on unified debugging and observe that UniDebug++ consistently improves upon all formulae, e.g., 61% and 53% average improvement on MFR / MAR, (8) demonstrate that UniDebug++ can substantially boost state-of-the-art learning-based method-level fault localization techniques, (9) extend unified debugging to the statement level for first time and observe that UniDebug++ localizes 78 (out of 395 in total) bugs within Top-1 (22% more bugs than ProFL) and outperforms state-of-the-art learning-based fault localization techniques by 30%, and finally (10) propose a new technique, UniDebug+<inline-formula><tex-math notation="LaTeX">^\star</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mi>★</mml:mi></mml:msup></mml:math><inline-graphic xlink:href="benton-ieq1-3125203.gif"/> </inline-formula>, based on detailed patch statistics, to improve upon UniDebug++, e.g., further localizing up to 9% more bugs within Top-1 than UniDebug++.
Author Lou, Yiling
Benton, Samuel
Li, Xia
Zhang, Lingming
Author_xml – sequence: 1
  givenname: Samuel
  orcidid: 0000-0003-0592-802X
  surname: Benton
  fullname: Benton, Samuel
  email: Samuel.Benton1@utdallas.edu
  organization: Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA
– sequence: 2
  givenname: Xia
  surname: Li
  fullname: Li, Xia
  email: xli37@kennesaw.edu
  organization: Department of Software Engineering and Game Design, Kennesaw State University, Kennesaw, GA, USA
– sequence: 3
  givenname: Yiling
  orcidid: 0000-0001-7814-0693
  surname: Lou
  fullname: Lou, Yiling
  email: lou47@purdue.edu
  organization: Department of Computer Science, Purdue University, West Lafayette, IN, USA
– sequence: 4
  givenname: Lingming
  surname: Zhang
  fullname: Zhang, Lingming
  email: lingming@illinois.edu
  organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
BookMark eNp9UMFKAzEQDVLBtnoXvBS8CVsnyWY3OUqtWih4sD2HbHZSUtpsze4W_HtTKh48eJnhDe_Nm3kjMghNQEJuKUwpBfW4-phPGTA65ZQJBvyCDKniKuMJDMgQQMlMCKmuyKhttwAgylIMycP8aHa96XzYTEyoJ4v9ITbHE1oH7zzWk2es-s0mTa7JpTO7Fm9--pisX-ar2Vu2fH9dzJ6WmWWKdhnPna1lJbHGvOKOWiuRCcylU6qSgroCZV46tKyqwJmiMFKULhVhbAGIfEzuz3vTJZ89tp3eNn0MyVKzkgteKilUYsGZZWPTthGdPkS_N_FLU9CnRHRKRJ8S0T-JJEnxR2J9l15vQheN3_0nvDsLPSL--qgCKKMl_wb-gm8x
CODEN IESEDJ
CitedBy_id crossref_primary_10_1002_stvr_1872
crossref_primary_10_1109_TSE_2024_3354969
crossref_primary_10_1016_j_eswa_2024_124877
crossref_primary_10_1145_3672450
crossref_primary_10_1016_j_jss_2024_112152
Cites_doi 10.1109/ASE.2017.8115675
10.1145/2837614.2837617
10.1109/ASE.2003.1240292
10.1109/ASE.2019.00075
10.1007/978-3-319-99241-9_3
10.1109/TSE.2019.2911283
10.1145/3180155.3180250
10.1145/3213846.3213871
10.1145/2884781.2884872
10.1109/ICSE43902.2021.00104
10.1109/TSE.2010.62
10.1109/PRDC.2006.18
10.1109/ICSE.2019.00020
10.1109/ICSE.2009.5070508
10.1145/2931037.2931049
10.1145/3324884.3416566
10.1145/3092703.3092731
10.1109/ICSE.2017.45
10.1145/3133916
10.1109/ICSM.2010.5609672
10.1109/SANER.2019.8667970
10.1145/3324884.3416590
10.1007/s10664-019-09780-z
10.1145/2001420.2001445
10.1016/j.jss.2009.06.035
10.1109/TSE.2019.2948158
10.1145/3180155.3180233
10.1109/TSE.2019.2892102
10.1145/2931037.2931051
10.1145/3293882.3330574
10.1109/VISSOFT.2013.6650539
10.1145/3338906.3338911
10.1109/ICSE.2007.66
10.1145/2896921.2896931
10.1109/TSE.2016.2560811
10.1145/2000791.2000795
10.1145/3105906
10.1145/1064978.1065014
10.1109/TSE.2016.2521368
10.1145/3106237.3106253
10.1109/TSE.2018.2874648
10.1145/3318162
10.1098/rspl.1895.0041
10.1109/TSE.2011.104
10.1145/3293882.3330578
10.1145/2931037.2948705
10.1109/ICSE.2009.5070536
10.1145/1831708.1831716
10.1145/3395363.3397351
10.1109/ASE.2009.25
10.1145/3293882.3330577
10.1145/1101908.1101949
10.1109/ICSME.2014.41
10.1145/2610384.2628055
10.1109/ICSM.2011.6080769
10.1109/ISSRE.1995.497652
10.1109/ASE.2019.00033
10.1109/ICST.2014.28
10.1109/ECBS.2007.31
10.1145/3377811.3380338
10.1109/ICST.2019.00020
10.1145/2771783.2771791
10.1109/ICSE.2012.6227210
10.1145/2786805.2786811
10.1145/3293882.3330559
10.1002/stvr.1509
10.1145/2509136.2509551
10.1109/TAIC.PART.2007.13
10.1145/3092703.3092717
10.1145/1401827.1401841
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2022
Copyright_xml – notice: Copyright IEEE Computer Society 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
K9.
DOI 10.1109/TSE.2021.3125203
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 4716
ExternalDocumentID 10_1109_TSE_2021_3125203
9601217
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-2131943; CCF-2141474
  funderid: 10.13039/501100008982
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EDO
EJD
HZ~
I-F
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
Q2X
RIA
RIE
RNS
RXW
S10
TAE
TN5
TWZ
UHB
UPT
WH7
YZZ
AAYXX
ALIPV
CITATION
JQ2
K9.
ID FETCH-LOGICAL-c291t-34fcd8b8ede4b3f1cc8e25e48f99b851f6e847fec2bb0fa66a857fa855ac60ee3
IEDL.DBID RIE
ISSN 0098-5589
IngestDate Mon Jun 30 09:14:15 EDT 2025
Tue Jul 01 01:53:19 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Wed Aug 27 02:18:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-34fcd8b8ede4b3f1cc8e25e48f99b851f6e847fec2bb0fa66a857fa855ac60ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0592-802X
0000-0001-7814-0693
PQID 2735379859
PQPubID 21418
PageCount 25
ParticipantIDs proquest_journals_2735379859
ieee_primary_9601217
crossref_primary_10_1109_TSE_2021_3125203
crossref_citationtrail_10_1109_TSE_2021_3125203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2022
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
pearson (ref60) 1895; 58
budd (ref65) 1980
(ref1) 2020
boulder (ref3) 2019
ref9
ref4
ref6
ref5
ref40
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref39
ref38
(ref64) 2018
software (ref2) 2019
lou (ref48) 2019
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
musco (ref66) 2016; 25
ref62
ref61
References_xml – ident: ref78
  doi: 10.1109/ASE.2017.8115675
– year: 2019
  ident: ref48
  article-title: Can automated program repair refine fault localization?
– ident: ref27
  doi: 10.1145/2837614.2837617
– ident: ref73
  doi: 10.1109/ASE.2003.1240292
– ident: ref25
  doi: 10.1109/ASE.2019.00075
– ident: ref20
  doi: 10.1007/978-3-319-99241-9_3
– ident: ref62
  doi: 10.1109/TSE.2019.2911283
– ident: ref75
  doi: 10.1145/3180155.3180250
– ident: ref21
  doi: 10.1145/3213846.3213871
– ident: ref31
  doi: 10.1145/2884781.2884872
– ident: ref61
  doi: 10.1109/ICSE43902.2021.00104
– ident: ref68
  doi: 10.1109/TSE.2010.62
– ident: ref50
  doi: 10.1109/PRDC.2006.18
– ident: ref46
  doi: 10.1109/ICSE.2019.00020
– volume: 25
  start-page: 1
  year: 2016
  ident: ref66
  article-title: A large-scale study of call graph-based impact prediction using mutation testing
  publication-title: Softw Qual J
– ident: ref71
  doi: 10.1109/ICSE.2009.5070508
– ident: ref38
  doi: 10.1145/2931037.2931049
– ident: ref54
  doi: 10.1145/3324884.3416566
– ident: ref11
  doi: 10.1145/3092703.3092731
– ident: ref51
  doi: 10.1109/ICSE.2017.45
– ident: ref36
  doi: 10.1145/3133916
– ident: ref67
  doi: 10.1109/ICSM.2010.5609672
– ident: ref18
  doi: 10.1109/SANER.2019.8667970
– ident: ref16
  doi: 10.1145/3324884.3416590
– ident: ref52
  doi: 10.1007/s10664-019-09780-z
– ident: ref42
  doi: 10.1145/2001420.2001445
– ident: ref32
  doi: 10.1016/j.jss.2009.06.035
– ident: ref4
  doi: 10.1109/TSE.2019.2948158
– ident: ref57
  doi: 10.1145/3180155.3180233
– ident: ref63
  doi: 10.1109/TSE.2019.2892102
– ident: ref43
  doi: 10.1145/2931037.2931051
– ident: ref12
  doi: 10.1145/3293882.3330574
– ident: ref14
  doi: 10.1109/VISSOFT.2013.6650539
– ident: ref69
  doi: 10.1145/3338906.3338911
– ident: ref74
  doi: 10.1109/ICSE.2007.66
– ident: ref19
  doi: 10.1145/2896921.2896931
– ident: ref10
  doi: 10.1109/TSE.2016.2560811
– ident: ref70
  doi: 10.1145/2000791.2000795
– ident: ref41
  doi: 10.1145/3105906
– ident: ref7
  doi: 10.1145/1064978.1065014
– ident: ref40
  doi: 10.1109/TSE.2016.2521368
– ident: ref30
  doi: 10.1145/3106237.3106253
– ident: ref23
  doi: 10.1109/TSE.2018.2874648
– ident: ref77
  doi: 10.1145/3318162
– volume: 58
  start-page: 240
  year: 1895
  ident: ref60
  article-title: Notes on regression and inheritance in the case of two parents proceedings of the royal society of london
  publication-title: Proc Roy Soc London
  doi: 10.1098/rspl.1895.0041
– year: 1980
  ident: ref65
  article-title: Mutation analysis of program test data
– ident: ref39
  doi: 10.1109/TSE.2011.104
– ident: ref24
  doi: 10.1145/3293882.3330578
– ident: ref22
  doi: 10.1145/2931037.2948705
– year: 2019
  ident: ref3
  article-title: University of Cambridge study: Failure to adopt reverse debugging costs global economy $41 billion annually
– ident: ref59
  doi: 10.1109/ICSE.2009.5070536
– ident: ref76
  doi: 10.1145/1831708.1831716
– ident: ref49
  doi: 10.1145/3395363.3397351
– ident: ref33
  doi: 10.1109/ASE.2009.25
– ident: ref17
  doi: 10.1145/3293882.3330577
– ident: ref6
  doi: 10.1145/1101908.1101949
– ident: ref37
  doi: 10.1109/ICSME.2014.41
– ident: ref47
  doi: 10.1145/2610384.2628055
– ident: ref13
  doi: 10.1109/ICSM.2011.6080769
– ident: ref55
  doi: 10.1109/ISSRE.1995.497652
– ident: ref72
  doi: 10.1109/TSE.2010.62
– ident: ref26
  doi: 10.1109/ASE.2019.00033
– ident: ref9
  doi: 10.1109/ICST.2014.28
– ident: ref15
  doi: 10.1109/ECBS.2007.31
– ident: ref58
  doi: 10.1145/3377811.3380338
– ident: ref53
  doi: 10.1109/ICST.2019.00020
– ident: ref28
  doi: 10.1145/2771783.2771791
– ident: ref56
  doi: 10.1109/ICSE.2012.6227210
– ident: ref29
  doi: 10.1145/2786805.2786811
– ident: ref45
  doi: 10.1145/3293882.3330559
– year: 2019
  ident: ref2
  article-title: Increasing software development productivity with reversible debugging
– ident: ref8
  doi: 10.1002/stvr.1509
– year: 2020
  ident: ref1
  article-title: Tricentis reports
– year: 2018
  ident: ref64
  article-title: Pit mutation testing system
– ident: ref35
  doi: 10.1145/2509136.2509551
– ident: ref5
  doi: 10.1109/TAIC.PART.2007.13
– ident: ref44
  doi: 10.1145/3092703.3092717
– ident: ref34
  doi: 10.1145/1401827.1401841
SSID ssj0005775
ssib053395008
Score 2.44214
Snippet Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4692
SubjectTerms Automated program repair
Automation
Codes
Computer bugs
Debugging
fault localization
Fault location
Learning
Localization
Location awareness
Maintenance engineering
Manuals
Patches (structures)
Software systems
unified debugging
Title Evaluating and Improving Unified Debugging
URI https://ieeexplore.ieee.org/document/9601217
https://www.proquest.com/docview/2735379859
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4nbw4P3E6pQcvit3atEmTo8iGCHpxg91Kk7zsoHSi68W_3tcunaAiXkooeRDy8vJ-7-V9AFywSDskGE4iLjBMmY1DSX_CRBRYYCSUsbW_4-FR3M3S-zmfb8H1JhcGEZvgMxzWw-Yt3y5NVbvKRoS2Y4LQHeiQ4bbO1foK58gy3tbH5Fyq9kkyUqPp05gMQRaTfco4a9tjeRXU9FT5cRE32mXSg4d2XeugkudhtdJD8_GtZON_F74LOx5mBjfrc7EHW1juQ69t4RB4iT6Aq7Gv9l0ugqK0wcbHEBAYdQRPA7qQqtorvTiE2WQ8vb0LffuE0DAVr8IkdcZKLdFiqhMXGyORcUylU0oT0HICSTU5NEzryBVCFJJnjj68MCJCTI6gWy5LPIbA6sgISzQZoY9EpVpaomRGOESHAvswanc0N762eN3i4iVvbIxI5cSDvOZB7nnQh8sNxeu6rsYfcw_qLd3M87vZh0HLtNwL3ntOaIwnmZJcnfxOdQrbrM5gaNIJB9BdvVV4Rrhipc-bA_UJuRnJeA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGGChPEWhQAYWEGkTJ3bsEaGi8igLRWKLYvvcARQQtAu_nkvqFAkQYomsyCdZPp_vu_M9AI5ZpB0SDCcRFximzMahpD9hIgosMBLK2MrfMbwTg4f0-pE_LsDZPBcGEevgM-xWw_ot376YaeUq6xHajglCL8Iy6X0ez7K1vgI6sow3FTI5l6p5lIxUb3TfJ1OQxWShMs6aBlleCdVdVX5cxbV-uWzBsFnZLKzkqTud6K75-Fa08b9LX4c1DzSD89nJ2IAFLDeh1TRxCLxMb8Fp39f7LsdBUdpg7mUICI46AqgBXUnTyi893oaHy_7oYhD6BgqhYSqehEnqjJVaosVUJy42RiLjmEqnlCao5QSScnJomNaRK4QoJM8cfXhhRISY7MBS-VLiLgRWR0ZYoskIfyQq1dISJTPCIToU2IZes6O58dXFqyYXz3ltZUQqJx7kFQ9yz4M2nMwpXmeVNf6Yu1Vt6Xye3802dBqm5V703nPCYzzJlORq73eqI1gZjIa3-e3V3c0-rLIqn6FOLuzA0uRtigeEMib6sD5cn2mlzME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+and+Improving+Unified+Debugging&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Benton%2C+Samuel&rft.au=Li%2C+Xia&rft.au=Lou%2C+Yiling&rft.au=Zhang%2C+Lingming&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=0098-5589&rft.volume=48&rft.issue=11&rft.spage=4692&rft.epage=4716&rft_id=info:doi/10.1109%2FTSE.2021.3125203&rft.externalDocID=9601217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon