From Noisy Data to Feedback Controllers: Nonconservative Design via a Matrix S-Lemma
In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient of our design is a new matrix S-lemma that will be proven in this article. We provide both strict and nonstrict versions of this S-lemma, wh...
Saved in:
Published in | IEEE transactions on automatic control Vol. 67; no. 1; pp. 162 - 175 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2020.3047577 |
Cover
Loading…
Abstract | In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient of our design is a new matrix S-lemma that will be proven in this article. We provide both strict and nonstrict versions of this S-lemma, which are of interest in their own right. Thereafter, we will apply these results to data-driven control. In particular, we will derive nonconservative design methods for quadratic stabilization, <inline-formula><tex-math notation="LaTeX">\mathcal {H}_2</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathcal {H}_{\infty }</tex-math></inline-formula> control, all in terms of data-based linear matrix inequalities. In contrast to previous work, the dimensions of our decision variables are independent of the time horizon of the experiment. Our approach, thus, enables control design from large datasets. |
---|---|
AbstractList | In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient of our design is a new matrix S-lemma that will be proven in this article. We provide both strict and nonstrict versions of this S-lemma, which are of interest in their own right. Thereafter, we will apply these results to data-driven control. In particular, we will derive nonconservative design methods for quadratic stabilization, <inline-formula><tex-math notation="LaTeX">\mathcal {H}_2</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathcal {H}_{\infty }</tex-math></inline-formula> control, all in terms of data-based linear matrix inequalities. In contrast to previous work, the dimensions of our decision variables are independent of the time horizon of the experiment. Our approach, thus, enables control design from large datasets. In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient of our design is a new matrix S-lemma that will be proven in this article. We provide both strict and nonstrict versions of this S-lemma, which are of interest in their own right. Thereafter, we will apply these results to data-driven control. In particular, we will derive nonconservative design methods for quadratic stabilization, [Formula Omitted] and [Formula Omitted] control, all in terms of data-based linear matrix inequalities. In contrast to previous work, the dimensions of our decision variables are independent of the time horizon of the experiment. Our approach, thus, enables control design from large datasets. |
Author | Camlibel, M. Kanat van Waarde, Henk J. Mesbahi, Mehran |
Author_xml | – sequence: 1 givenname: Henk J. orcidid: 0000-0002-2561-2682 surname: van Waarde fullname: van Waarde, Henk J. email: h.j.van.waarde@rug.nl organization: Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence and the Engineering and Technology Institute Groningen, University of Groningen, Groningen, The Netherlands – sequence: 2 givenname: M. Kanat orcidid: 0000-0002-2407-8166 surname: Camlibel fullname: Camlibel, M. Kanat email: m.k.camlibel@rug.nl organization: Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence, University of Groningen, Groningen, The Netherlands – sequence: 3 givenname: Mehran orcidid: 0000-0001-6972-6588 surname: Mesbahi fullname: Mesbahi, Mehran email: mesbahi@aa.washington.edu organization: William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, WA, USA |
BookMark | eNp9kE1Lw0AQhhepYK3eBS8LnlP3exNvpbUqVD1Yz2GTTGRrkq27abH_3i0tHjx4Ggbed4bnOUeDznWA0BUlY0pJdrucTMeMMDLmRGip9QkaUinThEnGB2hICE2TjKXqDJ2HsIqrEoIO0XLuXYtfnA07PDO9wb3Dc4CqMOUnnrqu965pwIe7mOlK1wXwW9PbLeAZBPvR4a012OBn03v7jd-SBbStuUCntWkCXB7nCL3P75fTx2Tx-vA0nSySkmW0TzgVUmcZJxp0RtKScskLlQrK04oDU6IArUqtFFWVyWrFJC2MEJWqIaKxio_QzeHu2ruvDYQ-X7mN7-LLnCkqqVZCqphSh1TpXQge6ry0fWTYwxnb5JTke4N5NJjvDeZHg7FI_hTX3rbG7_6rXB8qFgB-4xExzXTKfwC65Hse |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1109_LCSYS_2024_3412943 crossref_primary_10_1109_TAC_2024_3447809 crossref_primary_10_31857_S0005231024060086 crossref_primary_10_1016_j_arcontrol_2023_100911 crossref_primary_10_1109_LCSYS_2024_3415498 crossref_primary_10_1109_LCSYS_2023_3326768 crossref_primary_10_1109_TCYB_2023_3272216 crossref_primary_10_1080_18824889_2024_2358606 crossref_primary_10_1016_j_sysconle_2024_106011 crossref_primary_10_1016_j_arcontrol_2023_03_005 crossref_primary_10_1016_j_ifacol_2023_10_1188 crossref_primary_10_1080_23307706_2023_2238703 crossref_primary_10_1016_j_sysconle_2024_105965 crossref_primary_10_1002_rnc_6754 crossref_primary_10_31857_S0005231024010015 crossref_primary_10_1002_rnc_7687 crossref_primary_10_1016_j_automatica_2025_112110 crossref_primary_10_1016_j_automatica_2025_112197 crossref_primary_10_1109_TAC_2022_3232442 crossref_primary_10_31857_S0005117924010014 crossref_primary_10_1016_j_automatica_2025_112127 crossref_primary_10_1109_LCSYS_2023_3263432 crossref_primary_10_1109_TAC_2024_3430088 crossref_primary_10_1109_TAC_2023_3244116 crossref_primary_10_1016_j_jprocont_2024_103370 crossref_primary_10_1016_j_sysconle_2024_106005 crossref_primary_10_1016_j_sysconle_2024_105951 crossref_primary_10_1002_rnc_6740 crossref_primary_10_1109_TAC_2021_3116179 crossref_primary_10_1109_ACCESS_2024_3386911 crossref_primary_10_1109_JAS_2023_123225 crossref_primary_10_1109_TAC_2024_3351865 crossref_primary_10_1002_rnc_6805 crossref_primary_10_1137_23M1608409 crossref_primary_10_1109_TASE_2024_3349387 crossref_primary_10_1016_j_automatica_2023_111168 crossref_primary_10_1109_LCSYS_2021_3139526 crossref_primary_10_1109_TAC_2024_3371374 crossref_primary_10_1109_TAC_2022_3148374 crossref_primary_10_1109_TAC_2021_3115436 crossref_primary_10_1109_ACCESS_2023_3241926 crossref_primary_10_1109_TAC_2021_3137788 crossref_primary_10_1109_TAC_2023_3276909 crossref_primary_10_1016_j_ifacol_2022_11_074 crossref_primary_10_1016_j_ifacol_2023_10_1245 crossref_primary_10_1016_j_ifacol_2024_08_588 crossref_primary_10_1109_LCSYS_2023_3287801 crossref_primary_10_1002_rnc_6532 crossref_primary_10_1016_j_ifacol_2024_08_509 crossref_primary_10_1109_TAC_2023_3275014 crossref_primary_10_1016_j_fss_2024_109204 crossref_primary_10_1109_TAC_2023_3335002 crossref_primary_10_1007_s12555_024_0516_x crossref_primary_10_1016_j_ifacol_2023_10_047 crossref_primary_10_1007_s00034_024_02751_w crossref_primary_10_1109_TAC_2022_3209342 crossref_primary_10_1109_TAC_2024_3402499 crossref_primary_10_1016_j_arcontrol_2023_100915 crossref_primary_10_1016_j_arcontrol_2023_100916 crossref_primary_10_1016_j_ifacol_2023_10_1873 crossref_primary_10_1109_OJCSYS_2022_3200021 crossref_primary_10_31857_S0005231023080020 crossref_primary_10_1108_AEAT_07_2024_0210 crossref_primary_10_1016_j_jfranklin_2024_107335 crossref_primary_10_1109_OJCSYS_2023_3259228 crossref_primary_10_1109_LCSYS_2023_3267022 crossref_primary_10_1016_j_amc_2023_128300 crossref_primary_10_1109_LCSYS_2024_3396294 crossref_primary_10_1109_TAC_2022_3226652 crossref_primary_10_1016_j_ifacol_2024_10_218 crossref_primary_10_1109_ACCESS_2023_3305496 crossref_primary_10_1016_j_ifacol_2024_10_217 crossref_primary_10_1016_j_automatica_2022_110537 crossref_primary_10_1109_TAC_2022_3217260 crossref_primary_10_1109_TAC_2024_3376288 crossref_primary_10_1109_TCSII_2024_3379193 crossref_primary_10_1109_TAC_2022_3206248 crossref_primary_10_9746_sicetr_61_77 crossref_primary_10_1109_LCSYS_2023_3282893 crossref_primary_10_1109_LCSYS_2022_3227182 crossref_primary_10_1109_TAC_2024_3455508 crossref_primary_10_1016_j_conengprac_2025_106282 crossref_primary_10_1137_22M1486807 crossref_primary_10_1007_s11424_024_3452_1 crossref_primary_10_1109_LCSYS_2022_3184647 crossref_primary_10_1109_TAC_2022_3170373 crossref_primary_10_1016_j_automatica_2024_111974 crossref_primary_10_1049_itr2_12409 crossref_primary_10_1109_JAS_2024_124740 crossref_primary_10_1002_rnc_7902 crossref_primary_10_1109_MCS_2023_3310302 crossref_primary_10_1002_rnc_7625 crossref_primary_10_1109_LCSYS_2025_3535787 crossref_primary_10_1109_LCSYS_2023_3284391 crossref_primary_10_1109_TAC_2022_3180692 crossref_primary_10_17979_ja_cea_2024_45_10790 crossref_primary_10_1016_j_sysconle_2025_106067 crossref_primary_10_1109_TCSII_2024_3430269 crossref_primary_10_1109_LCSYS_2024_3402135 crossref_primary_10_1109_TAC_2022_3183969 crossref_primary_10_1109_TSMC_2024_3445881 crossref_primary_10_1016_j_sysconle_2024_105914 crossref_primary_10_1109_TAC_2023_3305191 crossref_primary_10_1109_LCSYS_2023_3333257 crossref_primary_10_1016_j_automatica_2024_111843 crossref_primary_10_1109_ACCESS_2023_3327741 crossref_primary_10_31857_S0005117924060089 crossref_primary_10_1016_j_ejcon_2024_101045 crossref_primary_10_1134_S0005117924010041 crossref_primary_10_1109_TAC_2023_3235967 crossref_primary_10_1002_rnc_7813 crossref_primary_10_1109_ACCESS_2025_3541345 crossref_primary_10_1109_TSMC_2024_3390388 crossref_primary_10_1109_TAC_2024_3411832 crossref_primary_10_1007_s11432_022_3629_1 crossref_primary_10_1016_j_sysconle_2023_105581 crossref_primary_10_1109_TII_2024_3361026 crossref_primary_10_9746_sicetr_61_55 crossref_primary_10_1109_TITS_2024_3370945 crossref_primary_10_1109_TAC_2023_3321214 crossref_primary_10_1109_TAC_2023_3321212 crossref_primary_10_1134_S0005117923080064 crossref_primary_10_1109_TAC_2024_3357417 crossref_primary_10_1109_TAC_2023_3253787 crossref_primary_10_1109_JAS_2023_123894 crossref_primary_10_1109_TAC_2023_3330792 crossref_primary_10_1109_TAC_2023_3234889 crossref_primary_10_1016_j_ins_2024_120829 crossref_primary_10_1002_rnc_6712 crossref_primary_10_1134_S0005117924060079 crossref_primary_10_1109_TAC_2023_3238856 crossref_primary_10_1109_LCSYS_2024_3410888 crossref_primary_10_1016_j_automatica_2024_112083 crossref_primary_10_1109_TAC_2023_3323581 crossref_primary_10_1016_j_ifacol_2023_10_1031 |
Cites_doi | 10.1109/CDC.2018.8619361 10.1016/0005-1098(95)00045-X 10.1109/LCSYS.2018.2868183 10.1109/CDC42340.2020.9304380 10.1016/j.sysconle.2020.104788 10.1016/s1474-6670(17)56683-5 10.1137/S1052623403421498 10.1137/S0895479803430953 10.1109/ACC.2005.1470171 10.1109/TAC.2004.840475 10.1109/TAC.2019.2959924 10.1109/9.940924 10.1109/CDC.2017.8264603 10.1155/S1024123X00001368 10.1016/s0005-1098(02)00032-8 10.1016/S0005-1098(00)00176-X 10.1016/j.ins.2012.07.014 10.1109/ACC.1999.782390 10.1109/CACSD.2004.1393890 10.1109/37.710876 10.1109/CDC.1997.649805 10.1137/1.9781611970777 10.1109/TAC.2008.925810 10.3166/ejc.12.3-29 10.1109/CDC.1994.411242 10.1109/CDC.2018.8619347 10.23919/ECC.2019.8795639 10.1016/j.ifacol.2018.11.059 10.1201/9781315136523 10.1109/LCSYS.2020.2997085 10.1007/s10208-019-09426-y 10.23919/ACC45564.2020.9147320 10.1109/LCSYS.2020.3021050 10.1109/CDC42340.2020.9303924 10.1016/j.ifacol.2020.12.2470 10.1109/LCSYS.2019.2921512 10.23919/ACC.2019.8814663 10.1109/LCSYS.2019.2914090 10.1109/TAC.2020.2966717 10.1016/j.automatica.2021.109548 10.1137/S003614450444614X 10.1016/j.sysconle.2004.09.003 10.1109/LCSYS.2020.2993986 10.1038/s41467-021-21554-0 10.1137/080744219 10.1080/00207179.2013.810345 10.1109/LCSYS.2020.2998296 10.1109/CDC40024.2019.9029522 10.1146/annurev-control-090419-075625 10.1109/CDC.2018.8619022 10.1080/00207170801942170 10.1016/j.sysconle.2016.04.006 10.1115/1.1286868 10.1109/CDC.1997.657769 10.1007/s10107-005-0684-2 10.1109/LCSYS.2020.2986991 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2020.3047577 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 175 |
ExternalDocumentID | 10_1109_TAC_2020_3047577 9308978 |
Genre | orig-research |
GrantInformation_xml | – fundername: University of Groningen, The Netherlands – fundername: Data Science and Systems Complexity Centre |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-3145799307e7908c1353b684138d3e264be76c76616da9f6251ba44d6fe1552d3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:15:17 EDT 2025 Tue Jul 01 03:36:37 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Wed Aug 27 05:00:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-3145799307e7908c1353b684138d3e264be76c76616da9f6251ba44d6fe1552d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6972-6588 0000-0002-2561-2682 0000-0002-2407-8166 |
PQID | 2615176456 |
PQPubID | 85475 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2615176456 ieee_primary_9308978 crossref_primary_10_1109_TAC_2020_3047577 crossref_citationtrail_10_1109_TAC_2020_3047577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. 2022-1-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 Umenberger (ref54) 2019 ref17 ref16 ref19 ref18 Tabuada (ref26) 2020 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Yakubovich (ref1) 1977; 4 ref40 Bradtke (ref29) 1993 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref60 |
References_xml | – ident: ref25 doi: 10.1109/CDC.2018.8619361 – ident: ref6 doi: 10.1016/0005-1098(95)00045-X – ident: ref11 doi: 10.1109/LCSYS.2018.2868183 – ident: ref58 doi: 10.1109/CDC42340.2020.9304380 – ident: ref27 doi: 10.1016/j.sysconle.2020.104788 – ident: ref19 doi: 10.1016/s1474-6670(17)56683-5 – ident: ref46 doi: 10.1137/S1052623403421498 – ident: ref51 doi: 10.1137/S0895479803430953 – ident: ref9 doi: 10.1109/ACC.2005.1470171 – ident: ref45 doi: 10.1109/TAC.2004.840475 – ident: ref37 doi: 10.1109/TAC.2019.2959924 – ident: ref50 doi: 10.1109/9.940924 – ident: ref24 doi: 10.1109/CDC.2017.8264603 – ident: ref44 doi: 10.1155/S1024123X00001368 – start-page: 15310 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. year: 2019 ident: ref54 article-title: Robust exploration in linear quadratic reinforcement learning – ident: ref31 doi: 10.1016/s0005-1098(02)00032-8 – ident: ref49 doi: 10.1016/S0005-1098(00)00176-X – ident: ref4 doi: 10.1016/j.ins.2012.07.014 – ident: ref8 doi: 10.1109/ACC.1999.782390 – ident: ref60 doi: 10.1109/CACSD.2004.1393890 – ident: ref30 doi: 10.1109/37.710876 – ident: ref48 doi: 10.1109/CDC.1997.649805 – ident: ref43 doi: 10.1137/1.9781611970777 – ident: ref17 doi: 10.1109/TAC.2008.925810 – ident: ref52 doi: 10.3166/ejc.12.3-29 – ident: ref5 doi: 10.1109/CDC.1994.411242 – ident: ref10 doi: 10.1109/CDC.2018.8619347 – ident: ref36 doi: 10.23919/ECC.2019.8795639 – ident: ref20 doi: 10.1016/j.ifacol.2018.11.059 – ident: ref59 doi: 10.1201/9781315136523 – volume: 4 start-page: 73 year: 1977 ident: ref1 article-title: S-procedure in nonlinear control theory publication-title: Vestnik Leningrad Univ. Math. – ident: ref56 doi: 10.1109/LCSYS.2020.2997085 – ident: ref15 doi: 10.1007/s10208-019-09426-y – ident: ref39 doi: 10.23919/ACC45564.2020.9147320 – ident: ref40 doi: 10.1109/LCSYS.2020.3021050 – ident: ref28 doi: 10.1109/CDC42340.2020.9303924 – ident: ref16 doi: 10.1016/j.ifacol.2020.12.2470 – ident: ref55 doi: 10.1109/LCSYS.2019.2921512 – ident: ref14 doi: 10.23919/ACC.2019.8814663 – ident: ref12 doi: 10.1109/LCSYS.2019.2914090 – ident: ref3 doi: 10.1109/TAC.2020.2966717 – year: 2020 ident: ref26 article-title: Data-driven stabilization of SISO feedback linearizable systems – ident: ref38 doi: 10.1016/j.automatica.2021.109548 – ident: ref2 doi: 10.1137/S003614450444614X – ident: ref32 doi: 10.1016/j.sysconle.2004.09.003 – ident: ref42 doi: 10.1109/LCSYS.2020.2993986 – ident: ref41 doi: 10.1038/s41467-021-21554-0 – ident: ref57 doi: 10.1137/080744219 – ident: ref18 doi: 10.1080/00207179.2013.810345 – ident: ref22 doi: 10.1109/LCSYS.2020.2998296 – ident: ref21 doi: 10.1109/CDC40024.2019.9029522 – ident: ref23 doi: 10.1146/annurev-control-090419-075625 – ident: ref13 doi: 10.1109/CDC.2018.8619022 – ident: ref34 doi: 10.1080/00207170801942170 – ident: ref35 doi: 10.1016/j.sysconle.2016.04.006 – ident: ref7 doi: 10.1115/1.1286868 – start-page: 295 volume-title: Proc. Int. Conf. Inf. Process. Syst. year: 1993 ident: ref29 article-title: Reinforcement learning applied to linear quadratic regulation – ident: ref47 doi: 10.1109/CDC.1997.657769 – ident: ref53 doi: 10.1007/s10107-005-0684-2 – ident: ref33 doi: 10.1109/LCSYS.2020.2986991 |
SSID | ssj0016441 |
Score | 2.7035038 |
Snippet | In this article, we propose a new method to obtain feedback controllers of an unknown dynamical system directly from noisy input/state data. The key ingredient... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 162 |
SubjectTerms | Control design Control systems Covariance matrices Data-driven control Feedback control Independent variables Linear matrix inequalities LMIs Mathematical analysis Noise measurement Optimal control Predictive control robust control Tuning uncertain systems |
Title | From Noisy Data to Feedback Controllers: Nonconservative Design via a Matrix S-Lemma |
URI | https://ieeexplore.ieee.org/document/9308978 https://www.proquest.com/docview/2615176456 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzjwRnR5yAcuSJvWTVI_uKFChRDlskXiFtnOVELQZgUpAn49YyeNYBchbj7YkuWxZ77P8wI4so5LowVGY-VElGqVkB7keaQxtaisdG7sPbrDa3Fxk17e9m4X4HeTC4OIIfgM234YfPl54Wb-q6yjE66I9SzCIhG3Kler8Rh4u15pXXrAsWpcklx3Rqd9IoIx8VOeyp6Un0xQ6KnynyIO1mWwBsP5vqqgkvv2rLRt9_ZPycafbnwdVmuYyU6re7EBCzjdhJUPxQe3YDR4LCbsurh7emVnpjSsLNiAbJk17p71qwj2BwKHJzRn6nzQdfi-fUZ2FqI-2POdYYYNfY3_F_YnusLJxGzDzeB81L-I6h4LkYt1tyQVnPYkYRQuUWqunG-DYYUi06byBAktWZTCSbLiIjd6TGypa02a5mKMvnhbnuzA0rSY4i4wErHVsUHDLbE2IUwSS911HNOu4rnLW9CZH3vm6gLkvg_GQxaICNcZCSrzgspqQbXguFnxtyq-8c3cLX_uzbz6yFuwP5dsVr_Opyz2ME4Kwo6_vl61B8uxT3MIXy37sFQ-zvCAwEdpD8OtewfU09Nm |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BPZQe2gJFDaXFh16Quomzu_GjNxQapZDkQpC4rWzvRIogWQQbBP31HXs3q7ZUVW8-jCVrxp75xvMC-Gwdl0YLjGbKiSjVKiE9yPNIY2pRWenczEd0xxMxvEzPrnpXG_ClqYVBxJB8hm2_DLH8vHAr_1XW0QlX5PVswoueL8atqrWamIG37JXepSccqyYoyXVnetInVzAmD5Wnsiflb0YoTFV5poqDfRm8gfH6ZFVayXV7Vdq2-_FH08b_PfpbeF0DTXZS3Ywd2MDlLrz6pf3gHkwHd8WCTYr5_RM7NaVhZcEGZM2scdesX-Ww3xA8_Eo0S-fTrsMH7gOy05D3wR7mhhk29l3-H9lFNMLFwryDy8G3aX8Y1VMWIhfrbklKOO1JQilcotRcOT8IwwpFxk3lCRJesiiFk2THRW70jPylrjVpmosZ-vZtebIPW8tiie-BkZCtjg0abslvE8IksdRdxzHtKp67vAWdNdszV7cg95MwbrLginCdkaAyL6isFlQLjpsdt1X7jX_Q7nm-N3Q1y1twuJZsVr_P-yz2QE4KQo8Hf991BC-H0_EoG32fnH-A7dgXPYSPl0PYKu9W-JGgSGk_hRv4Ewg81q4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Noisy+Data+to+Feedback+Controllers%3A+Nonconservative+Design+via+a+Matrix+S-Lemma&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=van+Waarde%2C+Henk+J.&rft.au=Camlibel%2C+M.+Kanat&rft.au=Mesbahi%2C+Mehran&rft.date=2022-01-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=1&rft.spage=162&rft.epage=175&rft_id=info:doi/10.1109%2FTAC.2020.3047577&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_3047577 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |