Intelligent Fault Diagnosis of the High-Speed Train With Big Data Based on Deep Neural Networks
Bogies are an important component of high-speed trains. The level of mechanical performance of bogies has a major influence on the safety and reliability of high-speed train. Therefore, conducting fault diagnoses on bogies with big data is very important. Fault mechanisms of bogies are very complex,...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 13; no. 4; pp. 2106 - 2116 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bogies are an important component of high-speed trains. The level of mechanical performance of bogies has a major influence on the safety and reliability of high-speed train. Therefore, conducting fault diagnoses on bogies with big data is very important. Fault mechanisms of bogies are very complex, and feature signals are nonobvious. For these reasons, fault information of bogies cannot be effectively extracted using the traditional signal processing method. Therefore, this paper adopted the deep neural network to recognize faults in bogies. The deep neural network offers numerous benefits in this context. Using deep neural networks, fault information in a signal spectrum can be extracted in a selfadaptive method. This technique is free of dependence on extensive signal processing knowledge and diagnostic experience. Compared with the traditional intelligent diagnosis method, the deep neural network can obtain a higher diagnostic accuracy. Additionally, the deep neural network does not depend on the sample size, and it can obtain high diagnostic accuracy even when the sample size is relatively small. It also achieves very high diagnostic accuracy applied to high-speed trains with different speeds and different faults, which shows that the method is extensively applicable. Furthermore, the recognition accuracy rate of the deep neural network under normal conditions can reach 100%. This method provides a new paradigm for fault diagnosis of the high-speed train with big data and plays an important role in this field. |
---|---|
AbstractList | Bogies are an important component of high-speed trains. The level of mechanical performance of bogies has a major influence on the safety and reliability of high-speed train. Therefore, conducting fault diagnoses on bogies with big data is very important. Fault mechanisms of bogies are very complex, and feature signals are nonobvious. For these reasons, fault information of bogies cannot be effectively extracted using the traditional signal processing method. Therefore, this paper adopted the deep neural network to recognize faults in bogies. The deep neural network offers numerous benefits in this context. Using deep neural networks, fault information in a signal spectrum can be extracted in a selfadaptive method. This technique is free of dependence on extensive signal processing knowledge and diagnostic experience. Compared with the traditional intelligent diagnosis method, the deep neural network can obtain a higher diagnostic accuracy. Additionally, the deep neural network does not depend on the sample size, and it can obtain high diagnostic accuracy even when the sample size is relatively small. It also achieves very high diagnostic accuracy applied to high-speed trains with different speeds and different faults, which shows that the method is extensively applicable. Furthermore, the recognition accuracy rate of the deep neural network under normal conditions can reach 100%. This method provides a new paradigm for fault diagnosis of the high-speed train with big data and plays an important role in this field. |
Author | Xuejiao Gong Wei Wei Huihui Wang Hexuan Hu Bo Tang |
Author_xml | – sequence: 1 givenname: Hexuan surname: Hu fullname: Hu, Hexuan – sequence: 2 givenname: Bo surname: Tang fullname: Tang, Bo – sequence: 3 givenname: Xuejiao surname: Gong fullname: Gong, Xuejiao – sequence: 4 givenname: Wei surname: Wei fullname: Wei, Wei – sequence: 5 givenname: Huihui surname: Wang fullname: Wang, Huihui |
BookMark | eNp9kM1rGzEQxUVIII7Te6EXQc_rzkjZDx2bOE4MoT3EkKMQ0qwtdyu5kkzpfx8Fhx566OkNzPvN8N4VOw8xEGMfERaIoL5s1uuFAOwXohtkK4YzNkN1gw1AC-d1bltspAB5ya5y3gPIHqSaMb0OhabJbykUvjLHqfClN9sQs888jrzsiD_67a55PhA5vknGB_7iy47f-i1fmmL4rcl1EwNfEh34NzomM1Upv2P6ka_ZxWimTB_edc42q_vN3WPz9P1hfff1qbFCYWkkjGNnHSp0UnToeofOGWNhIIBeSdl2pNxAYjAKyY6OzDBa6-AGLVkj5-zz6ewhxV9HykXv4zGF-lGjEn0NLlqsru7ksinmnGjU1hdTfAyl5po0gn7rUtcu9VuX-r3LCsI_4CH5nyb9-R_y6YR4Ivpr74deDbKTrwucgPc |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1109_TNNLS_2020_2966744 crossref_primary_10_1093_tse_tdaa022 crossref_primary_10_1109_ACCESS_2021_3074929 crossref_primary_10_1109_MVT_2021_3053193 crossref_primary_10_1177_0954409718795089 crossref_primary_10_1109_TNNLS_2020_3016632 crossref_primary_10_1007_s11071_022_07341_6 crossref_primary_10_1109_ACCESS_2021_3113381 crossref_primary_10_1016_j_eswa_2022_119479 crossref_primary_10_1109_TII_2019_2907373 crossref_primary_10_1109_ACCESS_2021_3091550 crossref_primary_10_1002_ett_3922 crossref_primary_10_1109_TIM_2020_3047922 crossref_primary_10_1155_2021_5410049 crossref_primary_10_3390_app10020467 crossref_primary_10_1016_j_nucengdes_2023_112258 crossref_primary_10_1109_TII_2019_2938145 crossref_primary_10_1109_TII_2023_3299623 crossref_primary_10_1016_j_eswa_2018_02_017 crossref_primary_10_1177_1748006X211004515 crossref_primary_10_1016_j_measurement_2022_111228 crossref_primary_10_1007_s00779_019_01292_3 crossref_primary_10_1109_TII_2021_3136144 crossref_primary_10_1016_j_optcom_2023_130112 crossref_primary_10_1109_TVT_2023_3242433 crossref_primary_10_1109_TVT_2023_3328640 crossref_primary_10_1155_2018_4501952 crossref_primary_10_1109_JSEN_2020_3027684 crossref_primary_10_1016_j_simpat_2023_102778 crossref_primary_10_1109_TITS_2019_2897583 crossref_primary_10_1016_j_jpse_2025_100282 crossref_primary_10_1016_j_hspr_2024_01_002 crossref_primary_10_1109_JIOT_2019_2948396 crossref_primary_10_1007_s10489_019_01483_8 crossref_primary_10_1007_s10845_020_01649_z crossref_primary_10_3233_JIFS_179146 crossref_primary_10_1145_3418205 crossref_primary_10_1109_ACCESS_2019_2936243 crossref_primary_10_1109_TII_2022_3152540 crossref_primary_10_1016_j_comcom_2020_01_040 crossref_primary_10_1016_j_trgeo_2023_101000 crossref_primary_10_1109_TII_2018_2799928 crossref_primary_10_1109_TII_2020_3014422 crossref_primary_10_1177_03611981211064893 crossref_primary_10_1109_JIOT_2020_2992349 crossref_primary_10_3390_coatings9090578 crossref_primary_10_1142_S0219876221500602 crossref_primary_10_1016_j_engappai_2023_106598 crossref_primary_10_1016_j_engfracmech_2021_107980 crossref_primary_10_1088_1361_6501_acc755 crossref_primary_10_1016_j_measurement_2021_109960 crossref_primary_10_3390_app10051680 crossref_primary_10_1016_j_engappai_2021_104415 crossref_primary_10_1016_j_engfailanal_2022_106424 crossref_primary_10_3390_s21175739 crossref_primary_10_1109_ACCESS_2019_2935454 crossref_primary_10_1177_00202940231180626 crossref_primary_10_3390_pr9071121 crossref_primary_10_1109_TIM_2022_3158996 crossref_primary_10_1016_j_jmapro_2019_04_015 crossref_primary_10_1109_TII_2018_2828811 crossref_primary_10_1109_ACCESS_2021_3064350 crossref_primary_10_1109_TIM_2022_3180410 crossref_primary_10_1109_ACCESS_2019_2926067 crossref_primary_10_1016_j_asoc_2019_105546 crossref_primary_10_1109_JSYST_2019_2905565 crossref_primary_10_1109_JSEN_2023_3337853 crossref_primary_10_1177_1748006X20976817 crossref_primary_10_1109_TIM_2019_2905945 crossref_primary_10_1080_0952813X_2022_2092560 crossref_primary_10_31796_ogummf_873963 crossref_primary_10_7736_JKSPE_024_075 crossref_primary_10_1109_TII_2024_3441645 crossref_primary_10_1109_TIM_2019_2963552 crossref_primary_10_1088_1361_6501_ad30bc crossref_primary_10_1016_j_rcim_2021_102281 crossref_primary_10_1007_s40864_023_00187_0 crossref_primary_10_1109_ACCESS_2022_3213657 crossref_primary_10_1109_TR_2021_3138448 crossref_primary_10_1007_s10489_022_03344_3 crossref_primary_10_1109_TPEL_2023_3263226 crossref_primary_10_1155_2022_3216043 crossref_primary_10_1007_s00500_017_2940_9 crossref_primary_10_1016_j_engappai_2022_104896 crossref_primary_10_1007_s10489_022_03368_9 crossref_primary_10_1109_TII_2019_2936048 crossref_primary_10_1109_TITS_2020_3029946 crossref_primary_10_1002_qre_2736 crossref_primary_10_1109_TASE_2023_3321049 crossref_primary_10_1016_j_ymssp_2023_110653 crossref_primary_10_1088_1755_1315_238_1_012047 crossref_primary_10_3390_app11031251 crossref_primary_10_1109_TITS_2022_3182506 crossref_primary_10_1007_s00521_024_10138_w crossref_primary_10_1109_TII_2018_2883357 crossref_primary_10_1155_2022_1839280 crossref_primary_10_1109_TII_2019_2941868 crossref_primary_10_1002_adts_202301257 crossref_primary_10_23919_cje_2022_00_154 crossref_primary_10_1016_j_rser_2022_112282 crossref_primary_10_1109_TII_2020_3008010 crossref_primary_10_1155_2021_5006248 crossref_primary_10_1155_2020_8861207 crossref_primary_10_1016_j_neucom_2022_05_056 crossref_primary_10_1109_TII_2018_2847736 crossref_primary_10_1109_TITS_2018_2815678 crossref_primary_10_1016_j_aej_2021_12_057 crossref_primary_10_1080_08982112_2022_2140436 crossref_primary_10_1007_s12555_021_0905_3 crossref_primary_10_1007_s44196_023_00358_8 crossref_primary_10_1016_j_neucom_2019_08_010 crossref_primary_10_1109_JSEN_2021_3077468 crossref_primary_10_1109_TITS_2021_3095095 crossref_primary_10_1111_exsy_13197 crossref_primary_10_1109_TVT_2022_3143585 crossref_primary_10_1109_TII_2020_3017573 crossref_primary_10_1155_2021_7823982 crossref_primary_10_1109_TII_2020_3012989 crossref_primary_10_1109_TMECH_2021_3135284 crossref_primary_10_1109_ACCESS_2018_2880694 crossref_primary_10_1109_TIM_2025_3541687 crossref_primary_10_1109_TII_2019_2917520 crossref_primary_10_3390_s20205907 crossref_primary_10_1109_TIE_2018_2798633 crossref_primary_10_1016_j_future_2025_107752 crossref_primary_10_3390_en14227668 crossref_primary_10_1007_s00371_022_02660_6 crossref_primary_10_1109_ACCESS_2020_3027349 crossref_primary_10_1109_JIOT_2022_3163606 crossref_primary_10_1109_ACCESS_2021_3093482 crossref_primary_10_1016_j_ifacol_2023_10_1435 crossref_primary_10_1109_TNNLS_2021_3060494 crossref_primary_10_2174_2352096515666220823093929 |
Cites_doi | 10.1109/TIE.2011.2106094 10.1109/IJCNN.2014.6889729 10.1109/TASL.2011.2109382 10.1109/TIE.2016.2519325 10.1126/science.1127647 10.1109/TBDATA.2015.2472014 10.1299/jmtl.1.88 10.1016/j.ymssp.2005.09.012 10.1109/TASL.2011.2134090 10.1162/neco.2006.18.7.1527 10.1016/j.ymssp.2010.07.013 10.1016/j.engappai.2016.10.002 10.1109/IJCNN.2016.7727518 10.1109/IFITA.2010.324 10.1109/ITST.2007.4295927 10.1016/j.ymssp.2009.06.015 10.1016/j.dsp.2011.09.008 10.1016/S0925-2312(02)00597-0 10.1016/j.ymssp.2013.01.015 10.1007/s10346-009-0183-2 10.1016/j.sigpro.2010.10.008 10.7763/IJMLC.2012.V2.93 10.1109/TSP.2007.893931 10.1109/TBDATA.2016.2622719 10.1016/j.future.2015.03.023 10.1142/S0129065708001695 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2017.2683528 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 2116 |
ExternalDocumentID | 10_1109_TII_2017_2683528 7879836 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51667017 funderid: 10.13039/501100001809 – fundername: National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period grantid: 2015BAB07B01 – fundername: Key Research Projects of Tibet Autonomous Region for Innovation and Entrepreneur grantid: Z2016D01G01/01 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-30ff6cd191d3261d7d1ddaac08e00793356e9d8e28a91ecfdea8fccd041ceca3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:09:48 EDT 2025 Tue Jul 01 03:06:08 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Tue Aug 26 17:08:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-30ff6cd191d3261d7d1ddaac08e00793356e9d8e28a91ecfdea8fccd041ceca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1927320251 |
PQPubID | 85507 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TII_2017_2683528 ieee_primary_7879836 proquest_journals_1927320251 crossref_citationtrail_10_1109_TII_2017_2683528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 yan (ref4) 2012; 29 ref31 ref30 ref33 ref11 ref32 ref1 pang (ref10) 2015; 12 ref17 hinton (ref8) 2006; 313 ref19 ref18 wang (ref2) 2000; 31 huang (ref5) 2013; 35 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 ref7 meng (ref20) 2016; 17 ref9 shi (ref6) 2012; 35 zhang (ref3) 2008 marz (ref16) 2015 |
References_xml | – year: 2015 ident: ref16 publication-title: Big Data Principles and Best Practices of Scalable Realtime Data Systems – ident: ref30 doi: 10.1109/TIE.2011.2106094 – ident: ref11 doi: 10.1109/IJCNN.2014.6889729 – volume: 12 start-page: 1283 year: 2015 ident: ref10 article-title: Faults recognition of high-speed train bogie based on deep learning publication-title: J Railway Sci Technol – ident: ref15 doi: 10.1109/TASL.2011.2109382 – ident: ref34 doi: 10.1109/TIE.2016.2519325 – volume: 313 start-page: 504 year: 2006 ident: ref8 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: ref19 doi: 10.1109/TBDATA.2015.2472014 – ident: ref7 doi: 10.1299/jmtl.1.88 – ident: ref23 doi: 10.1016/j.ymssp.2005.09.012 – ident: ref14 doi: 10.1109/TASL.2011.2134090 – ident: ref9 doi: 10.1162/neco.2006.18.7.1527 – volume: 35 start-page: 112 year: 2012 ident: ref6 article-title: Vibration analysis of high-speed vehicles under the conditions of various speed and linse publication-title: J Beijing Jiaotong Univ – ident: ref21 doi: 10.1016/j.ymssp.2010.07.013 – ident: ref13 doi: 10.1016/j.engappai.2016.10.002 – ident: ref12 doi: 10.1109/IJCNN.2016.7727518 – ident: ref31 doi: 10.1109/IFITA.2010.324 – ident: ref1 doi: 10.1109/ITST.2007.4295927 – ident: ref26 doi: 10.1016/j.ymssp.2009.06.015 – ident: ref27 doi: 10.1016/j.dsp.2011.09.008 – volume: 17 start-page: 1235 year: 2016 ident: ref20 article-title: Mllib: Machine learning in apache spark publication-title: J Mach Learn Res – ident: ref32 doi: 10.1016/S0925-2312(02)00597-0 – volume: 29 start-page: 13 year: 2012 ident: ref4 article-title: The analysis of vehicle model establishment and malfunction based on MATLAB/ Simulink publication-title: J East China Jiaotong Univ – ident: ref24 doi: 10.1016/j.ymssp.2013.01.015 – start-page: 23 year: 2008 ident: ref3 article-title: Study on the theory and analysis of the key components of train safety monitoring publication-title: Chengdu Southwest Jiaotong Univercity – ident: ref22 doi: 10.1007/s10346-009-0183-2 – ident: ref29 doi: 10.1016/j.sigpro.2010.10.008 – ident: ref25 doi: 10.7763/IJMLC.2012.V2.93 – ident: ref28 doi: 10.1109/TSP.2007.893931 – ident: ref17 doi: 10.1109/TBDATA.2016.2622719 – volume: 35 start-page: 14 year: 2013 ident: ref5 article-title: Simulation on wheel wear prediction of high-speed train publication-title: J China Railway Soc – volume: 31 start-page: 116 year: 2000 ident: ref2 article-title: Study on the reliability test method and evaluation specifications of railway freight car publication-title: China Railway Sci – ident: ref18 doi: 10.1016/j.future.2015.03.023 – ident: ref33 doi: 10.1142/S0129065708001695 |
SSID | ssj0037039 |
Score | 2.5504324 |
Snippet | Bogies are an important component of high-speed trains. The level of mechanical performance of bogies has a major influence on the safety and reliability of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2106 |
SubjectTerms | Accuracy Artificial neural networks Big Data Biological neural networks Bogies Data management Data mining deep neural networks diagnostic accuracy rate Diagnostic systems Fault diagnosis Faults Feature extraction High speed rail high-speed train with big data Mechanical properties Monitoring Neural networks Reliability Signal processing Trains Undercarriages |
Title | Intelligent Fault Diagnosis of the High-Speed Train With Big Data Based on Deep Neural Networks |
URI | https://ieeexplore.ieee.org/document/7879836 https://www.proquest.com/docview/1927320251 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0BJziwfIqygHzggoRbJ06c-AiUiiLBha7gFjmeyW4FaiuaXvbXr52PigWEuOVgJ1Zm4nmTeX4DcIqJRktJxHOjJI9krniexMRNhDqPwiIk6yu6d_fq5ld0-xQ_rcD58iwMEVXkM-r6y6qWj1O78L_Kes65dCrVKqy6xK0-q9XuutJ5rq60UeOAy1DItiQpdG80HHoOV9INlccb6X8hqOqp8mEjrqLL4AfcteuqSSXP3UWZd-3fd5KN3134Fmw2MJNd1H6xDSs02YGNN-KDu5ANl2qcJRuYxUvJ-jXvbjxn04I5ZMg8C4Q_zFyEYyPfS4I9jss_7HL8m_VNadilC4HIphPWJ5oxr_PhnnlfE8vnezAaXI-ubnjTboHbUAcll6IolEWXwKHDdAEmGCAaY0VKwsvoyViRxpTC1OiAbIFk0sJaFFFgyRq5D2uT6YQOgHmNNId8hEQHHlAonRSYpnnswA3m0qoO9FoDZLaRIvcdMV6yKiUROnMmy7zJssZkHThbzpjVMhxfjN31FliOa15-B45aG2fNdzrPHL5NfAf5ODj8fNZPWPf3ril_R7BWvi7o2MGQMj-p_O8fixfY7w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKWQALXgUxUMALWLDwjGMnTrxgQRlGE9rOhiC6sxz7BkZUMyMmI9T-Cr_Sj-t1HiNeYleJXRZOrPie-B7Hx-cS8sKn2jtIY1ZaJVksS8XKNAFmY6_LWFQCXNjRPZ6p6cf4_UlyskN-bM_CAEAjPoNhuGz28v3SbcKvshGCS2dSdRLKQzj7jgu09et8jNF8KcTkXfF2yroaAswJHdVM8qpSzuOqxCNRiXzqI--tdTwDHrzhZKJA-wxEZnUErvJgs8o5z-PIgbMSH3uNXEeakYj2cFg_zUv8VHRjxppETAou-z1QrkdFngfRWDoUKhCc7Jec1xRx-WPmb9LZ5A656AeiVbF8HW7qcujOf_OI_E9H6i653dFo-qbF_T2yA4v75NZP5op7xORbt9GaTuzmtKbjVlc4X9NlRZH50qByYR9WmMFpEWpl0E_z-gs9mH-mY1tbeoAp3tPlgo4BVjT4mGCfs1Y4v35Aiqt4wYdkd7FcwCNCgwccMjsuPZIjz5VOK59lZYLkzZfSqQEZ9fE2rrNaDxU_Tk2z5OLaIEJMQIjpEDIgr7Z3rFqbkX-03QsB37brYj0g-z2kTDcPrQ3y9xTBiST28d_vek5uTIvjI3OUzw6fkJuhn1beuE92628beIqUqy6fNdCnGLmrBdAllE05XA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Fault+Diagnosis+of+the+High-Speed+Train+With+Big+Data+Based+on+Deep+Neural+Networks&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Hu%2C+Hexuan&rft.au=Tang%2C+Bo&rft.au=Gong%2C+Xuejiao&rft.au=Wei%2C+Wei&rft.date=2017-08-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=13&rft.issue=4&rft.spage=2106&rft.epage=2116&rft_id=info:doi/10.1109%2FTII.2017.2683528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2017_2683528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |