From Noisy Data to Feedback Controllers: Nonconservative Design via a Matrix S-Lemma

In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient of our design is a new matrix S-lemma that will be proven in this article. We provide both strict and nonstrict versions of this S-lemma, wh...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 67; no. 1; pp. 162 - 175
Main Authors van Waarde, Henk J., Camlibel, M. Kanat, Mesbahi, Mehran
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2020.3047577

Cover

Loading…
Abstract In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient of our design is a new matrix S-lemma that will be proven in this article. We provide both strict and nonstrict versions of this S-lemma, which are of interest in their own right. Thereafter, we will apply these results to data-driven control. In particular, we will derive nonconservative design methods for quadratic stabilization, <inline-formula><tex-math notation="LaTeX">\mathcal {H}_2</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathcal {H}_{\infty }</tex-math></inline-formula> control, all in terms of data-based linear matrix inequalities. In contrast to previous work, the dimensions of our decision variables are independent of the time horizon of the experiment. Our approach, thus, enables control design from large datasets.
AbstractList In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient of our design is a new matrix S-lemma that will be proven in this article. We provide both strict and nonstrict versions of this S-lemma, which are of interest in their own right. Thereafter, we will apply these results to data-driven control. In particular, we will derive nonconservative design methods for quadratic stabilization, <inline-formula><tex-math notation="LaTeX">\mathcal {H}_2</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathcal {H}_{\infty }</tex-math></inline-formula> control, all in terms of data-based linear matrix inequalities. In contrast to previous work, the dimensions of our decision variables are independent of the time horizon of the experiment. Our approach, thus, enables control design from large datasets.
In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient of our design is a new matrix S-lemma that will be proven in this article. We provide both strict and nonstrict versions of this S-lemma, which are of interest in their own right. Thereafter, we will apply these results to data-driven control. In particular, we will derive nonconservative design methods for quadratic stabilization, [Formula Omitted] and [Formula Omitted] control, all in terms of data-based linear matrix inequalities. In contrast to previous work, the dimensions of our decision variables are independent of the time horizon of the experiment. Our approach, thus, enables control design from large datasets.
Author Camlibel, M. Kanat
van Waarde, Henk J.
Mesbahi, Mehran
Author_xml – sequence: 1
  givenname: Henk J.
  orcidid: 0000-0002-2561-2682
  surname: van Waarde
  fullname: van Waarde, Henk J.
  email: h.j.van.waarde@rug.nl
  organization: Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence and the Engineering and Technology Institute Groningen, University of Groningen, Groningen, The Netherlands
– sequence: 2
  givenname: M. Kanat
  orcidid: 0000-0002-2407-8166
  surname: Camlibel
  fullname: Camlibel, M. Kanat
  email: m.k.camlibel@rug.nl
  organization: Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence, University of Groningen, Groningen, The Netherlands
– sequence: 3
  givenname: Mehran
  orcidid: 0000-0001-6972-6588
  surname: Mesbahi
  fullname: Mesbahi, Mehran
  email: mesbahi@aa.washington.edu
  organization: William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, WA, USA
BookMark eNp9kE1Lw0AQhhepYK3eBS8LnlP3exNvpbUqVD1Yz2GTTGRrkq27abH_3i0tHjx4Ggbed4bnOUeDznWA0BUlY0pJdrucTMeMMDLmRGip9QkaUinThEnGB2hICE2TjKXqDJ2HsIqrEoIO0XLuXYtfnA07PDO9wb3Dc4CqMOUnnrqu965pwIe7mOlK1wXwW9PbLeAZBPvR4a012OBn03v7jd-SBbStuUCntWkCXB7nCL3P75fTx2Tx-vA0nSySkmW0TzgVUmcZJxp0RtKScskLlQrK04oDU6IArUqtFFWVyWrFJC2MEJWqIaKxio_QzeHu2ruvDYQ-X7mN7-LLnCkqqVZCqphSh1TpXQge6ry0fWTYwxnb5JTke4N5NJjvDeZHg7FI_hTX3rbG7_6rXB8qFgB-4xExzXTKfwC65Hse
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_LCSYS_2024_3412943
crossref_primary_10_1109_TAC_2024_3447809
crossref_primary_10_31857_S0005231024060086
crossref_primary_10_1016_j_arcontrol_2023_100911
crossref_primary_10_1109_LCSYS_2024_3415498
crossref_primary_10_1109_LCSYS_2023_3326768
crossref_primary_10_1109_TCYB_2023_3272216
crossref_primary_10_1080_18824889_2024_2358606
crossref_primary_10_1016_j_sysconle_2024_106011
crossref_primary_10_1016_j_arcontrol_2023_03_005
crossref_primary_10_1016_j_ifacol_2023_10_1188
crossref_primary_10_1080_23307706_2023_2238703
crossref_primary_10_1016_j_sysconle_2024_105965
crossref_primary_10_1002_rnc_6754
crossref_primary_10_31857_S0005231024010015
crossref_primary_10_1002_rnc_7687
crossref_primary_10_1016_j_automatica_2025_112110
crossref_primary_10_1016_j_automatica_2025_112197
crossref_primary_10_1109_TAC_2022_3232442
crossref_primary_10_31857_S0005117924010014
crossref_primary_10_1016_j_automatica_2025_112127
crossref_primary_10_1109_LCSYS_2023_3263432
crossref_primary_10_1109_TAC_2024_3430088
crossref_primary_10_1109_TAC_2023_3244116
crossref_primary_10_1016_j_jprocont_2024_103370
crossref_primary_10_1016_j_sysconle_2024_106005
crossref_primary_10_1016_j_sysconle_2024_105951
crossref_primary_10_1002_rnc_6740
crossref_primary_10_1109_TAC_2021_3116179
crossref_primary_10_1109_ACCESS_2024_3386911
crossref_primary_10_1109_JAS_2023_123225
crossref_primary_10_1109_TAC_2024_3351865
crossref_primary_10_1002_rnc_6805
crossref_primary_10_1137_23M1608409
crossref_primary_10_1109_TASE_2024_3349387
crossref_primary_10_1016_j_automatica_2023_111168
crossref_primary_10_1109_LCSYS_2021_3139526
crossref_primary_10_1109_TAC_2024_3371374
crossref_primary_10_1109_TAC_2022_3148374
crossref_primary_10_1109_TAC_2021_3115436
crossref_primary_10_1109_ACCESS_2023_3241926
crossref_primary_10_1109_TAC_2021_3137788
crossref_primary_10_1109_TAC_2023_3276909
crossref_primary_10_1016_j_ifacol_2022_11_074
crossref_primary_10_1016_j_ifacol_2023_10_1245
crossref_primary_10_1016_j_ifacol_2024_08_588
crossref_primary_10_1109_LCSYS_2023_3287801
crossref_primary_10_1002_rnc_6532
crossref_primary_10_1016_j_ifacol_2024_08_509
crossref_primary_10_1109_TAC_2023_3275014
crossref_primary_10_1016_j_fss_2024_109204
crossref_primary_10_1109_TAC_2023_3335002
crossref_primary_10_1007_s12555_024_0516_x
crossref_primary_10_1016_j_ifacol_2023_10_047
crossref_primary_10_1007_s00034_024_02751_w
crossref_primary_10_1109_TAC_2022_3209342
crossref_primary_10_1109_TAC_2024_3402499
crossref_primary_10_1016_j_arcontrol_2023_100915
crossref_primary_10_1016_j_arcontrol_2023_100916
crossref_primary_10_1016_j_ifacol_2023_10_1873
crossref_primary_10_1109_OJCSYS_2022_3200021
crossref_primary_10_31857_S0005231023080020
crossref_primary_10_1108_AEAT_07_2024_0210
crossref_primary_10_1016_j_jfranklin_2024_107335
crossref_primary_10_1109_OJCSYS_2023_3259228
crossref_primary_10_1109_LCSYS_2023_3267022
crossref_primary_10_1016_j_amc_2023_128300
crossref_primary_10_1109_LCSYS_2024_3396294
crossref_primary_10_1109_TAC_2022_3226652
crossref_primary_10_1016_j_ifacol_2024_10_218
crossref_primary_10_1109_ACCESS_2023_3305496
crossref_primary_10_1016_j_ifacol_2024_10_217
crossref_primary_10_1016_j_automatica_2022_110537
crossref_primary_10_1109_TAC_2022_3217260
crossref_primary_10_1109_TAC_2024_3376288
crossref_primary_10_1109_TCSII_2024_3379193
crossref_primary_10_1109_TAC_2022_3206248
crossref_primary_10_9746_sicetr_61_77
crossref_primary_10_1109_LCSYS_2023_3282893
crossref_primary_10_1109_LCSYS_2022_3227182
crossref_primary_10_1109_TAC_2024_3455508
crossref_primary_10_1016_j_conengprac_2025_106282
crossref_primary_10_1137_22M1486807
crossref_primary_10_1007_s11424_024_3452_1
crossref_primary_10_1109_LCSYS_2022_3184647
crossref_primary_10_1109_TAC_2022_3170373
crossref_primary_10_1016_j_automatica_2024_111974
crossref_primary_10_1049_itr2_12409
crossref_primary_10_1109_JAS_2024_124740
crossref_primary_10_1002_rnc_7902
crossref_primary_10_1109_MCS_2023_3310302
crossref_primary_10_1002_rnc_7625
crossref_primary_10_1109_LCSYS_2025_3535787
crossref_primary_10_1109_LCSYS_2023_3284391
crossref_primary_10_1109_TAC_2022_3180692
crossref_primary_10_17979_ja_cea_2024_45_10790
crossref_primary_10_1016_j_sysconle_2025_106067
crossref_primary_10_1109_TCSII_2024_3430269
crossref_primary_10_1109_LCSYS_2024_3402135
crossref_primary_10_1109_TAC_2022_3183969
crossref_primary_10_1109_TSMC_2024_3445881
crossref_primary_10_1016_j_sysconle_2024_105914
crossref_primary_10_1109_TAC_2023_3305191
crossref_primary_10_1109_LCSYS_2023_3333257
crossref_primary_10_1016_j_automatica_2024_111843
crossref_primary_10_1109_ACCESS_2023_3327741
crossref_primary_10_31857_S0005117924060089
crossref_primary_10_1016_j_ejcon_2024_101045
crossref_primary_10_1134_S0005117924010041
crossref_primary_10_1109_TAC_2023_3235967
crossref_primary_10_1002_rnc_7813
crossref_primary_10_1109_ACCESS_2025_3541345
crossref_primary_10_1109_TSMC_2024_3390388
crossref_primary_10_1109_TAC_2024_3411832
crossref_primary_10_1007_s11432_022_3629_1
crossref_primary_10_1016_j_sysconle_2023_105581
crossref_primary_10_1109_TII_2024_3361026
crossref_primary_10_9746_sicetr_61_55
crossref_primary_10_1109_TITS_2024_3370945
crossref_primary_10_1109_TAC_2023_3321214
crossref_primary_10_1109_TAC_2023_3321212
crossref_primary_10_1134_S0005117923080064
crossref_primary_10_1109_TAC_2024_3357417
crossref_primary_10_1109_TAC_2023_3253787
crossref_primary_10_1109_JAS_2023_123894
crossref_primary_10_1109_TAC_2023_3330792
crossref_primary_10_1109_TAC_2023_3234889
crossref_primary_10_1016_j_ins_2024_120829
crossref_primary_10_1002_rnc_6712
crossref_primary_10_1134_S0005117924060079
crossref_primary_10_1109_TAC_2023_3238856
crossref_primary_10_1109_LCSYS_2024_3410888
crossref_primary_10_1016_j_automatica_2024_112083
crossref_primary_10_1109_TAC_2023_3323581
crossref_primary_10_1016_j_ifacol_2023_10_1031
Cites_doi 10.1109/CDC.2018.8619361
10.1016/0005-1098(95)00045-X
10.1109/LCSYS.2018.2868183
10.1109/CDC42340.2020.9304380
10.1016/j.sysconle.2020.104788
10.1016/s1474-6670(17)56683-5
10.1137/S1052623403421498
10.1137/S0895479803430953
10.1109/ACC.2005.1470171
10.1109/TAC.2004.840475
10.1109/TAC.2019.2959924
10.1109/9.940924
10.1109/CDC.2017.8264603
10.1155/S1024123X00001368
10.1016/s0005-1098(02)00032-8
10.1016/S0005-1098(00)00176-X
10.1016/j.ins.2012.07.014
10.1109/ACC.1999.782390
10.1109/CACSD.2004.1393890
10.1109/37.710876
10.1109/CDC.1997.649805
10.1137/1.9781611970777
10.1109/TAC.2008.925810
10.3166/ejc.12.3-29
10.1109/CDC.1994.411242
10.1109/CDC.2018.8619347
10.23919/ECC.2019.8795639
10.1016/j.ifacol.2018.11.059
10.1201/9781315136523
10.1109/LCSYS.2020.2997085
10.1007/s10208-019-09426-y
10.23919/ACC45564.2020.9147320
10.1109/LCSYS.2020.3021050
10.1109/CDC42340.2020.9303924
10.1016/j.ifacol.2020.12.2470
10.1109/LCSYS.2019.2921512
10.23919/ACC.2019.8814663
10.1109/LCSYS.2019.2914090
10.1109/TAC.2020.2966717
10.1016/j.automatica.2021.109548
10.1137/S003614450444614X
10.1016/j.sysconle.2004.09.003
10.1109/LCSYS.2020.2993986
10.1038/s41467-021-21554-0
10.1137/080744219
10.1080/00207179.2013.810345
10.1109/LCSYS.2020.2998296
10.1109/CDC40024.2019.9029522
10.1146/annurev-control-090419-075625
10.1109/CDC.2018.8619022
10.1080/00207170801942170
10.1016/j.sysconle.2016.04.006
10.1115/1.1286868
10.1109/CDC.1997.657769
10.1007/s10107-005-0684-2
10.1109/LCSYS.2020.2986991
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2020.3047577
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 175
ExternalDocumentID 10_1109_TAC_2020_3047577
9308978
Genre orig-research
GrantInformation_xml – fundername: University of Groningen, The Netherlands
– fundername: Data Science and Systems Complexity Centre
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-3145799307e7908c1353b684138d3e264be76c76616da9f6251ba44d6fe1552d3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:15:17 EDT 2025
Tue Jul 01 03:36:37 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Wed Aug 27 05:00:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-3145799307e7908c1353b684138d3e264be76c76616da9f6251ba44d6fe1552d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6972-6588
0000-0002-2561-2682
0000-0002-2407-8166
PQID 2615176456
PQPubID 85475
PageCount 14
ParticipantIDs proquest_journals_2615176456
ieee_primary_9308978
crossref_primary_10_1109_TAC_2020_3047577
crossref_citationtrail_10_1109_TAC_2020_3047577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
Umenberger (ref54) 2019
ref17
ref16
ref19
ref18
Tabuada (ref26) 2020
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Yakubovich (ref1) 1977; 4
ref40
Bradtke (ref29) 1993
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref60
References_xml – ident: ref25
  doi: 10.1109/CDC.2018.8619361
– ident: ref6
  doi: 10.1016/0005-1098(95)00045-X
– ident: ref11
  doi: 10.1109/LCSYS.2018.2868183
– ident: ref58
  doi: 10.1109/CDC42340.2020.9304380
– ident: ref27
  doi: 10.1016/j.sysconle.2020.104788
– ident: ref19
  doi: 10.1016/s1474-6670(17)56683-5
– ident: ref46
  doi: 10.1137/S1052623403421498
– ident: ref51
  doi: 10.1137/S0895479803430953
– ident: ref9
  doi: 10.1109/ACC.2005.1470171
– ident: ref45
  doi: 10.1109/TAC.2004.840475
– ident: ref37
  doi: 10.1109/TAC.2019.2959924
– ident: ref50
  doi: 10.1109/9.940924
– ident: ref24
  doi: 10.1109/CDC.2017.8264603
– ident: ref44
  doi: 10.1155/S1024123X00001368
– start-page: 15310
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref54
  article-title: Robust exploration in linear quadratic reinforcement learning
– ident: ref31
  doi: 10.1016/s0005-1098(02)00032-8
– ident: ref49
  doi: 10.1016/S0005-1098(00)00176-X
– ident: ref4
  doi: 10.1016/j.ins.2012.07.014
– ident: ref8
  doi: 10.1109/ACC.1999.782390
– ident: ref60
  doi: 10.1109/CACSD.2004.1393890
– ident: ref30
  doi: 10.1109/37.710876
– ident: ref48
  doi: 10.1109/CDC.1997.649805
– ident: ref43
  doi: 10.1137/1.9781611970777
– ident: ref17
  doi: 10.1109/TAC.2008.925810
– ident: ref52
  doi: 10.3166/ejc.12.3-29
– ident: ref5
  doi: 10.1109/CDC.1994.411242
– ident: ref10
  doi: 10.1109/CDC.2018.8619347
– ident: ref36
  doi: 10.23919/ECC.2019.8795639
– ident: ref20
  doi: 10.1016/j.ifacol.2018.11.059
– ident: ref59
  doi: 10.1201/9781315136523
– volume: 4
  start-page: 73
  year: 1977
  ident: ref1
  article-title: S-procedure in nonlinear control theory
  publication-title: Vestnik Leningrad Univ. Math.
– ident: ref56
  doi: 10.1109/LCSYS.2020.2997085
– ident: ref15
  doi: 10.1007/s10208-019-09426-y
– ident: ref39
  doi: 10.23919/ACC45564.2020.9147320
– ident: ref40
  doi: 10.1109/LCSYS.2020.3021050
– ident: ref28
  doi: 10.1109/CDC42340.2020.9303924
– ident: ref16
  doi: 10.1016/j.ifacol.2020.12.2470
– ident: ref55
  doi: 10.1109/LCSYS.2019.2921512
– ident: ref14
  doi: 10.23919/ACC.2019.8814663
– ident: ref12
  doi: 10.1109/LCSYS.2019.2914090
– ident: ref3
  doi: 10.1109/TAC.2020.2966717
– year: 2020
  ident: ref26
  article-title: Data-driven stabilization of SISO feedback linearizable systems
– ident: ref38
  doi: 10.1016/j.automatica.2021.109548
– ident: ref2
  doi: 10.1137/S003614450444614X
– ident: ref32
  doi: 10.1016/j.sysconle.2004.09.003
– ident: ref42
  doi: 10.1109/LCSYS.2020.2993986
– ident: ref41
  doi: 10.1038/s41467-021-21554-0
– ident: ref57
  doi: 10.1137/080744219
– ident: ref18
  doi: 10.1080/00207179.2013.810345
– ident: ref22
  doi: 10.1109/LCSYS.2020.2998296
– ident: ref21
  doi: 10.1109/CDC40024.2019.9029522
– ident: ref23
  doi: 10.1146/annurev-control-090419-075625
– ident: ref13
  doi: 10.1109/CDC.2018.8619022
– ident: ref34
  doi: 10.1080/00207170801942170
– ident: ref35
  doi: 10.1016/j.sysconle.2016.04.006
– ident: ref7
  doi: 10.1115/1.1286868
– start-page: 295
  volume-title: Proc. Int. Conf. Inf. Process. Syst.
  year: 1993
  ident: ref29
  article-title: Reinforcement learning applied to linear quadratic regulation
– ident: ref47
  doi: 10.1109/CDC.1997.657769
– ident: ref53
  doi: 10.1007/s10107-005-0684-2
– ident: ref33
  doi: 10.1109/LCSYS.2020.2986991
SSID ssj0016441
Score 2.7035038
Snippet In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 162
SubjectTerms Control design
Control systems
Covariance matrices
Data-driven control
Feedback control
Independent variables
Linear matrix inequalities
LMIs
Mathematical analysis
Noise measurement
Optimal control
Predictive control
robust control
Tuning
uncertain systems
Title From Noisy Data to Feedback Controllers: Nonconservative Design via a Matrix S-Lemma
URI https://ieeexplore.ieee.org/document/9308978
https://www.proquest.com/docview/2615176456
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzjwRnR5yAcuSJvWTVI_uKFChRDlskXiFtnOVELQZgUpAn49YyeNYBchbj7YkuWxZ77P8wI4so5LowVGY-VElGqVkB7keaQxtaisdG7sPbrDa3Fxk17e9m4X4HeTC4OIIfgM234YfPl54Wb-q6yjE66I9SzCIhG3Kler8Rh4u15pXXrAsWpcklx3Rqd9IoIx8VOeyp6Un0xQ6KnynyIO1mWwBsP5vqqgkvv2rLRt9_ZPycafbnwdVmuYyU6re7EBCzjdhJUPxQe3YDR4LCbsurh7emVnpjSsLNiAbJk17p71qwj2BwKHJzRn6nzQdfi-fUZ2FqI-2POdYYYNfY3_F_YnusLJxGzDzeB81L-I6h4LkYt1tyQVnPYkYRQuUWqunG-DYYUi06byBAktWZTCSbLiIjd6TGypa02a5mKMvnhbnuzA0rSY4i4wErHVsUHDLbE2IUwSS911HNOu4rnLW9CZH3vm6gLkvg_GQxaICNcZCSrzgspqQbXguFnxtyq-8c3cLX_uzbz6yFuwP5dsVr_Opyz2ME4Kwo6_vl61B8uxT3MIXy37sFQ-zvCAwEdpD8OtewfU09Nm
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BPZQe2gJFDaXFh16Quomzu_GjNxQapZDkQpC4rWzvRIogWQQbBP31HXs3q7ZUVW8-jCVrxp75xvMC-Gwdl0YLjGbKiSjVKiE9yPNIY2pRWenczEd0xxMxvEzPrnpXG_ClqYVBxJB8hm2_DLH8vHAr_1XW0QlX5PVswoueL8atqrWamIG37JXepSccqyYoyXVnetInVzAmD5Wnsiflb0YoTFV5poqDfRm8gfH6ZFVayXV7Vdq2-_FH08b_PfpbeF0DTXZS3Ywd2MDlLrz6pf3gHkwHd8WCTYr5_RM7NaVhZcEGZM2scdesX-Ww3xA8_Eo0S-fTrsMH7gOy05D3wR7mhhk29l3-H9lFNMLFwryDy8G3aX8Y1VMWIhfrbklKOO1JQilcotRcOT8IwwpFxk3lCRJesiiFk2THRW70jPylrjVpmosZ-vZtebIPW8tiie-BkZCtjg0abslvE8IksdRdxzHtKp67vAWdNdszV7cg95MwbrLginCdkaAyL6isFlQLjpsdt1X7jX_Q7nm-N3Q1y1twuJZsVr_P-yz2QE4KQo8Hf991BC-H0_EoG32fnH-A7dgXPYSPl0PYKu9W-JGgSGk_hRv4Ewg81q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Noisy+Data+to+Feedback+Controllers%3A+Nonconservative+Design+via+a+Matrix+S-Lemma&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=van+Waarde%2C+Henk+J.&rft.au=Camlibel%2C+M.+Kanat&rft.au=Mesbahi%2C+Mehran&rft.date=2022-01-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=1&rft.spage=162&rft.epage=175&rft_id=info:doi/10.1109%2FTAC.2020.3047577&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_3047577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon