OverlapTransformer: An Efficient and Yaw-Angle-Invariant Transformer Network for LiDAR-Based Place Recognition
Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key component for tasks such as loop closing in SLAM or global localization. In this letter, we address the problem of place recognition based on...
Saved in:
Published in | IEEE robotics and automation letters Vol. 7; no. 3; pp. 6958 - 6965 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key component for tasks such as loop closing in SLAM or global localization. In this letter, we address the problem of place recognition based on 3D LiDAR scans recorded by an autonomous vehicle. We propose a novel lightweight neural network exploiting the range image representation of LiDAR sensors to achieve fast execution with less than 2 ms per frame. We design a yaw-angle-invariant architecture exploiting a transformer network, which boosts the place recognition performance of our method. We evaluate our approach on the KITTI and Ford Campus datasets. The experimental results show that our method can effectively detect loop closures compared to the state-of-the-art methods and generalizes well across different environments. To evaluate long-term place recognition performance, we provide a novel dataset containing LiDAR sequences recorded by a mobile robot in repetitive places at different times. |
---|---|
AbstractList | Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key component for tasks such as loop closing in SLAM or global localization. In this letter, we address the problem of place recognition based on 3D LiDAR scans recorded by an autonomous vehicle. We propose a novel lightweight neural network exploiting the range image representation of LiDAR sensors to achieve fast execution with less than 2 ms per frame. We design a yaw-angle-invariant architecture exploiting a transformer network, which boosts the place recognition performance of our method. We evaluate our approach on the KITTI and Ford Campus datasets. The experimental results show that our method can effectively detect loop closures compared to the state-of-the-art methods and generalizes well across different environments. To evaluate long-term place recognition performance, we provide a novel dataset containing LiDAR sequences recorded by a mobile robot in repetitive places at different times. |
Author | Chen, Xieyuanli Gu, Weihao Ma, Junyi Xu, Jintao Zhang, Jun Ai, Rui |
Author_xml | – sequence: 1 givenname: Junyi orcidid: 0000-0002-2453-0001 surname: Ma fullname: Ma, Junyi email: 3120200365@bit.edu.cn organization: Vehicle Engineering, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Jun orcidid: 0000-0001-7523-8732 surname: Zhang fullname: Zhang, Jun email: dingyi@haomo.ai organization: HAOMO.AI Technology Co., Ltd, Beijing, China – sequence: 3 givenname: Jintao surname: Xu fullname: Xu, Jintao email: xujintao@haomo.ai organization: HAOMO.AI Technology Co., Ltd, Beijing, China – sequence: 4 givenname: Rui surname: Ai fullname: Ai, Rui email: luxiuyuan@haomo.ai organization: HAOMO.AI Technology Co., Ltd, Beijing, China – sequence: 5 givenname: Weihao surname: Gu fullname: Gu, Weihao email: guweihao@haomo.ai organization: HAOMO.AI Technology Co., Ltd, Beijing, China – sequence: 6 givenname: Xieyuanli orcidid: 0000-0003-0955-6681 surname: Chen fullname: Chen, Xieyuanli email: chenxieyuanli@hotmail.com |
BookMark | eNp9kM9PwjAUxxuDiYjcTbw08Tzsj63dvE1FJSFiCB48LbV7JcXRYTcg_veWQAzx4On9-n7ey_ueo46rHSB0ScmAUpLdjKf5gBHGBpzKVGbyBHUZlzLiUojOUX6G-k2zIITQhEmeJV3kJhvwlVrNvHKNqf0S_C3OHR4aY7UF12LlSvyutlHu5hVEI7dR3qrQPyLwC7Tb2n_iUOKxfcin0Z1qoMSvldKAp6DrubOtrd0FOjWqaqB_iD309jic3T9H48nT6D4fR5pltI04k9TEJCspjSlTlANJSqG1kSJLaRabkoLQVBDCyzgOSs61Bv4RJKVkRvAeut7vXfn6aw1NWyzqtXfhZMGETEjMBU2DiuxV2tdN48EUK2-Xyn8XlBQ7Y4tgbLEztjgYGxDxB9G2VbvXWq9s9R94tQctAPzeyWSaxGH6A7Q9hsw |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1016_j_aej_2024_09_060 crossref_primary_10_3390_en17164106 crossref_primary_10_1109_LRA_2022_3221336 crossref_primary_10_1109_TCSVT_2023_3323498 crossref_primary_10_1007_s11263_024_02019_5 crossref_primary_10_1109_TITS_2024_3351215 crossref_primary_10_1109_LRA_2022_3223555 crossref_primary_10_1109_TFR_2024_3419439 crossref_primary_10_1109_TITS_2024_3421375 crossref_primary_10_1111_phor_12497 crossref_primary_10_1109_TIM_2024_3375408 crossref_primary_10_1109_LRA_2023_3281937 crossref_primary_10_1007_s11760_024_03138_9 crossref_primary_10_1088_1361_6501_ad147a crossref_primary_10_1002_rob_22451 crossref_primary_10_1109_LRA_2022_3210880 crossref_primary_10_1088_1361_6501_ad3ea3 crossref_primary_10_1109_LRA_2023_3346753 crossref_primary_10_1109_LRA_2024_3475044 crossref_primary_10_1109_TRO_2024_3422055 crossref_primary_10_3390_en15176256 crossref_primary_10_1109_ACCESS_2024_3395989 crossref_primary_10_1109_JSEN_2025_3536703 crossref_primary_10_1002_aisy_202300138 crossref_primary_10_3390_s22228604 crossref_primary_10_1016_j_engappai_2024_109230 crossref_primary_10_1007_s00138_024_01629_w crossref_primary_10_1142_S0218126624502335 crossref_primary_10_3390_electronics13224532 crossref_primary_10_1016_j_isprsjprs_2023_11_005 crossref_primary_10_1017_S026357472400198X crossref_primary_10_1109_LRA_2024_3362681 crossref_primary_10_1109_LRA_2023_3255560 crossref_primary_10_1007_s10846_025_02223_6 crossref_primary_10_1109_TRO_2024_3386363 crossref_primary_10_1016_j_isprsjprs_2024_09_011 crossref_primary_10_1109_LGRS_2023_3329687 crossref_primary_10_1109_LRA_2024_3440089 crossref_primary_10_3390_pr13010272 crossref_primary_10_1109_LRA_2024_3475031 crossref_primary_10_1109_TIV_2024_3380083 crossref_primary_10_1109_LRA_2023_3284359 crossref_primary_10_1109_TRO_2025_3543267 crossref_primary_10_3390_s24020582 crossref_primary_10_1016_j_ins_2024_121075 crossref_primary_10_1109_TMM_2024_3521664 crossref_primary_10_1145_3707446 crossref_primary_10_1109_TIM_2023_3315358 crossref_primary_10_3390_rs17061057 crossref_primary_10_1007_s10462_024_10713_6 crossref_primary_10_1109_TRO_2023_3290448 crossref_primary_10_3390_electronics13020406 crossref_primary_10_1007_s00530_024_01554_y crossref_primary_10_1109_TITS_2024_3465830 crossref_primary_10_1002_rob_22423 crossref_primary_10_1109_TIE_2024_3440470 crossref_primary_10_3390_wevj16020056 crossref_primary_10_1109_LRA_2024_3495455 crossref_primary_10_1109_TII_2023_3313635 crossref_primary_10_1109_JSEN_2024_3464855 crossref_primary_10_1016_j_eswa_2023_121508 crossref_primary_10_1186_s13634_024_01153_z crossref_primary_10_1007_s40747_024_01581_2 crossref_primary_10_1109_LRA_2024_3505820 crossref_primary_10_1108_RIA_10_2023_0142 crossref_primary_10_1109_TIE_2022_3229385 crossref_primary_10_1109_LRA_2023_3239312 |
Cites_doi | 10.1109/ICCV48922.2021.00604 10.1109/IROS45743.2020.9341010 10.1109/LRA.2019.2897160 10.1109/IROS.2016.7759060 10.1109/ICRA.2017.7989618 10.1109/CVPR46437.2021.01392 10.1109/ICRA48506.2021.9561335 10.1007/s10514-021-09999-0 10.1109/IROS40897.2019.8967704 10.1109/CVPR.2010.5540039 10.1109/ICCV.2019.00292 10.1109/TPAMI.2019.2926463 10.1177/0278364911400640 10.1109/WACV48630.2021.00183 10.1109/CVPR.2017.16 10.1109/IROS.2018.8593953 10.1109/IROS51168.2021.9635904 10.1109/LRA.2015.2512936 10.1109/IROS45743.2020.9341060 10.1109/ICRA40945.2020.9196764 10.1109/ICRA48506.2021.9560932 10.1109/CVPR.2012.6248074 10.1109/ICRA.2018.8460940 10.1109/CVPR.2016.572 10.1109/IROS45743.2020.9340769 10.1109/ICRA48506.2021.9560915 10.1109/IROS.2015.7353454 10.1109/CVPR.2018.00470 10.1109/TBDATA.2019.2921572 10.15607/RSS.2020.XVI.009 10.1109/CVPR46437.2021.01119 10.1109/TRO.2015.2496823 10.1109/IROS51168.2021.9636156 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LRA.2022.3178797 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 6965 |
ExternalDocumentID | 10_1109_LRA_2022_3178797 9785497 |
Genre | orig-research |
GrantInformation_xml | – fundername: Chinese Scholarship Committee – fundername: HAOMO.AI Technology Co. Ltd. |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-3271f409d11412a13e05d6ccf7698194fd1e6c16003d44f4033cce3b6ccd72f63 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Mon Jun 30 05:59:39 EDT 2025 Tue Jul 01 03:54:12 EDT 2025 Thu Apr 24 22:52:32 EDT 2025 Wed Aug 27 02:24:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-3271f409d11412a13e05d6ccf7698194fd1e6c16003d44f4033cce3b6ccd72f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7523-8732 0000-0003-0955-6681 0000-0002-2453-0001 |
PQID | 2675043618 |
PQPubID | 4437225 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2675043618 crossref_primary_10_1109_LRA_2022_3178797 ieee_primary_9785497 crossref_citationtrail_10_1109_LRA_2022_3178797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref19 ref18 ref24 ref23 ref25 ref20 ref22 ref21 Steder (ref16) 2010 Vidanapathirana (ref26) 2021 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Vaswani (ref17) 2017 ref5 |
References_xml | – ident: ref29 doi: 10.1109/ICCV48922.2021.00604 – ident: ref9 doi: 10.1109/IROS45743.2020.9341010 – ident: ref5 doi: 10.1109/LRA.2019.2897160 – ident: ref14 doi: 10.1109/IROS.2016.7759060 – ident: ref21 doi: 10.1109/ICRA.2017.7989618 – ident: ref2 doi: 10.1109/CVPR46437.2021.01392 – ident: ref13 doi: 10.1109/ICRA48506.2021.9561335 – ident: ref11 doi: 10.1007/s10514-021-09999-0 – ident: ref10 doi: 10.1109/IROS40897.2019.8967704 – ident: ref18 doi: 10.1109/CVPR.2010.5540039 – ident: ref23 doi: 10.1109/ICCV.2019.00292 – ident: ref35 doi: 10.1109/TPAMI.2019.2926463 – ident: ref34 doi: 10.1177/0278364911400640 – ident: ref25 doi: 10.1109/WACV48630.2021.00183 – volume-title: arXiv:2109.08336 year: 2021 ident: ref26 article-title: LoGG3D-Net: Locally guided global descriptor learning for 3D place recognition – ident: ref24 doi: 10.1109/CVPR.2017.16 – start-page: 1 volume-title: Proc. IROS Workshop Defining Solving Realistic Percep. Problems Pers. Robot. year: 2010 ident: ref16 article-title: NARF: 3D range image features for object recognition – ident: ref7 doi: 10.1109/IROS.2018.8593953 – ident: ref31 doi: 10.1109/IROS51168.2021.9635904 – ident: ref4 doi: 10.1109/LRA.2015.2512936 – ident: ref30 doi: 10.1109/IROS45743.2020.9341060 – ident: ref20 doi: 10.1109/ICRA40945.2020.9196764 – ident: ref28 doi: 10.1109/ICRA48506.2021.9560932 – ident: ref33 doi: 10.1109/CVPR.2012.6248074 – ident: ref19 doi: 10.1109/ICRA.2018.8460940 – ident: ref1 doi: 10.1109/CVPR.2016.572 – ident: ref12 doi: 10.1109/IROS45743.2020.9340769 – ident: ref22 doi: 10.1109/ICRA48506.2021.9560915 – start-page: 6000 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref17 article-title: Attention is all you need – ident: ref15 doi: 10.1109/IROS.2015.7353454 – ident: ref8 doi: 10.1109/CVPR.2018.00470 – ident: ref36 doi: 10.1109/TBDATA.2019.2921572 – ident: ref6 doi: 10.15607/RSS.2020.XVI.009 – ident: ref27 doi: 10.1109/CVPR46437.2021.01119 – ident: ref3 doi: 10.1109/TRO.2015.2496823 – ident: ref32 doi: 10.1109/IROS51168.2021.9636156 |
SSID | ssj0001527395 |
Score | 2.5897233 |
Snippet | Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6958 |
SubjectTerms | data sets for robot learning Datasets deep learning methods Feature extraction Frame design Image recognition Invariants Laser radar Lidar Neural networks Point cloud compression Recognition Semantics Sensors SLAM Transformers Yaw |
Title | OverlapTransformer: An Efficient and Yaw-Angle-Invariant Transformer Network for LiDAR-Based Place Recognition |
URI | https://ieeexplore.ieee.org/document/9785497 https://www.proquest.com/docview/2675043618 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6iPY0DgzFEB0M-7IKES2wnTsItgyI2AZuqVoJTlNgOQlRuVdoicdjfvuf8KBVDaLdEerasfHbe-56fPwN8U8pwr-ARLXSYU18XikYqlzQyWRAKmaPPLwtkr-XF0P95E9yswdHyLIwxpiw-M133WO7l67Gau1SZU4NFOhO2oIXErTqr9ZJPcUpicdDsRHrx8WU_Qf7HOdJSnJVO1WnF85RXqfzz_y2dyvlHuGqGU9WSPHTns7yrnl8pNf7veDdho44uSVJNhy1YM_YTrK9oDm6D_bVwKbzJoIlYzfSEJJb0Si0J7I9kVpPb7Ikm9m5k6A-7QDqN35-stCDXVfU4wVdyeX-W9Ol3dIea_HZZedJvqpLG9jMMz3uD0wtaX7pAFY_ZjAoesgJJn0aixHjGhPECLZUqQhlj9OAXmhmpGMZJQvs-WgqBeIscTXTICyl2oG3H1uwCQapnWGAyWeTCl16Ea12LII6VL1TEc9aB4waQVNWK5O5ijFFaMhMvThHC1EGY1hB24HDZYlKpcbxju-0QWdrVYHRgv8E8rZfrY8qlU7kXkkVf3m61Bx9c31Wd7j60Z9O5-YrRyCw_gNbVn95BORn_At0B3ho |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOAAHSnmI5VUfeqlUL7GdOElv4aWlLAtaLRKcosR2EAJ5EexSqb-ecR7LCirUWyKNE0uf7ZlvPP4M8F0pw72CR7TQYU59XSgaqVzSyGRBKGSOPr8skO3JzpX_-zq4noGfk7Mwxpiy-My03WO5l6-HauxSZU4NFulMOAvz6PcDVp3WesuoOC2xOGj2Ir14v9tPkAFyjsQUx6XTdZryPeVlKh9W4NKtnHyB86ZDVTXJfXs8ytvq7zutxv_t8Qos1_ElSaoB8RVmjF2FpSnVwTWwFy8uifc4aGJW8_SLJJYcl2oS-D2SWU1usj80sbcPhp7aFyTUiACZakF6Vf04wVfSvTtK-vQAHaImly4vT_pNXdLQrsPVyfHgsEPraxeo4jEbUcFDViDt00iVGM-YMF6gpVJFKGOMH_xCMyMVw0hJaN9HSyEQcZGjiQ55IcUGzNmhNZtAkOwZFphMFrnwpRfhbNciiGPlCxXxnLVgvwEkVbUmubsa4yEtuYkXpwhh6iBMawhb8GPS4rHS4_jEds0hMrGrwWjBToN5Wk_Y55RLp3MvJIu2_t3qGyx0BufdtHvaO9uGRfefqmp3B-ZGT2Ozi7HJKN8rh-QrWaPgMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OverlapTransformer%3A+An+Efficient+and+Yaw-Angle-Invariant+Transformer+Network+for+LiDAR-Based+Place+Recognition&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Ma%2C+Junyi&rft.au=Zhang%2C+Jun&rft.au=Xu%2C+Jintao&rft.au=Ai%2C+Rui&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=7&rft.issue=3&rft.spage=6958&rft_id=info:doi/10.1109%2FLRA.2022.3178797&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |