OverlapTransformer: An Efficient and Yaw-Angle-Invariant Transformer Network for LiDAR-Based Place Recognition

Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key component for tasks such as loop closing in SLAM or global localization. In this letter, we address the problem of place recognition based on...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 7; no. 3; pp. 6958 - 6965
Main Authors Ma, Junyi, Zhang, Jun, Xu, Jintao, Ai, Rui, Gu, Weihao, Chen, Xieyuanli
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key component for tasks such as loop closing in SLAM or global localization. In this letter, we address the problem of place recognition based on 3D LiDAR scans recorded by an autonomous vehicle. We propose a novel lightweight neural network exploiting the range image representation of LiDAR sensors to achieve fast execution with less than 2 ms per frame. We design a yaw-angle-invariant architecture exploiting a transformer network, which boosts the place recognition performance of our method. We evaluate our approach on the KITTI and Ford Campus datasets. The experimental results show that our method can effectively detect loop closures compared to the state-of-the-art methods and generalizes well across different environments. To evaluate long-term place recognition performance, we provide a novel dataset containing LiDAR sequences recorded by a mobile robot in repetitive places at different times.
AbstractList Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key component for tasks such as loop closing in SLAM or global localization. In this letter, we address the problem of place recognition based on 3D LiDAR scans recorded by an autonomous vehicle. We propose a novel lightweight neural network exploiting the range image representation of LiDAR sensors to achieve fast execution with less than 2 ms per frame. We design a yaw-angle-invariant architecture exploiting a transformer network, which boosts the place recognition performance of our method. We evaluate our approach on the KITTI and Ford Campus datasets. The experimental results show that our method can effectively detect loop closures compared to the state-of-the-art methods and generalizes well across different environments. To evaluate long-term place recognition performance, we provide a novel dataset containing LiDAR sequences recorded by a mobile robot in repetitive places at different times.
Author Chen, Xieyuanli
Gu, Weihao
Ma, Junyi
Xu, Jintao
Zhang, Jun
Ai, Rui
Author_xml – sequence: 1
  givenname: Junyi
  orcidid: 0000-0002-2453-0001
  surname: Ma
  fullname: Ma, Junyi
  email: 3120200365@bit.edu.cn
  organization: Vehicle Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0001-7523-8732
  surname: Zhang
  fullname: Zhang, Jun
  email: dingyi@haomo.ai
  organization: HAOMO.AI Technology Co., Ltd, Beijing, China
– sequence: 3
  givenname: Jintao
  surname: Xu
  fullname: Xu, Jintao
  email: xujintao@haomo.ai
  organization: HAOMO.AI Technology Co., Ltd, Beijing, China
– sequence: 4
  givenname: Rui
  surname: Ai
  fullname: Ai, Rui
  email: luxiuyuan@haomo.ai
  organization: HAOMO.AI Technology Co., Ltd, Beijing, China
– sequence: 5
  givenname: Weihao
  surname: Gu
  fullname: Gu, Weihao
  email: guweihao@haomo.ai
  organization: HAOMO.AI Technology Co., Ltd, Beijing, China
– sequence: 6
  givenname: Xieyuanli
  orcidid: 0000-0003-0955-6681
  surname: Chen
  fullname: Chen, Xieyuanli
  email: chenxieyuanli@hotmail.com
BookMark eNp9kM9PwjAUxxuDiYjcTbw08Tzsj63dvE1FJSFiCB48LbV7JcXRYTcg_veWQAzx4On9-n7ey_ueo46rHSB0ScmAUpLdjKf5gBHGBpzKVGbyBHUZlzLiUojOUX6G-k2zIITQhEmeJV3kJhvwlVrNvHKNqf0S_C3OHR4aY7UF12LlSvyutlHu5hVEI7dR3qrQPyLwC7Tb2n_iUOKxfcin0Z1qoMSvldKAp6DrubOtrd0FOjWqaqB_iD309jic3T9H48nT6D4fR5pltI04k9TEJCspjSlTlANJSqG1kSJLaRabkoLQVBDCyzgOSs61Bv4RJKVkRvAeut7vXfn6aw1NWyzqtXfhZMGETEjMBU2DiuxV2tdN48EUK2-Xyn8XlBQ7Y4tgbLEztjgYGxDxB9G2VbvXWq9s9R94tQctAPzeyWSaxGH6A7Q9hsw
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_aej_2024_09_060
crossref_primary_10_3390_en17164106
crossref_primary_10_1109_LRA_2022_3221336
crossref_primary_10_1109_TCSVT_2023_3323498
crossref_primary_10_1007_s11263_024_02019_5
crossref_primary_10_1109_TITS_2024_3351215
crossref_primary_10_1109_LRA_2022_3223555
crossref_primary_10_1109_TFR_2024_3419439
crossref_primary_10_1109_TITS_2024_3421375
crossref_primary_10_1111_phor_12497
crossref_primary_10_1109_TIM_2024_3375408
crossref_primary_10_1109_LRA_2023_3281937
crossref_primary_10_1007_s11760_024_03138_9
crossref_primary_10_1088_1361_6501_ad147a
crossref_primary_10_1002_rob_22451
crossref_primary_10_1109_LRA_2022_3210880
crossref_primary_10_1088_1361_6501_ad3ea3
crossref_primary_10_1109_LRA_2023_3346753
crossref_primary_10_1109_LRA_2024_3475044
crossref_primary_10_1109_TRO_2024_3422055
crossref_primary_10_3390_en15176256
crossref_primary_10_1109_ACCESS_2024_3395989
crossref_primary_10_1109_JSEN_2025_3536703
crossref_primary_10_1002_aisy_202300138
crossref_primary_10_3390_s22228604
crossref_primary_10_1016_j_engappai_2024_109230
crossref_primary_10_1007_s00138_024_01629_w
crossref_primary_10_1142_S0218126624502335
crossref_primary_10_3390_electronics13224532
crossref_primary_10_1016_j_isprsjprs_2023_11_005
crossref_primary_10_1017_S026357472400198X
crossref_primary_10_1109_LRA_2024_3362681
crossref_primary_10_1109_LRA_2023_3255560
crossref_primary_10_1007_s10846_025_02223_6
crossref_primary_10_1109_TRO_2024_3386363
crossref_primary_10_1016_j_isprsjprs_2024_09_011
crossref_primary_10_1109_LGRS_2023_3329687
crossref_primary_10_1109_LRA_2024_3440089
crossref_primary_10_3390_pr13010272
crossref_primary_10_1109_LRA_2024_3475031
crossref_primary_10_1109_TIV_2024_3380083
crossref_primary_10_1109_LRA_2023_3284359
crossref_primary_10_1109_TRO_2025_3543267
crossref_primary_10_3390_s24020582
crossref_primary_10_1016_j_ins_2024_121075
crossref_primary_10_1109_TMM_2024_3521664
crossref_primary_10_1145_3707446
crossref_primary_10_1109_TIM_2023_3315358
crossref_primary_10_3390_rs17061057
crossref_primary_10_1007_s10462_024_10713_6
crossref_primary_10_1109_TRO_2023_3290448
crossref_primary_10_3390_electronics13020406
crossref_primary_10_1007_s00530_024_01554_y
crossref_primary_10_1109_TITS_2024_3465830
crossref_primary_10_1002_rob_22423
crossref_primary_10_1109_TIE_2024_3440470
crossref_primary_10_3390_wevj16020056
crossref_primary_10_1109_LRA_2024_3495455
crossref_primary_10_1109_TII_2023_3313635
crossref_primary_10_1109_JSEN_2024_3464855
crossref_primary_10_1016_j_eswa_2023_121508
crossref_primary_10_1186_s13634_024_01153_z
crossref_primary_10_1007_s40747_024_01581_2
crossref_primary_10_1109_LRA_2024_3505820
crossref_primary_10_1108_RIA_10_2023_0142
crossref_primary_10_1109_TIE_2022_3229385
crossref_primary_10_1109_LRA_2023_3239312
Cites_doi 10.1109/ICCV48922.2021.00604
10.1109/IROS45743.2020.9341010
10.1109/LRA.2019.2897160
10.1109/IROS.2016.7759060
10.1109/ICRA.2017.7989618
10.1109/CVPR46437.2021.01392
10.1109/ICRA48506.2021.9561335
10.1007/s10514-021-09999-0
10.1109/IROS40897.2019.8967704
10.1109/CVPR.2010.5540039
10.1109/ICCV.2019.00292
10.1109/TPAMI.2019.2926463
10.1177/0278364911400640
10.1109/WACV48630.2021.00183
10.1109/CVPR.2017.16
10.1109/IROS.2018.8593953
10.1109/IROS51168.2021.9635904
10.1109/LRA.2015.2512936
10.1109/IROS45743.2020.9341060
10.1109/ICRA40945.2020.9196764
10.1109/ICRA48506.2021.9560932
10.1109/CVPR.2012.6248074
10.1109/ICRA.2018.8460940
10.1109/CVPR.2016.572
10.1109/IROS45743.2020.9340769
10.1109/ICRA48506.2021.9560915
10.1109/IROS.2015.7353454
10.1109/CVPR.2018.00470
10.1109/TBDATA.2019.2921572
10.15607/RSS.2020.XVI.009
10.1109/CVPR46437.2021.01119
10.1109/TRO.2015.2496823
10.1109/IROS51168.2021.9636156
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2022.3178797
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 6965
ExternalDocumentID 10_1109_LRA_2022_3178797
9785497
Genre orig-research
GrantInformation_xml – fundername: Chinese Scholarship Committee
– fundername: HAOMO.AI Technology Co. Ltd.
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-3271f409d11412a13e05d6ccf7698194fd1e6c16003d44f4033cce3b6ccd72f63
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Mon Jun 30 05:59:39 EDT 2025
Tue Jul 01 03:54:12 EDT 2025
Thu Apr 24 22:52:32 EDT 2025
Wed Aug 27 02:24:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-3271f409d11412a13e05d6ccf7698194fd1e6c16003d44f4033cce3b6ccd72f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7523-8732
0000-0003-0955-6681
0000-0002-2453-0001
PQID 2675043618
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2675043618
crossref_primary_10_1109_LRA_2022_3178797
ieee_primary_9785497
crossref_citationtrail_10_1109_LRA_2022_3178797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref19
ref18
ref24
ref23
ref25
ref20
ref22
ref21
Steder (ref16) 2010
Vidanapathirana (ref26) 2021
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Vaswani (ref17) 2017
ref5
References_xml – ident: ref29
  doi: 10.1109/ICCV48922.2021.00604
– ident: ref9
  doi: 10.1109/IROS45743.2020.9341010
– ident: ref5
  doi: 10.1109/LRA.2019.2897160
– ident: ref14
  doi: 10.1109/IROS.2016.7759060
– ident: ref21
  doi: 10.1109/ICRA.2017.7989618
– ident: ref2
  doi: 10.1109/CVPR46437.2021.01392
– ident: ref13
  doi: 10.1109/ICRA48506.2021.9561335
– ident: ref11
  doi: 10.1007/s10514-021-09999-0
– ident: ref10
  doi: 10.1109/IROS40897.2019.8967704
– ident: ref18
  doi: 10.1109/CVPR.2010.5540039
– ident: ref23
  doi: 10.1109/ICCV.2019.00292
– ident: ref35
  doi: 10.1109/TPAMI.2019.2926463
– ident: ref34
  doi: 10.1177/0278364911400640
– ident: ref25
  doi: 10.1109/WACV48630.2021.00183
– volume-title: arXiv:2109.08336
  year: 2021
  ident: ref26
  article-title: LoGG3D-Net: Locally guided global descriptor learning for 3D place recognition
– ident: ref24
  doi: 10.1109/CVPR.2017.16
– start-page: 1
  volume-title: Proc. IROS Workshop Defining Solving Realistic Percep. Problems Pers. Robot.
  year: 2010
  ident: ref16
  article-title: NARF: 3D range image features for object recognition
– ident: ref7
  doi: 10.1109/IROS.2018.8593953
– ident: ref31
  doi: 10.1109/IROS51168.2021.9635904
– ident: ref4
  doi: 10.1109/LRA.2015.2512936
– ident: ref30
  doi: 10.1109/IROS45743.2020.9341060
– ident: ref20
  doi: 10.1109/ICRA40945.2020.9196764
– ident: ref28
  doi: 10.1109/ICRA48506.2021.9560932
– ident: ref33
  doi: 10.1109/CVPR.2012.6248074
– ident: ref19
  doi: 10.1109/ICRA.2018.8460940
– ident: ref1
  doi: 10.1109/CVPR.2016.572
– ident: ref12
  doi: 10.1109/IROS45743.2020.9340769
– ident: ref22
  doi: 10.1109/ICRA48506.2021.9560915
– start-page: 6000
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref17
  article-title: Attention is all you need
– ident: ref15
  doi: 10.1109/IROS.2015.7353454
– ident: ref8
  doi: 10.1109/CVPR.2018.00470
– ident: ref36
  doi: 10.1109/TBDATA.2019.2921572
– ident: ref6
  doi: 10.15607/RSS.2020.XVI.009
– ident: ref27
  doi: 10.1109/CVPR46437.2021.01119
– ident: ref3
  doi: 10.1109/TRO.2015.2496823
– ident: ref32
  doi: 10.1109/IROS51168.2021.9636156
SSID ssj0001527395
Score 2.5897233
Snippet Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6958
SubjectTerms data sets for robot learning
Datasets
deep learning methods
Feature extraction
Frame design
Image recognition
Invariants
Laser radar
Lidar
Neural networks
Point cloud compression
Recognition
Semantics
Sensors
SLAM
Transformers
Yaw
Title OverlapTransformer: An Efficient and Yaw-Angle-Invariant Transformer Network for LiDAR-Based Place Recognition
URI https://ieeexplore.ieee.org/document/9785497
https://www.proquest.com/docview/2675043618
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6iPY0DgzFEB0M-7IKES2wnTsItgyI2AZuqVoJTlNgOQlRuVdoicdjfvuf8KBVDaLdEerasfHbe-56fPwN8U8pwr-ARLXSYU18XikYqlzQyWRAKmaPPLwtkr-XF0P95E9yswdHyLIwxpiw-M133WO7l67Gau1SZU4NFOhO2oIXErTqr9ZJPcUpicdDsRHrx8WU_Qf7HOdJSnJVO1WnF85RXqfzz_y2dyvlHuGqGU9WSPHTns7yrnl8pNf7veDdho44uSVJNhy1YM_YTrK9oDm6D_bVwKbzJoIlYzfSEJJb0Si0J7I9kVpPb7Ikm9m5k6A-7QDqN35-stCDXVfU4wVdyeX-W9Ol3dIea_HZZedJvqpLG9jMMz3uD0wtaX7pAFY_ZjAoesgJJn0aixHjGhPECLZUqQhlj9OAXmhmpGMZJQvs-WgqBeIscTXTICyl2oG3H1uwCQapnWGAyWeTCl16Ea12LII6VL1TEc9aB4waQVNWK5O5ijFFaMhMvThHC1EGY1hB24HDZYlKpcbxju-0QWdrVYHRgv8E8rZfrY8qlU7kXkkVf3m61Bx9c31Wd7j60Z9O5-YrRyCw_gNbVn95BORn_At0B3ho
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOAAHSnmI5VUfeqlUL7GdOElv4aWlLAtaLRKcosR2EAJ5EexSqb-ecR7LCirUWyKNE0uf7ZlvPP4M8F0pw72CR7TQYU59XSgaqVzSyGRBKGSOPr8skO3JzpX_-zq4noGfk7Mwxpiy-My03WO5l6-HauxSZU4NFulMOAvz6PcDVp3WesuoOC2xOGj2Ir14v9tPkAFyjsQUx6XTdZryPeVlKh9W4NKtnHyB86ZDVTXJfXs8ytvq7zutxv_t8Qos1_ElSaoB8RVmjF2FpSnVwTWwFy8uifc4aGJW8_SLJJYcl2oS-D2SWU1usj80sbcPhp7aFyTUiACZakF6Vf04wVfSvTtK-vQAHaImly4vT_pNXdLQrsPVyfHgsEPraxeo4jEbUcFDViDt00iVGM-YMF6gpVJFKGOMH_xCMyMVw0hJaN9HSyEQcZGjiQ55IcUGzNmhNZtAkOwZFphMFrnwpRfhbNciiGPlCxXxnLVgvwEkVbUmubsa4yEtuYkXpwhh6iBMawhb8GPS4rHS4_jEds0hMrGrwWjBToN5Wk_Y55RLp3MvJIu2_t3qGyx0BufdtHvaO9uGRfefqmp3B-ZGT2Ozi7HJKN8rh-QrWaPgMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OverlapTransformer%3A+An+Efficient+and+Yaw-Angle-Invariant+Transformer+Network+for+LiDAR-Based+Place+Recognition&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Ma%2C+Junyi&rft.au=Zhang%2C+Jun&rft.au=Xu%2C+Jintao&rft.au=Ai%2C+Rui&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=7&rft.issue=3&rft.spage=6958&rft_id=info:doi/10.1109%2FLRA.2022.3178797&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon