Intelligent Fault Diagnosis of the High-Speed Train With Big Data Based on Deep Neural Networks

Bogies are an important component of high-speed trains. The level of mechanical performance of bogies has a major influence on the safety and reliability of high-speed train. Therefore, conducting fault diagnoses on bogies with big data is very important. Fault mechanisms of bogies are very complex,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 13; no. 4; pp. 2106 - 2116
Main Authors Hu, Hexuan, Tang, Bo, Gong, Xuejiao, Wei, Wei, Wang, Huihui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bogies are an important component of high-speed trains. The level of mechanical performance of bogies has a major influence on the safety and reliability of high-speed train. Therefore, conducting fault diagnoses on bogies with big data is very important. Fault mechanisms of bogies are very complex, and feature signals are nonobvious. For these reasons, fault information of bogies cannot be effectively extracted using the traditional signal processing method. Therefore, this paper adopted the deep neural network to recognize faults in bogies. The deep neural network offers numerous benefits in this context. Using deep neural networks, fault information in a signal spectrum can be extracted in a selfadaptive method. This technique is free of dependence on extensive signal processing knowledge and diagnostic experience. Compared with the traditional intelligent diagnosis method, the deep neural network can obtain a higher diagnostic accuracy. Additionally, the deep neural network does not depend on the sample size, and it can obtain high diagnostic accuracy even when the sample size is relatively small. It also achieves very high diagnostic accuracy applied to high-speed trains with different speeds and different faults, which shows that the method is extensively applicable. Furthermore, the recognition accuracy rate of the deep neural network under normal conditions can reach 100%. This method provides a new paradigm for fault diagnosis of the high-speed train with big data and plays an important role in this field.
AbstractList Bogies are an important component of high-speed trains. The level of mechanical performance of bogies has a major influence on the safety and reliability of high-speed train. Therefore, conducting fault diagnoses on bogies with big data is very important. Fault mechanisms of bogies are very complex, and feature signals are nonobvious. For these reasons, fault information of bogies cannot be effectively extracted using the traditional signal processing method. Therefore, this paper adopted the deep neural network to recognize faults in bogies. The deep neural network offers numerous benefits in this context. Using deep neural networks, fault information in a signal spectrum can be extracted in a selfadaptive method. This technique is free of dependence on extensive signal processing knowledge and diagnostic experience. Compared with the traditional intelligent diagnosis method, the deep neural network can obtain a higher diagnostic accuracy. Additionally, the deep neural network does not depend on the sample size, and it can obtain high diagnostic accuracy even when the sample size is relatively small. It also achieves very high diagnostic accuracy applied to high-speed trains with different speeds and different faults, which shows that the method is extensively applicable. Furthermore, the recognition accuracy rate of the deep neural network under normal conditions can reach 100%. This method provides a new paradigm for fault diagnosis of the high-speed train with big data and plays an important role in this field.
Author Xuejiao Gong
Wei Wei
Huihui Wang
Hexuan Hu
Bo Tang
Author_xml – sequence: 1
  givenname: Hexuan
  surname: Hu
  fullname: Hu, Hexuan
– sequence: 2
  givenname: Bo
  surname: Tang
  fullname: Tang, Bo
– sequence: 3
  givenname: Xuejiao
  surname: Gong
  fullname: Gong, Xuejiao
– sequence: 4
  givenname: Wei
  surname: Wei
  fullname: Wei, Wei
– sequence: 5
  givenname: Huihui
  surname: Wang
  fullname: Wang, Huihui
BookMark eNp9kM1rGzEQxUVIII7Te6EXQc_rzkjZDx2bOE4MoT3EkKMQ0qwtdyu5kkzpfx8Fhx566OkNzPvN8N4VOw8xEGMfERaIoL5s1uuFAOwXohtkK4YzNkN1gw1AC-d1bltspAB5ya5y3gPIHqSaMb0OhabJbykUvjLHqfClN9sQs888jrzsiD_67a55PhA5vknGB_7iy47f-i1fmmL4rcl1EwNfEh34NzomM1Upv2P6ka_ZxWimTB_edc42q_vN3WPz9P1hfff1qbFCYWkkjGNnHSp0UnToeofOGWNhIIBeSdl2pNxAYjAKyY6OzDBa6-AGLVkj5-zz6ewhxV9HykXv4zGF-lGjEn0NLlqsru7ksinmnGjU1hdTfAyl5po0gn7rUtcu9VuX-r3LCsI_4CH5nyb9-R_y6YR4Ivpr74deDbKTrwucgPc
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TNNLS_2020_2966744
crossref_primary_10_1093_tse_tdaa022
crossref_primary_10_1109_ACCESS_2021_3074929
crossref_primary_10_1109_MVT_2021_3053193
crossref_primary_10_1177_0954409718795089
crossref_primary_10_1109_TNNLS_2020_3016632
crossref_primary_10_1007_s11071_022_07341_6
crossref_primary_10_1109_ACCESS_2021_3113381
crossref_primary_10_1016_j_eswa_2022_119479
crossref_primary_10_1109_TII_2019_2907373
crossref_primary_10_1109_ACCESS_2021_3091550
crossref_primary_10_1002_ett_3922
crossref_primary_10_1109_TIM_2020_3047922
crossref_primary_10_1155_2021_5410049
crossref_primary_10_3390_app10020467
crossref_primary_10_1016_j_nucengdes_2023_112258
crossref_primary_10_1109_TII_2019_2938145
crossref_primary_10_1109_TII_2023_3299623
crossref_primary_10_1016_j_eswa_2018_02_017
crossref_primary_10_1177_1748006X211004515
crossref_primary_10_1016_j_measurement_2022_111228
crossref_primary_10_1007_s00779_019_01292_3
crossref_primary_10_1109_TII_2021_3136144
crossref_primary_10_1016_j_optcom_2023_130112
crossref_primary_10_1109_TVT_2023_3242433
crossref_primary_10_1109_TVT_2023_3328640
crossref_primary_10_1155_2018_4501952
crossref_primary_10_1109_JSEN_2020_3027684
crossref_primary_10_1016_j_simpat_2023_102778
crossref_primary_10_1109_TITS_2019_2897583
crossref_primary_10_1016_j_jpse_2025_100282
crossref_primary_10_1016_j_hspr_2024_01_002
crossref_primary_10_1109_JIOT_2019_2948396
crossref_primary_10_1007_s10489_019_01483_8
crossref_primary_10_1007_s10845_020_01649_z
crossref_primary_10_3233_JIFS_179146
crossref_primary_10_1145_3418205
crossref_primary_10_1109_ACCESS_2019_2936243
crossref_primary_10_1109_TII_2022_3152540
crossref_primary_10_1016_j_comcom_2020_01_040
crossref_primary_10_1016_j_trgeo_2023_101000
crossref_primary_10_1109_TII_2018_2799928
crossref_primary_10_1109_TII_2020_3014422
crossref_primary_10_1177_03611981211064893
crossref_primary_10_1109_JIOT_2020_2992349
crossref_primary_10_3390_coatings9090578
crossref_primary_10_1142_S0219876221500602
crossref_primary_10_1016_j_engappai_2023_106598
crossref_primary_10_1016_j_engfracmech_2021_107980
crossref_primary_10_1088_1361_6501_acc755
crossref_primary_10_1016_j_measurement_2021_109960
crossref_primary_10_3390_app10051680
crossref_primary_10_1016_j_engappai_2021_104415
crossref_primary_10_1016_j_engfailanal_2022_106424
crossref_primary_10_3390_s21175739
crossref_primary_10_1109_ACCESS_2019_2935454
crossref_primary_10_1177_00202940231180626
crossref_primary_10_3390_pr9071121
crossref_primary_10_1109_TIM_2022_3158996
crossref_primary_10_1016_j_jmapro_2019_04_015
crossref_primary_10_1109_TII_2018_2828811
crossref_primary_10_1109_ACCESS_2021_3064350
crossref_primary_10_1109_TIM_2022_3180410
crossref_primary_10_1109_ACCESS_2019_2926067
crossref_primary_10_1016_j_asoc_2019_105546
crossref_primary_10_1109_JSYST_2019_2905565
crossref_primary_10_1109_JSEN_2023_3337853
crossref_primary_10_1177_1748006X20976817
crossref_primary_10_1109_TIM_2019_2905945
crossref_primary_10_1080_0952813X_2022_2092560
crossref_primary_10_31796_ogummf_873963
crossref_primary_10_7736_JKSPE_024_075
crossref_primary_10_1109_TII_2024_3441645
crossref_primary_10_1109_TIM_2019_2963552
crossref_primary_10_1088_1361_6501_ad30bc
crossref_primary_10_1016_j_rcim_2021_102281
crossref_primary_10_1007_s40864_023_00187_0
crossref_primary_10_1109_ACCESS_2022_3213657
crossref_primary_10_1109_TR_2021_3138448
crossref_primary_10_1007_s10489_022_03344_3
crossref_primary_10_1109_TPEL_2023_3263226
crossref_primary_10_1155_2022_3216043
crossref_primary_10_1007_s00500_017_2940_9
crossref_primary_10_1016_j_engappai_2022_104896
crossref_primary_10_1007_s10489_022_03368_9
crossref_primary_10_1109_TII_2019_2936048
crossref_primary_10_1109_TITS_2020_3029946
crossref_primary_10_1002_qre_2736
crossref_primary_10_1109_TASE_2023_3321049
crossref_primary_10_1016_j_ymssp_2023_110653
crossref_primary_10_1088_1755_1315_238_1_012047
crossref_primary_10_3390_app11031251
crossref_primary_10_1109_TITS_2022_3182506
crossref_primary_10_1007_s00521_024_10138_w
crossref_primary_10_1109_TII_2018_2883357
crossref_primary_10_1155_2022_1839280
crossref_primary_10_1109_TII_2019_2941868
crossref_primary_10_1002_adts_202301257
crossref_primary_10_23919_cje_2022_00_154
crossref_primary_10_1016_j_rser_2022_112282
crossref_primary_10_1109_TII_2020_3008010
crossref_primary_10_1155_2021_5006248
crossref_primary_10_1155_2020_8861207
crossref_primary_10_1016_j_neucom_2022_05_056
crossref_primary_10_1109_TII_2018_2847736
crossref_primary_10_1109_TITS_2018_2815678
crossref_primary_10_1016_j_aej_2021_12_057
crossref_primary_10_1080_08982112_2022_2140436
crossref_primary_10_1007_s12555_021_0905_3
crossref_primary_10_1007_s44196_023_00358_8
crossref_primary_10_1016_j_neucom_2019_08_010
crossref_primary_10_1109_JSEN_2021_3077468
crossref_primary_10_1109_TITS_2021_3095095
crossref_primary_10_1111_exsy_13197
crossref_primary_10_1109_TVT_2022_3143585
crossref_primary_10_1109_TII_2020_3017573
crossref_primary_10_1155_2021_7823982
crossref_primary_10_1109_TII_2020_3012989
crossref_primary_10_1109_TMECH_2021_3135284
crossref_primary_10_1109_ACCESS_2018_2880694
crossref_primary_10_1109_TIM_2025_3541687
crossref_primary_10_1109_TII_2019_2917520
crossref_primary_10_3390_s20205907
crossref_primary_10_1109_TIE_2018_2798633
crossref_primary_10_1016_j_future_2025_107752
crossref_primary_10_3390_en14227668
crossref_primary_10_1007_s00371_022_02660_6
crossref_primary_10_1109_ACCESS_2020_3027349
crossref_primary_10_1109_JIOT_2022_3163606
crossref_primary_10_1109_ACCESS_2021_3093482
crossref_primary_10_1016_j_ifacol_2023_10_1435
crossref_primary_10_1109_TNNLS_2021_3060494
crossref_primary_10_2174_2352096515666220823093929
Cites_doi 10.1109/TIE.2011.2106094
10.1109/IJCNN.2014.6889729
10.1109/TASL.2011.2109382
10.1109/TIE.2016.2519325
10.1126/science.1127647
10.1109/TBDATA.2015.2472014
10.1299/jmtl.1.88
10.1016/j.ymssp.2005.09.012
10.1109/TASL.2011.2134090
10.1162/neco.2006.18.7.1527
10.1016/j.ymssp.2010.07.013
10.1016/j.engappai.2016.10.002
10.1109/IJCNN.2016.7727518
10.1109/IFITA.2010.324
10.1109/ITST.2007.4295927
10.1016/j.ymssp.2009.06.015
10.1016/j.dsp.2011.09.008
10.1016/S0925-2312(02)00597-0
10.1016/j.ymssp.2013.01.015
10.1007/s10346-009-0183-2
10.1016/j.sigpro.2010.10.008
10.7763/IJMLC.2012.V2.93
10.1109/TSP.2007.893931
10.1109/TBDATA.2016.2622719
10.1016/j.future.2015.03.023
10.1142/S0129065708001695
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2017.2683528
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 2116
ExternalDocumentID 10_1109_TII_2017_2683528
7879836
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51667017
  funderid: 10.13039/501100001809
– fundername: National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period
  grantid: 2015BAB07B01
– fundername: Key Research Projects of Tibet Autonomous Region for Innovation and Entrepreneur
  grantid: Z2016D01G01/01
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-30ff6cd191d3261d7d1ddaac08e00793356e9d8e28a91ecfdea8fccd041ceca3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:09:48 EDT 2025
Tue Jul 01 03:06:08 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Tue Aug 26 17:08:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-30ff6cd191d3261d7d1ddaac08e00793356e9d8e28a91ecfdea8fccd041ceca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1927320251
PQPubID 85507
PageCount 11
ParticipantIDs crossref_primary_10_1109_TII_2017_2683528
ieee_primary_7879836
proquest_journals_1927320251
crossref_citationtrail_10_1109_TII_2017_2683528
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
yan (ref4) 2012; 29
ref31
ref30
ref33
ref11
ref32
ref1
pang (ref10) 2015; 12
ref17
hinton (ref8) 2006; 313
ref19
ref18
wang (ref2) 2000; 31
huang (ref5) 2013; 35
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
ref7
meng (ref20) 2016; 17
ref9
shi (ref6) 2012; 35
zhang (ref3) 2008
marz (ref16) 2015
References_xml – year: 2015
  ident: ref16
  publication-title: Big Data Principles and Best Practices of Scalable Realtime Data Systems
– ident: ref30
  doi: 10.1109/TIE.2011.2106094
– ident: ref11
  doi: 10.1109/IJCNN.2014.6889729
– volume: 12
  start-page: 1283
  year: 2015
  ident: ref10
  article-title: Faults recognition of high-speed train bogie based on deep learning
  publication-title: J Railway Sci Technol
– ident: ref15
  doi: 10.1109/TASL.2011.2109382
– ident: ref34
  doi: 10.1109/TIE.2016.2519325
– volume: 313
  start-page: 504
  year: 2006
  ident: ref8
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref19
  doi: 10.1109/TBDATA.2015.2472014
– ident: ref7
  doi: 10.1299/jmtl.1.88
– ident: ref23
  doi: 10.1016/j.ymssp.2005.09.012
– ident: ref14
  doi: 10.1109/TASL.2011.2134090
– ident: ref9
  doi: 10.1162/neco.2006.18.7.1527
– volume: 35
  start-page: 112
  year: 2012
  ident: ref6
  article-title: Vibration analysis of high-speed vehicles under the conditions of various speed and linse
  publication-title: J Beijing Jiaotong Univ
– ident: ref21
  doi: 10.1016/j.ymssp.2010.07.013
– ident: ref13
  doi: 10.1016/j.engappai.2016.10.002
– ident: ref12
  doi: 10.1109/IJCNN.2016.7727518
– ident: ref31
  doi: 10.1109/IFITA.2010.324
– ident: ref1
  doi: 10.1109/ITST.2007.4295927
– ident: ref26
  doi: 10.1016/j.ymssp.2009.06.015
– ident: ref27
  doi: 10.1016/j.dsp.2011.09.008
– volume: 17
  start-page: 1235
  year: 2016
  ident: ref20
  article-title: Mllib: Machine learning in apache spark
  publication-title: J Mach Learn Res
– ident: ref32
  doi: 10.1016/S0925-2312(02)00597-0
– volume: 29
  start-page: 13
  year: 2012
  ident: ref4
  article-title: The analysis of vehicle model establishment and malfunction based on MATLAB/ Simulink
  publication-title: J East China Jiaotong Univ
– ident: ref24
  doi: 10.1016/j.ymssp.2013.01.015
– start-page: 23
  year: 2008
  ident: ref3
  article-title: Study on the theory and analysis of the key components of train safety monitoring
  publication-title: Chengdu Southwest Jiaotong Univercity
– ident: ref22
  doi: 10.1007/s10346-009-0183-2
– ident: ref29
  doi: 10.1016/j.sigpro.2010.10.008
– ident: ref25
  doi: 10.7763/IJMLC.2012.V2.93
– ident: ref28
  doi: 10.1109/TSP.2007.893931
– ident: ref17
  doi: 10.1109/TBDATA.2016.2622719
– volume: 35
  start-page: 14
  year: 2013
  ident: ref5
  article-title: Simulation on wheel wear prediction of high-speed train
  publication-title: J China Railway Soc
– volume: 31
  start-page: 116
  year: 2000
  ident: ref2
  article-title: Study on the reliability test method and evaluation specifications of railway freight car
  publication-title: China Railway Sci
– ident: ref18
  doi: 10.1016/j.future.2015.03.023
– ident: ref33
  doi: 10.1142/S0129065708001695
SSID ssj0037039
Score 2.5504324
Snippet Bogies are an important component of high-speed trains. The level of mechanical performance of bogies has a major influence on the safety and reliability of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2106
SubjectTerms Accuracy
Artificial neural networks
Big Data
Biological neural networks
Bogies
Data management
Data mining
deep neural networks
diagnostic accuracy rate
Diagnostic systems
Fault diagnosis
Faults
Feature extraction
High speed rail
high-speed train with big data
Mechanical properties
Monitoring
Neural networks
Reliability
Signal processing
Trains
Undercarriages
Title Intelligent Fault Diagnosis of the High-Speed Train With Big Data Based on Deep Neural Networks
URI https://ieeexplore.ieee.org/document/7879836
https://www.proquest.com/docview/1927320251
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0BJziwfIqygHzggoRbJ06c-AiUiiLBha7gFjmeyW4FaiuaXvbXr52PigWEuOVgJ1Zm4nmTeX4DcIqJRktJxHOjJI9krniexMRNhDqPwiIk6yu6d_fq5ld0-xQ_rcD58iwMEVXkM-r6y6qWj1O78L_Kes65dCrVKqy6xK0-q9XuutJ5rq60UeOAy1DItiQpdG80HHoOV9INlccb6X8hqOqp8mEjrqLL4AfcteuqSSXP3UWZd-3fd5KN3134Fmw2MJNd1H6xDSs02YGNN-KDu5ANl2qcJRuYxUvJ-jXvbjxn04I5ZMg8C4Q_zFyEYyPfS4I9jss_7HL8m_VNadilC4HIphPWJ5oxr_PhnnlfE8vnezAaXI-ubnjTboHbUAcll6IolEWXwKHDdAEmGCAaY0VKwsvoyViRxpTC1OiAbIFk0sJaFFFgyRq5D2uT6YQOgHmNNId8hEQHHlAonRSYpnnswA3m0qoO9FoDZLaRIvcdMV6yKiUROnMmy7zJssZkHThbzpjVMhxfjN31FliOa15-B45aG2fNdzrPHL5NfAf5ODj8fNZPWPf3ril_R7BWvi7o2MGQMj-p_O8fixfY7w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKWQALXgUxUMALWLDwjGMnTrxgQRlGE9rOhiC6sxz7BkZUMyMmI9T-Cr_Sj-t1HiNeYleJXRZOrPie-B7Hx-cS8sKn2jtIY1ZaJVksS8XKNAFmY6_LWFQCXNjRPZ6p6cf4_UlyskN-bM_CAEAjPoNhuGz28v3SbcKvshGCS2dSdRLKQzj7jgu09et8jNF8KcTkXfF2yroaAswJHdVM8qpSzuOqxCNRiXzqI--tdTwDHrzhZKJA-wxEZnUErvJgs8o5z-PIgbMSH3uNXEeakYj2cFg_zUv8VHRjxppETAou-z1QrkdFngfRWDoUKhCc7Jec1xRx-WPmb9LZ5A656AeiVbF8HW7qcujOf_OI_E9H6i653dFo-qbF_T2yA4v75NZP5op7xORbt9GaTuzmtKbjVlc4X9NlRZH50qByYR9WmMFpEWpl0E_z-gs9mH-mY1tbeoAp3tPlgo4BVjT4mGCfs1Y4v35Aiqt4wYdkd7FcwCNCgwccMjsuPZIjz5VOK59lZYLkzZfSqQEZ9fE2rrNaDxU_Tk2z5OLaIEJMQIjpEDIgr7Z3rFqbkX-03QsB37brYj0g-z2kTDcPrQ3y9xTBiST28d_vek5uTIvjI3OUzw6fkJuhn1beuE92628beIqUqy6fNdCnGLmrBdAllE05XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Fault+Diagnosis+of+the+High-Speed+Train+With+Big+Data+Based+on+Deep+Neural+Networks&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Hu%2C+Hexuan&rft.au=Tang%2C+Bo&rft.au=Gong%2C+Xuejiao&rft.au=Wei%2C+Wei&rft.date=2017-08-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=13&rft.issue=4&rft.spage=2106&rft.epage=2116&rft_id=info:doi/10.1109%2FTII.2017.2683528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2017_2683528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon