Incentivizing Federated Learning Under Long-Term Energy Constraint via Online Randomized Auctions
Mobile users are often reluctant to participate in federated learning to train models, due to the excessive consumption of the limited resources such as the mobile devices' energy. We propose an auction-based online incentive mechanism, FLORA, which allows users to submit bids dynamically and r...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 21; no. 7; pp. 5129 - 5144 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mobile users are often reluctant to participate in federated learning to train models, due to the excessive consumption of the limited resources such as the mobile devices' energy. We propose an auction-based online incentive mechanism, FLORA, which allows users to submit bids dynamically and repetitively and compensates such bids subject to each user's long-term battery capacity. We formulate a nonlinear mixed-integer program to capture the social cost minimization in the federated learning system. Then we design multiple polynomial-time online algorithms, including a fractional online algorithm and a randomized rounding algorithm to select winning bids and control training accuracy, as well as a payment allocation algorithm to calculate the remuneration based on the bid-winning probabilities. Maintaining the satisfiable quality of the global model that is trained, our approach works on the fly without relying on the unknown future inputs, and achieves provably a sublinear regret and a sublinear fit over time while attaining the economic properties of truthfulness and individual rationality in expectation. Extensive trace-driven evaluations have confirmed the practical superiority of FLORA over existing alternatives. |
---|---|
AbstractList | Mobile users are often reluctant to participate in federated learning to train models, due to the excessive consumption of the limited resources such as the mobile devices' energy. We propose an auction-based online incentive mechanism, FLORA, which allows users to submit bids dynamically and repetitively and compensates such bids subject to each user's long-term battery capacity. We formulate a nonlinear mixed-integer program to capture the social cost minimization in the federated learning system. Then we design multiple polynomial-time online algorithms, including a fractional online algorithm and a randomized rounding algorithm to select winning bids and control training accuracy, as well as a payment allocation algorithm to calculate the remuneration based on the bid-winning probabilities. Maintaining the satisfiable quality of the global model that is trained, our approach works on the fly without relying on the unknown future inputs, and achieves provably a sublinear regret and a sublinear fit over time while attaining the economic properties of truthfulness and individual rationality in expectation. Extensive trace-driven evaluations have confirmed the practical superiority of FLORA over existing alternatives. |
Author | Zhu, Konglin Jiao, Lei Yuan, Yulan Zhang, Lin |
Author_xml | – sequence: 1 givenname: Yulan orcidid: 0000-0001-9433-0227 surname: Yuan fullname: Yuan, Yulan email: yuanyl@bupt.edu.cn organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Lei orcidid: 0000-0002-3964-3172 surname: Jiao fullname: Jiao, Lei email: jiao@cs.uoregon.edu organization: Department of Computer and Information Science, University of Oregon, Eugene, OR, USA – sequence: 3 givenname: Konglin orcidid: 0000-0001-7671-311X surname: Zhu fullname: Zhu, Konglin email: klzhu@bupt.edu.cn organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Lin orcidid: 0000-0003-0424-9965 surname: Zhang fullname: Zhang, Lin email: zhanglin@bupt.edu.cn organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China |
BookMark | eNp9UE1rwkAUXIqFqu290Eug59j9yH7kKEFbISAUpcewyb7Iim7sJgr667tB6aGHnt5jmJn3ZkZo4BoHCD0TPCEEp2-rr2xCMSUTRpjENLlDQ8K5iilN1KDfmYgJleIBjdp2izGRgvMh0gtXgevsyV6s20RzMOB1BybKQXvXQ2sXoChv3CZegd9HMwd-c46yxrWd19Z10cnqaOl21kH0qZ1p9vYSDKbHqrOB9Ijua71r4ek2x2g9n62yjzhfvi-yaR5XNCVdzIiuSsAyEVwSXCmVJLoELsukNsowWZIyEcCk0dJQXiuiypSbWmqmFaTGsDF6vfoefPN9hLYrts3Ru3CyoEIpSUJ6FVjiyqp807Ye6qKyne4f7cPsCoKLvs4i1Fn0dRa3OoMQ_xEevN1rf_5P8nKVWAD4padCcEYZ-wF4rYL_ |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1109_JIOT_2023_3315770 crossref_primary_10_1109_JIOT_2024_3394170 crossref_primary_10_1016_j_comnet_2024_110903 crossref_primary_10_1109_TMC_2023_3317063 crossref_primary_10_1109_TMC_2024_3361089 crossref_primary_10_1109_JIOT_2023_3316470 crossref_primary_10_1109_JIOT_2024_3432049 crossref_primary_10_1109_TMC_2024_3379659 crossref_primary_10_1109_TMC_2024_3508260 |
Cites_doi | 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00148 10.1109/TWC.2021.3062708 10.1109/ICDCS47774.2020.00094 10.1109/TSP.2017.2750109 10.1109/ACCESS.2020.2968399 10.1109/SFCS.2001.959924 10.1109/JSAC.2020.3036948 10.1109/JSAC.2020.3036961 10.1109/JSAC.2020.3036952 10.1109/INFOCOM41043.2020.9155268 10.1109/JIOT.2020.2984332 10.1109/TNET.2020.3035770 10.1109/INFOCOM.2019.8737464 10.1109/ICDCS.2019.00099 10.1109/JSAC.2020.3036944 10.1109/JSAC.2019.2904348 10.1109/TWC.2020.2971981 10.1109/IWQoS49365.2020.9212881 10.1007/s10107980020a 10.1109/ICDCS47774.2020.00049 10.1145/3199675 10.1109/GLOBECOM38437.2019.9013587 10.1109/JIOT.2019.2956615 10.1109/TWC.2018.2872981 10.1109/JIOT.2019.2940820 10.1109/JIOT.2020.2967772 10.1109/CloudCom.2010.28 10.1109/MIS.2020.2987774 10.1109/5.726791 10.1109/INFOCOM41043.2020.9155494 10.1109/JIOT.2018.2860281 10.1109/TMC.2020.2994639 10.1109/JSTSP.2015.2404790 10.1109/TWC.2020.3037554 10.1109/TWC.2020.3024629 10.1109/MNET.011.1900317 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2021.3137024 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 5144 |
ExternalDocumentID | 10_1109_TWC_2021_3137024 9665323 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University grantid: KF20211123202 funderid: 10.13039/501100019803 – fundername: Hunan Province Science and Technology Project Funds grantid: 2018TP1036 – fundername: U.S. National Science Foundation grantid: CNS-2047719 funderid: 10.13039/100000001 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-31acbe07465710c8844abe57b4fd8d37b1b46e37da7d25f818b95df7a3a8e9dd3 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Fri Jul 25 12:13:31 EDT 2025 Thu Apr 24 22:52:05 EDT 2025 Tue Jul 01 04:13:32 EDT 2025 Wed Aug 27 02:25:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-31acbe07465710c8844abe57b4fd8d37b1b46e37da7d25f818b95df7a3a8e9dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0424-9965 0000-0002-3964-3172 0000-0001-9433-0227 0000-0001-7671-311X |
PQID | 2688711278 |
PQPubID | 105736 |
PageCount | 16 |
ParticipantIDs | ieee_primary_9665323 crossref_citationtrail_10_1109_TWC_2021_3137024 crossref_primary_10_1109_TWC_2021_3137024 proquest_journals_2688711278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-July 2022-7-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-July |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 Xiao (ref40) 2017; abs/1708.07747 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 (ref41) 2020 ref19 ref18 Wang (ref24) Konecný (ref13) 2016; abs/1610.02527 Carr (ref23) ref26 ref25 ref20 ref22 ref44 ref21 ref28 ref27 McMahan (ref42) ref29 ref8 (ref45) 2020 ref7 ref9 ref4 ref3 ref6 ref5 Li (ref43) Gao (ref37) 2019; 16 |
References_xml | – ident: ref26 doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00148 – ident: ref10 doi: 10.1109/TWC.2021.3062708 – volume: 16 start-page: 1 issue: 2 year: 2019 ident: ref37 article-title: Bounds on the Jensen gap, and implications for mean-concentrated distributions publication-title: Austral. J. Math. Anal. Appl. – ident: ref12 doi: 10.1109/ICDCS47774.2020.00094 – ident: ref22 doi: 10.1109/TSP.2017.2750109 – start-page: 1273 volume-title: Artificial Intelligence and Statistics ident: ref42 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref4 doi: 10.1109/ACCESS.2020.2968399 – ident: ref38 doi: 10.1109/SFCS.2001.959924 – volume-title: PyTorch year: 2020 ident: ref41 – ident: ref34 doi: 10.1109/JSAC.2020.3036948 – ident: ref35 doi: 10.1109/JSAC.2020.3036961 – ident: ref17 doi: 10.1109/JSAC.2020.3036952 – ident: ref8 doi: 10.1109/INFOCOM41043.2020.9155268 – start-page: 429 volume-title: Proc. Conf. Mach. Learn. Syst. (MLSys) ident: ref43 article-title: Federated optimization in heterogeneous networks – ident: ref30 doi: 10.1109/JIOT.2020.2984332 – ident: ref33 doi: 10.1109/TNET.2020.3035770 – volume: abs/1708.07747 start-page: 1 year: 2017 ident: ref40 article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms publication-title: CoRR – ident: ref15 doi: 10.1109/INFOCOM.2019.8737464 – ident: ref31 doi: 10.1109/ICDCS.2019.00099 – ident: ref28 doi: 10.1109/JSAC.2020.3036944 – ident: ref2 doi: 10.1109/JSAC.2019.2904348 – ident: ref9 doi: 10.1109/TWC.2020.2971981 – ident: ref32 doi: 10.1109/IWQoS49365.2020.9212881 – ident: ref36 doi: 10.1007/s10107980020a – volume-title: Build Efficient Optimal Control Software, With Minimal Effort year: 2020 ident: ref45 – ident: ref6 doi: 10.1109/ICDCS47774.2020.00049 – ident: ref11 doi: 10.1145/3199675 – ident: ref14 doi: 10.1109/GLOBECOM38437.2019.9013587 – ident: ref29 doi: 10.1109/JIOT.2019.2956615 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref24 article-title: Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior – ident: ref7 doi: 10.1109/TWC.2018.2872981 – ident: ref19 doi: 10.1109/JIOT.2019.2940820 – ident: ref27 doi: 10.1109/JIOT.2020.2967772 – ident: ref44 doi: 10.1109/CloudCom.2010.28 – start-page: 106 volume-title: Proc. ACM-SIAM Symp. Discrete Algorithms (SODA) ident: ref23 article-title: Strengthening integrality gaps for capacitated network design and covering problems – ident: ref5 doi: 10.1109/MIS.2020.2987774 – ident: ref39 doi: 10.1109/5.726791 – ident: ref18 doi: 10.1109/INFOCOM41043.2020.9155494 – ident: ref25 doi: 10.1109/JIOT.2018.2860281 – ident: ref20 doi: 10.1109/TMC.2020.2994639 – ident: ref21 doi: 10.1109/JSTSP.2015.2404790 – volume: abs/1610.02527 start-page: 1 year: 2016 ident: ref13 article-title: Federated optimization: Distributed machine learning for on-device intelligence publication-title: CoRR – ident: ref1 doi: 10.1109/TWC.2020.3037554 – ident: ref16 doi: 10.1109/TWC.2020.3024629 – ident: ref3 doi: 10.1109/MNET.011.1900317 |
SSID | ssj0017655 |
Score | 2.4821353 |
Snippet | Mobile users are often reluctant to participate in federated learning to train models, due to the excessive consumption of the limited resources such as the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5129 |
SubjectTerms | Algorithms Biological system modeling Collaborative work Computational modeling Costs Data models Electronic devices energy constraint Federated learning incentive mechanism Machine learning Mixed integer Mobile handsets Polynomials Rounding Wireless communication |
Title | Incentivizing Federated Learning Under Long-Term Energy Constraint via Online Randomized Auctions |
URI | https://ieeexplore.ieee.org/document/9665323 https://www.proquest.com/docview/2688711278 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooFFp1gSIfuFRqdhPHiZ0jQqxQBRzQonKL_BijVUu2KlkO--sZO9motBXqLVHsyMrY88jMfB_AicroiccyUcanifBWJJW0mAgyB14qr2UWeoevrsuLW_H1rrjbgC9DLwwixuIzHIfLmMt3C7sMv8om5JoXOc83YZMCt65Xa8gYyDIynNIBDrwyckhJptVk9u2MAkGeUXyay5SLFyYocqr8pYijdZnuwNV6XV1RyffxsjVju_oDsvF_F74Lb3s3k512--IdbGCzB29-Ax_cB02qIZQKPc1XdM-mAVWCHE_HesjVexY5kdjlorlPZqTA2XnsE2SB4zMyS7Tsaa5ZB1bKbnTjFg_zFb3gtEOkfXwPt9Pz2dlF0hMuJJZXWUv6WFuDgYGkIMfDKiWENlhII7xTLpcmM6LEXDotHS882XpTFc5LnWuFlXP5B9hqFg1-BCa9QMdTb4SoRMFlZVKFFovUCtTGyRFM1jKobY9GHpb-o45RSVrVJLU6SK3upTaCz8OMnx0Sxytj94MQhnH99x_B0VrMdX9UH2tekp4lr1Oqg3_POoRtHnoeYo3uEWy1v5b4iTyR1hzHLfgM3Ivb1Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wA7MNhAFAb4sMsk0iaOHTvHaVrVQbsD6sRukT-napBOLN2hfz3PThqxgdBuiWJHVp79PvLe-_0ADmWGT7wrEql9mjBvWFIK4xKG5sAL6ZXIQu_w7LyYXLAvl_xyCz73vTDOuVh85obhMuby7dKswq-yEbrmPKf5E3iKdp9nbbdWnzMQReQ4xSMcmGVEn5RMy9H8-wmGgjTDCDUXKWX3jFBkVflLFUf7Mt6F2WZlbVnJ9XDV6KFZPwBtfOzSX8KLztEkx-3OeAVbrt6DnT_gB_dBoXIIxUJ3izXek3HAlUDX05IOdPWKRFYkMl3WV8kcVTg5jZ2CJLB8Rm6JhtwtFGnhSsk3Vdvlz8UaX3DcYtLevoaL8en8ZJJ0lAuJoWXWoEZWRrvAQcLR9TBSMqa040Izb6XNhc40K1wurBKWco_WXpfceqFyJV1pbf4Gtutl7d4CEZ45S1OvGSsZp6LUqXTG8dQwp7QVAxhtZFCZDo88LP1HFeOStKxQalWQWtVJbQBH_YybFovjP2P3gxD6cd33H8DBRsxVd1hvK1qgpkW_U8h3_571CZ5N5rNpNT07__oentPQARErdg9gu_m1ch_QL2n0x7gdfwN8dN8e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incentivizing+Federated+Learning+Under+Long-Term+Energy+Constraint+via+Online+Randomized+Auctions&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Yuan%2C+Yulan&rft.au=Jiao%2C+Lei&rft.au=Zhu%2C+Konglin&rft.au=Zhang%2C+Lin&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=21&rft.issue=7&rft.spage=5129&rft.epage=5144&rft_id=info:doi/10.1109%2FTWC.2021.3137024&rft.externalDocID=9665323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |