Incentivizing Federated Learning Under Long-Term Energy Constraint via Online Randomized Auctions

Mobile users are often reluctant to participate in federated learning to train models, due to the excessive consumption of the limited resources such as the mobile devices' energy. We propose an auction-based online incentive mechanism, FLORA, which allows users to submit bids dynamically and r...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 21; no. 7; pp. 5129 - 5144
Main Authors Yuan, Yulan, Jiao, Lei, Zhu, Konglin, Zhang, Lin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mobile users are often reluctant to participate in federated learning to train models, due to the excessive consumption of the limited resources such as the mobile devices' energy. We propose an auction-based online incentive mechanism, FLORA, which allows users to submit bids dynamically and repetitively and compensates such bids subject to each user's long-term battery capacity. We formulate a nonlinear mixed-integer program to capture the social cost minimization in the federated learning system. Then we design multiple polynomial-time online algorithms, including a fractional online algorithm and a randomized rounding algorithm to select winning bids and control training accuracy, as well as a payment allocation algorithm to calculate the remuneration based on the bid-winning probabilities. Maintaining the satisfiable quality of the global model that is trained, our approach works on the fly without relying on the unknown future inputs, and achieves provably a sublinear regret and a sublinear fit over time while attaining the economic properties of truthfulness and individual rationality in expectation. Extensive trace-driven evaluations have confirmed the practical superiority of FLORA over existing alternatives.
AbstractList Mobile users are often reluctant to participate in federated learning to train models, due to the excessive consumption of the limited resources such as the mobile devices' energy. We propose an auction-based online incentive mechanism, FLORA, which allows users to submit bids dynamically and repetitively and compensates such bids subject to each user's long-term battery capacity. We formulate a nonlinear mixed-integer program to capture the social cost minimization in the federated learning system. Then we design multiple polynomial-time online algorithms, including a fractional online algorithm and a randomized rounding algorithm to select winning bids and control training accuracy, as well as a payment allocation algorithm to calculate the remuneration based on the bid-winning probabilities. Maintaining the satisfiable quality of the global model that is trained, our approach works on the fly without relying on the unknown future inputs, and achieves provably a sublinear regret and a sublinear fit over time while attaining the economic properties of truthfulness and individual rationality in expectation. Extensive trace-driven evaluations have confirmed the practical superiority of FLORA over existing alternatives.
Author Zhu, Konglin
Jiao, Lei
Yuan, Yulan
Zhang, Lin
Author_xml – sequence: 1
  givenname: Yulan
  orcidid: 0000-0001-9433-0227
  surname: Yuan
  fullname: Yuan, Yulan
  email: yuanyl@bupt.edu.cn
  organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-3964-3172
  surname: Jiao
  fullname: Jiao, Lei
  email: jiao@cs.uoregon.edu
  organization: Department of Computer and Information Science, University of Oregon, Eugene, OR, USA
– sequence: 3
  givenname: Konglin
  orcidid: 0000-0001-7671-311X
  surname: Zhu
  fullname: Zhu, Konglin
  email: klzhu@bupt.edu.cn
  organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Lin
  orcidid: 0000-0003-0424-9965
  surname: Zhang
  fullname: Zhang, Lin
  email: zhanglin@bupt.edu.cn
  organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNp9UE1rwkAUXIqFqu290Eug59j9yH7kKEFbISAUpcewyb7Iim7sJgr667tB6aGHnt5jmJn3ZkZo4BoHCD0TPCEEp2-rr2xCMSUTRpjENLlDQ8K5iilN1KDfmYgJleIBjdp2izGRgvMh0gtXgevsyV6s20RzMOB1BybKQXvXQ2sXoChv3CZegd9HMwd-c46yxrWd19Z10cnqaOl21kH0qZ1p9vYSDKbHqrOB9Ijua71r4ek2x2g9n62yjzhfvi-yaR5XNCVdzIiuSsAyEVwSXCmVJLoELsukNsowWZIyEcCk0dJQXiuiypSbWmqmFaTGsDF6vfoefPN9hLYrts3Ru3CyoEIpSUJ6FVjiyqp807Ye6qKyne4f7cPsCoKLvs4i1Fn0dRa3OoMQ_xEevN1rf_5P8nKVWAD4padCcEYZ-wF4rYL_
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_JIOT_2023_3315770
crossref_primary_10_1109_JIOT_2024_3394170
crossref_primary_10_1016_j_comnet_2024_110903
crossref_primary_10_1109_TMC_2023_3317063
crossref_primary_10_1109_TMC_2024_3361089
crossref_primary_10_1109_JIOT_2023_3316470
crossref_primary_10_1109_JIOT_2024_3432049
crossref_primary_10_1109_TMC_2024_3379659
crossref_primary_10_1109_TMC_2024_3508260
Cites_doi 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00148
10.1109/TWC.2021.3062708
10.1109/ICDCS47774.2020.00094
10.1109/TSP.2017.2750109
10.1109/ACCESS.2020.2968399
10.1109/SFCS.2001.959924
10.1109/JSAC.2020.3036948
10.1109/JSAC.2020.3036961
10.1109/JSAC.2020.3036952
10.1109/INFOCOM41043.2020.9155268
10.1109/JIOT.2020.2984332
10.1109/TNET.2020.3035770
10.1109/INFOCOM.2019.8737464
10.1109/ICDCS.2019.00099
10.1109/JSAC.2020.3036944
10.1109/JSAC.2019.2904348
10.1109/TWC.2020.2971981
10.1109/IWQoS49365.2020.9212881
10.1007/s10107980020a
10.1109/ICDCS47774.2020.00049
10.1145/3199675
10.1109/GLOBECOM38437.2019.9013587
10.1109/JIOT.2019.2956615
10.1109/TWC.2018.2872981
10.1109/JIOT.2019.2940820
10.1109/JIOT.2020.2967772
10.1109/CloudCom.2010.28
10.1109/MIS.2020.2987774
10.1109/5.726791
10.1109/INFOCOM41043.2020.9155494
10.1109/JIOT.2018.2860281
10.1109/TMC.2020.2994639
10.1109/JSTSP.2015.2404790
10.1109/TWC.2020.3037554
10.1109/TWC.2020.3024629
10.1109/MNET.011.1900317
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2021.3137024
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 5144
ExternalDocumentID 10_1109_TWC_2021_3137024
9665323
Genre orig-research
GrantInformation_xml – fundername: Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University
  grantid: KF20211123202
  funderid: 10.13039/501100019803
– fundername: Hunan Province Science and Technology Project Funds
  grantid: 2018TP1036
– fundername: U.S. National Science Foundation
  grantid: CNS-2047719
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-31acbe07465710c8844abe57b4fd8d37b1b46e37da7d25f818b95df7a3a8e9dd3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:13:31 EDT 2025
Thu Apr 24 22:52:05 EDT 2025
Tue Jul 01 04:13:32 EDT 2025
Wed Aug 27 02:25:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-31acbe07465710c8844abe57b4fd8d37b1b46e37da7d25f818b95df7a3a8e9dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0424-9965
0000-0002-3964-3172
0000-0001-9433-0227
0000-0001-7671-311X
PQID 2688711278
PQPubID 105736
PageCount 16
ParticipantIDs ieee_primary_9665323
crossref_citationtrail_10_1109_TWC_2021_3137024
crossref_primary_10_1109_TWC_2021_3137024
proquest_journals_2688711278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-July
2022-7-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
Xiao (ref40) 2017; abs/1708.07747
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
(ref41) 2020
ref19
ref18
Wang (ref24)
Konecný (ref13) 2016; abs/1610.02527
Carr (ref23)
ref26
ref25
ref20
ref22
ref44
ref21
ref28
ref27
McMahan (ref42)
ref29
ref8
(ref45) 2020
ref7
ref9
ref4
ref3
ref6
ref5
Li (ref43)
Gao (ref37) 2019; 16
References_xml – ident: ref26
  doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00148
– ident: ref10
  doi: 10.1109/TWC.2021.3062708
– volume: 16
  start-page: 1
  issue: 2
  year: 2019
  ident: ref37
  article-title: Bounds on the Jensen gap, and implications for mean-concentrated distributions
  publication-title: Austral. J. Math. Anal. Appl.
– ident: ref12
  doi: 10.1109/ICDCS47774.2020.00094
– ident: ref22
  doi: 10.1109/TSP.2017.2750109
– start-page: 1273
  volume-title: Artificial Intelligence and Statistics
  ident: ref42
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref4
  doi: 10.1109/ACCESS.2020.2968399
– ident: ref38
  doi: 10.1109/SFCS.2001.959924
– volume-title: PyTorch
  year: 2020
  ident: ref41
– ident: ref34
  doi: 10.1109/JSAC.2020.3036948
– ident: ref35
  doi: 10.1109/JSAC.2020.3036961
– ident: ref17
  doi: 10.1109/JSAC.2020.3036952
– ident: ref8
  doi: 10.1109/INFOCOM41043.2020.9155268
– start-page: 429
  volume-title: Proc. Conf. Mach. Learn. Syst. (MLSys)
  ident: ref43
  article-title: Federated optimization in heterogeneous networks
– ident: ref30
  doi: 10.1109/JIOT.2020.2984332
– ident: ref33
  doi: 10.1109/TNET.2020.3035770
– volume: abs/1708.07747
  start-page: 1
  year: 2017
  ident: ref40
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
  publication-title: CoRR
– ident: ref15
  doi: 10.1109/INFOCOM.2019.8737464
– ident: ref31
  doi: 10.1109/ICDCS.2019.00099
– ident: ref28
  doi: 10.1109/JSAC.2020.3036944
– ident: ref2
  doi: 10.1109/JSAC.2019.2904348
– ident: ref9
  doi: 10.1109/TWC.2020.2971981
– ident: ref32
  doi: 10.1109/IWQoS49365.2020.9212881
– ident: ref36
  doi: 10.1007/s10107980020a
– volume-title: Build Efficient Optimal Control Software, With Minimal Effort
  year: 2020
  ident: ref45
– ident: ref6
  doi: 10.1109/ICDCS47774.2020.00049
– ident: ref11
  doi: 10.1145/3199675
– ident: ref14
  doi: 10.1109/GLOBECOM38437.2019.9013587
– ident: ref29
  doi: 10.1109/JIOT.2019.2956615
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref24
  article-title: Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior
– ident: ref7
  doi: 10.1109/TWC.2018.2872981
– ident: ref19
  doi: 10.1109/JIOT.2019.2940820
– ident: ref27
  doi: 10.1109/JIOT.2020.2967772
– ident: ref44
  doi: 10.1109/CloudCom.2010.28
– start-page: 106
  volume-title: Proc. ACM-SIAM Symp. Discrete Algorithms (SODA)
  ident: ref23
  article-title: Strengthening integrality gaps for capacitated network design and covering problems
– ident: ref5
  doi: 10.1109/MIS.2020.2987774
– ident: ref39
  doi: 10.1109/5.726791
– ident: ref18
  doi: 10.1109/INFOCOM41043.2020.9155494
– ident: ref25
  doi: 10.1109/JIOT.2018.2860281
– ident: ref20
  doi: 10.1109/TMC.2020.2994639
– ident: ref21
  doi: 10.1109/JSTSP.2015.2404790
– volume: abs/1610.02527
  start-page: 1
  year: 2016
  ident: ref13
  article-title: Federated optimization: Distributed machine learning for on-device intelligence
  publication-title: CoRR
– ident: ref1
  doi: 10.1109/TWC.2020.3037554
– ident: ref16
  doi: 10.1109/TWC.2020.3024629
– ident: ref3
  doi: 10.1109/MNET.011.1900317
SSID ssj0017655
Score 2.4821353
Snippet Mobile users are often reluctant to participate in federated learning to train models, due to the excessive consumption of the limited resources such as the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5129
SubjectTerms Algorithms
Biological system modeling
Collaborative work
Computational modeling
Costs
Data models
Electronic devices
energy constraint
Federated learning
incentive mechanism
Machine learning
Mixed integer
Mobile handsets
Polynomials
Rounding
Wireless communication
Title Incentivizing Federated Learning Under Long-Term Energy Constraint via Online Randomized Auctions
URI https://ieeexplore.ieee.org/document/9665323
https://www.proquest.com/docview/2688711278
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooFFp1gSIfuFRqdhPHiZ0jQqxQBRzQonKL_BijVUu2KlkO--sZO9motBXqLVHsyMrY88jMfB_AicroiccyUcanifBWJJW0mAgyB14qr2UWeoevrsuLW_H1rrjbgC9DLwwixuIzHIfLmMt3C7sMv8om5JoXOc83YZMCt65Xa8gYyDIynNIBDrwyckhJptVk9u2MAkGeUXyay5SLFyYocqr8pYijdZnuwNV6XV1RyffxsjVju_oDsvF_F74Lb3s3k512--IdbGCzB29-Ax_cB02qIZQKPc1XdM-mAVWCHE_HesjVexY5kdjlorlPZqTA2XnsE2SB4zMyS7Tsaa5ZB1bKbnTjFg_zFb3gtEOkfXwPt9Pz2dlF0hMuJJZXWUv6WFuDgYGkIMfDKiWENlhII7xTLpcmM6LEXDotHS882XpTFc5LnWuFlXP5B9hqFg1-BCa9QMdTb4SoRMFlZVKFFovUCtTGyRFM1jKobY9GHpb-o45RSVrVJLU6SK3upTaCz8OMnx0Sxytj94MQhnH99x_B0VrMdX9UH2tekp4lr1Oqg3_POoRtHnoeYo3uEWy1v5b4iTyR1hzHLfgM3Ivb1Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wA7MNhAFAb4sMsk0iaOHTvHaVrVQbsD6sRukT-napBOLN2hfz3PThqxgdBuiWJHVp79PvLe-_0ADmWGT7wrEql9mjBvWFIK4xKG5sAL6ZXIQu_w7LyYXLAvl_xyCz73vTDOuVh85obhMuby7dKswq-yEbrmPKf5E3iKdp9nbbdWnzMQReQ4xSMcmGVEn5RMy9H8-wmGgjTDCDUXKWX3jFBkVflLFUf7Mt6F2WZlbVnJ9XDV6KFZPwBtfOzSX8KLztEkx-3OeAVbrt6DnT_gB_dBoXIIxUJ3izXek3HAlUDX05IOdPWKRFYkMl3WV8kcVTg5jZ2CJLB8Rm6JhtwtFGnhSsk3Vdvlz8UaX3DcYtLevoaL8en8ZJJ0lAuJoWXWoEZWRrvAQcLR9TBSMqa040Izb6XNhc40K1wurBKWco_WXpfceqFyJV1pbf4Gtutl7d4CEZ45S1OvGSsZp6LUqXTG8dQwp7QVAxhtZFCZDo88LP1HFeOStKxQalWQWtVJbQBH_YybFovjP2P3gxD6cd33H8DBRsxVd1hvK1qgpkW_U8h3_571CZ5N5rNpNT07__oentPQARErdg9gu_m1ch_QL2n0x7gdfwN8dN8e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incentivizing+Federated+Learning+Under+Long-Term+Energy+Constraint+via+Online+Randomized+Auctions&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Yuan%2C+Yulan&rft.au=Jiao%2C+Lei&rft.au=Zhu%2C+Konglin&rft.au=Zhang%2C+Lin&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=21&rft.issue=7&rft.spage=5129&rft.epage=5144&rft_id=info:doi/10.1109%2FTWC.2021.3137024&rft.externalDocID=9665323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon