Coupled Magnetic Field-Thermal Network Analysis of Modular-Spoke-Type Permanent-Magnet Machine for Electric Motorcycle
Brushless modular spoke type permanent magnet (MSTPM) machine has exhibited prior electromagnetic (EM) performance over conventional surface-mounted PM machines for in-wheel traction system in electric vehicles (EVs). However, analysis of thermal behavior of MSTPM machines is rather insufficient, ev...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 36; no. 1; pp. 120 - 130 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0885-8969 1558-0059 |
DOI | 10.1109/TEC.2020.3006098 |
Cover
Loading…
Abstract | Brushless modular spoke type permanent magnet (MSTPM) machine has exhibited prior electromagnetic (EM) performance over conventional surface-mounted PM machines for in-wheel traction system in electric vehicles (EVs). However, analysis of thermal behavior of MSTPM machines is rather insufficient, even accurate thermal analysis is of significant importance due to poor heat dissipation condition inside the wheel hub. Conventionally, the losses produced in electrical machines by EM prediction is equivalent to the heat source in normal thermal analysis, and only the resultant thermal behavior is investigated. However, the reaction of temperature rising on the EM performance is neglected. In this article, a bi-directional coupled electromagnetic-thermal analysis method is proposed and carried out by a combination of lumped parameter thermal network (LPTN) model and finite element method (FEM), where both steady-state temperature distribution and transient-state temperature rise are investigated for MSTPM machines. By finite number of iterations between magnetic and thermal fields, the electromagnetic performance and thermal behavior can be predicted more accurately due to the coupling effect considered. The coupled model-predicted results are verified by 3D-FEM and experimental measurement, which shows that the proposed method has advantages in both computational efficiency and accuracy as well as can be applied to other electrical machines. |
---|---|
AbstractList | Brushless modular spoke type permanent magnet (MSTPM) machine has exhibited prior electromagnetic (EM) performance over conventional surface-mounted PM machines for in-wheel traction system in electric vehicles (EVs). However, analysis of thermal behavior of MSTPM machines is rather insufficient, even accurate thermal analysis is of significant importance due to poor heat dissipation condition inside the wheel hub. Conventionally, the losses produced in electrical machines by EM prediction is equivalent to the heat source in normal thermal analysis, and only the resultant thermal behavior is investigated. However, the reaction of temperature rising on the EM performance is neglected. In this article, a bi-directional coupled electromagnetic-thermal analysis method is proposed and carried out by a combination of lumped parameter thermal network (LPTN) model and finite element method (FEM), where both steady-state temperature distribution and transient-state temperature rise are investigated for MSTPM machines. By finite number of iterations between magnetic and thermal fields, the electromagnetic performance and thermal behavior can be predicted more accurately due to the coupling effect considered. The coupled model-predicted results are verified by 3D-FEM and experimental measurement, which shows that the proposed method has advantages in both computational efficiency and accuracy as well as can be applied to other electrical machines. |
Author | Ma, Guangtong Zhang, Hengliang Xiao, Huafeng Yu, Wenfei Xu, Shuai Zhang, Gan Hua, Wei Qi, Ji |
Author_xml | – sequence: 1 givenname: Wenfei orcidid: 0000-0001-9660-1684 surname: Yu fullname: Yu, Wenfei email: yuwenfei@seu.edu.cn organization: School of Electrical Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Wei orcidid: 0000-0002-2047-9712 surname: Hua fullname: Hua, Wei email: huawei1978@seu.edu.cn organization: School of Electrical Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Ji orcidid: 0000-0003-3018-7788 surname: Qi fullname: Qi, Ji email: qj_1994@163.com organization: Department of Electronics and Electrical Engineering, The University of Sheffield, Sheffield, U.K – sequence: 4 givenname: Hengliang orcidid: 0000-0002-6439-5502 surname: Zhang fullname: Zhang, Hengliang email: zhanghl2019@163.com organization: School of Electrical Engineering, Southeast University, Nanjing, China – sequence: 5 givenname: Gan orcidid: 0000-0002-2170-8820 surname: Zhang fullname: Zhang, Gan email: zhanggan@seu.edu.cn organization: School of Electrical Engineering, Southeast University, Nanjing, China – sequence: 6 givenname: Huafeng orcidid: 0000-0003-2188-8216 surname: Xiao fullname: Xiao, Huafeng email: xiaohf@seu.edu.cn organization: School of Electrical Engineering, Southeast University, Nanjing, China – sequence: 7 givenname: Shuai surname: Xu fullname: Xu, Shuai email: sxu@swjtu.edu.cn organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China – sequence: 8 givenname: Guangtong orcidid: 0000-0002-0249-4310 surname: Ma fullname: Ma, Guangtong email: gtma@swjtu.edu.cn organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China |
BookMark | eNp9kE1rGzEQhkVJoM7HvdCLoGc5I8lSV8dgnDQQt4E450XVztayldVWklP87yNj00MPvcwc5nkfmPeCnA1xQEI-cZhyDuZmtZhPBQiYSgANpvlAJlyphgEoc0Ym0DSKNUabj-Qi5w0AnynBJ-RtHndjwI4u7a8Bi3f0zmPo2GqN6dUG-h3Ln5i29HawYZ99prGny9jtgk3seYxbZKv9iPTpQA84FHb0VJ1b-wFpHxNdBHQlVfUylpjc3gW8Iue9DRmvT_uSvNwtVvNv7PHH_cP89pE5YXhhEtB00gjXOQFGzIzlPVed1oIrIy1H50ABdEp9FVI73aCW2GuUrg74KeUl-XL0jin-3mEu7SbuUv0lt9UmGmW4VpXSR8qlmHPCvnW-2OLjUJL1oeXQHjpua8ftoeP21HENwj_BMflXm_b_i3w-Rjwi_sUNr_eZkO_8jYk1 |
CODEN | ITCNE4 |
CitedBy_id | crossref_primary_10_1002_tee_23510 crossref_primary_10_1016_j_applthermaleng_2023_121605 crossref_primary_10_1109_TEC_2023_3269038 crossref_primary_10_1109_TEC_2022_3179172 crossref_primary_10_3390_en15228651 crossref_primary_10_1109_TIA_2022_3194042 crossref_primary_10_1139_tcsme_2022_0010 crossref_primary_10_1109_ACCESS_2024_3354983 crossref_primary_10_1109_ACCESS_2022_3158672 crossref_primary_10_1007_s44267_023_00006_x crossref_primary_10_1016_j_applthermaleng_2022_118054 crossref_primary_10_1109_TIA_2022_3192357 crossref_primary_10_1109_ACCESS_2023_3257996 crossref_primary_10_3390_en15239178 crossref_primary_10_1016_j_applthermaleng_2024_123144 crossref_primary_10_1109_TVT_2021_3126108 crossref_primary_10_1109_TVT_2022_3197903 crossref_primary_10_1007_s42835_024_02108_y crossref_primary_10_1007_s40430_024_04723_2 crossref_primary_10_1049_els2_12046 crossref_primary_10_1109_ACCESS_2024_3418017 crossref_primary_10_2514_1_J063627 crossref_primary_10_1109_TPS_2024_3401732 crossref_primary_10_1109_ACCESS_2024_3410326 crossref_primary_10_1002_tee_23526 crossref_primary_10_1016_j_measurement_2022_110971 crossref_primary_10_1109_TEC_2021_3082903 crossref_primary_10_1109_TEC_2023_3253262 crossref_primary_10_3390_electronics12051155 crossref_primary_10_2298_TSCI230422164Z crossref_primary_10_1109_TMAG_2023_3323566 crossref_primary_10_3390_en14102760 crossref_primary_10_1016_j_ijthermalsci_2024_109586 crossref_primary_10_1109_TMAG_2022_3154596 crossref_primary_10_21595_jve_2022_22572 crossref_primary_10_3233_JAE_210156 |
Cites_doi | 10.1109/TEC.2005.847979 10.1109/TIA.2014.2345955 10.1109/20.43994 10.1109/ICELMACH.2014.6960218 10.1049/iet-epa.2017.0719 10.1109/TMAG.2017.2668845 10.1109/TIA.2018.2873528 10.1109/TIE.2020.3001807 10.1109/TMAG.2019.2905873 10.1049/ip-b.1991.0025 10.1109/TEC.2017.2761787 10.1109/TIA.2012.2210009 10.1109/TVT.2016.2526663 10.1109/ICEMS.2019.8922364 10.1109/TMAG.2011.2172395 10.1109/IEMDC.2013.6556187 10.1109/TMAG.2017.2664501 10.1109/TIE.2018.2803724 10.1109/ICUS.2017.8278370 10.1109/ECCE.2015.7309772 10.1109/TIE.2017.2682025 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TEC.2020.3006098 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0059 |
EndPage | 130 |
ExternalDocumentID | 10_1109_TEC_2020_3006098 9130042 |
Genre | orig-research |
GrantInformation_xml | – fundername: Jiangsu Provincial Key Research and Development Program grantid: BE2019073 funderid: 10.13039/501100013058 – fundername: Visiting Funding of the State Key Laboratory of Traction Power in Southwest Jiaotong University grantid: TPL1903 – fundername: National Natural Science Foundation of China grantid: 51825701 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-30e9d392cdc209249a1f15d6621593a1ecc0500d557236c68e63ef6e3cf6e0b33 |
IEDL.DBID | RIE |
ISSN | 0885-8969 |
IngestDate | Mon Jun 30 03:43:49 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Tue Jul 01 02:53:22 EDT 2025 Wed Aug 27 02:44:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-30e9d392cdc209249a1f15d6621593a1ecc0500d557236c68e63ef6e3cf6e0b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2188-8216 0000-0002-2047-9712 0000-0002-6439-5502 0000-0001-9660-1684 0000-0003-3018-7788 0000-0002-2170-8820 0000-0002-0249-4310 |
PQID | 2492859165 |
PQPubID | 85443 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2492859165 ieee_primary_9130042 crossref_primary_10_1109_TEC_2020_3006098 crossref_citationtrail_10_1109_TEC_2020_3006098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-March 2021-3-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-March |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on energy conversion |
PublicationTitleAbbrev | TEC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | liu (ref19) 0 ref15 zhang (ref6) 0 ref14 ref30 fei (ref3) 2013; 50 ref11 ref10 huang (ref23) 2004 ref2 ref1 ref17 ref16 ref18 (ref13) 2019 ref24 ref26 ref25 ref20 shen (ref22) 2012 ref28 ref29 ref8 ref7 ref9 ref4 saari (ref27) 1998 ref5 zanocchi (ref12) 0 li (ref21) 2013 |
References_xml | – ident: ref10 doi: 10.1109/TEC.2005.847979 – start-page: 4825 year: 0 ident: ref12 article-title: FEM and lumped circuit thermal analysis of external rotor motor publication-title: Proc IEEE Trans Ind Electron -32nd Annu Conf – ident: ref18 doi: 10.1109/TIA.2014.2345955 – ident: ref25 doi: 10.1109/20.43994 – ident: ref4 doi: 10.1109/ICELMACH.2014.6960218 – ident: ref28 doi: 10.1049/iet-epa.2017.0719 – ident: ref20 doi: 10.1109/TMAG.2017.2668845 – year: 2013 ident: ref21 article-title: Calculation and analysis about losses and the temperature rise for permanent magnet AC servo motor – ident: ref24 doi: 10.1109/TIA.2018.2873528 – ident: ref30 doi: 10.1109/TIE.2020.3001807 – ident: ref16 doi: 10.1109/TMAG.2019.2905873 – volume: 50 start-page: 1 year: 2013 ident: ref3 article-title: Investigation of torque characteristics in a novel permanent-magnet flux switching machine with an outer-rotor configuration publication-title: IEEE Trans Magn – ident: ref9 doi: 10.1049/ip-b.1991.0025 – year: 2004 ident: ref23 publication-title: Y2 Series Three-Phase Asynchronous Motor Technical Manuals – ident: ref15 doi: 10.1109/TEC.2017.2761787 – year: 1998 ident: ref27 publication-title: Thermal analysis of high-speed induction machines – start-page: 6633 year: 0 ident: ref6 article-title: A novel outer-rotor-permanent-magnet flux-switching machine for in-wheel light traction publication-title: Proc IEEE-IECON – start-page: 631 year: 0 ident: ref19 article-title: Coupled thermal and electromagnetic analysis of a permanent magnet brushless DC servo motor publication-title: Proc Int Conf Elect Mach Drives – ident: ref2 doi: 10.1109/TIA.2012.2210009 – start-page: 15 year: 2019 ident: ref13 article-title: Motor-CAD v12 Software Manual, Motor Design Ltd. – ident: ref1 doi: 10.1109/TVT.2016.2526663 – year: 2012 ident: ref22 article-title: Study on high power density permanent magnet synchronous motor for electric vehicles application – ident: ref26 doi: 10.1109/ICEMS.2019.8922364 – ident: ref29 doi: 10.1109/TMAG.2011.2172395 – ident: ref17 doi: 10.1109/IEMDC.2013.6556187 – ident: ref7 doi: 10.1109/TMAG.2017.2664501 – ident: ref8 doi: 10.1109/TIE.2018.2803724 – ident: ref11 doi: 10.1109/ICUS.2017.8278370 – ident: ref14 doi: 10.1109/ECCE.2015.7309772 – ident: ref5 doi: 10.1109/TIE.2017.2682025 |
SSID | ssj0014521 |
Score | 2.541914 |
Snippet | Brushless modular spoke type permanent magnet (MSTPM) machine has exhibited prior electromagnetic (EM) performance over conventional surface-mounted PM... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120 |
SubjectTerms | coupled electromagnetic-thermal analysis Electric motorcycles Electric vehicles Finite element analysis Finite element method in-wheel lumped parameter thermal network Mathematical models modular Motorcycles Network analysis permanent magnet machines Permanent magnets Rotors Stator windings Steel Temperature distribution Thermal analysis Thermodynamic properties Three dimensional models Wheels |
Title | Coupled Magnetic Field-Thermal Network Analysis of Modular-Spoke-Type Permanent-Magnet Machine for Electric Motorcycle |
URI | https://ieeexplore.ieee.org/document/9130042 https://www.proquest.com/docview/2492859165 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ--xfVFDl4Es5tNmmxzlGUXESqCCt5Km6QeXNpFdwX99c6k7eIL8VIKzQu-ZDLT-WaGkNPYF8ZESjEB3xlIv4LlJudMOCF1bDRYzhicnFzry_vo6kE9LJHzRSyM9z6Qz3wXX4Mv31V2jr_KegZ9LxEI3GUw3OpYrYXHIFIhxgoOjWIwh2ldktz07kZDMAQF2KeYfcTEX66gUFPlhyAOt8t4gyTtumpSyVN3Psu79v1bysb_LnyTrDdqJr2o98UWWfLlNln7lHxwh7wOq_l04h1NsscSQxnpGNlsDDYOCOsJva4J4rRNW0KrgiaVQ9oqu51WT56hDUtvsHUJ07N6HBgO6ZmegjZMR6HIDgydVGDb2zdYyy65H4_uhpesqcLArDD9GZPcGwdalHVWcLTWsn7RV05rUBaMzPqAMVecO6UGAK_VsdfSF9pLCw-eS7lHVsqq9PuERrLIRKa5tAMXWRnlhVGxiV0uVGEjrTuk1wKT2iZFOVbKmKTBVOEmBShThDJtoOyQs0WPaZ2e44-2O4jMol0DSocctdinzfl9STGPImb20-rg916HZFUguyWw0Y7Iyux57o9BPZnlJ2FffgCQL-CY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N4wF42ICB6DbAD7wg4daxYy9-RFWrAkuFRCftLUpsh4dVSQXtpPHXc-ckFV9CvESR4i_pZ5_vcr-7A3idhdraVGsu8TtH6VfzylaCSy-VyaxBy5mCk_OlWVylH6719QG83cfChBAi-SyM6TX68n3rdvSrbGLJ95KiwL2H975Oumitvc8g1THKCo-N5jiLHZySwk5WsymaghItVMo_YrNfLqFYVeUPURzvl_kx5MPKOlrJzXi3rcbu-29JG_936Y_gqFc02btuZzyGg9A8gYc_pR88gdtpu9usg2d5-aWhYEY2Jz4bx62D4nrNlh1FnA2JS1hbs7z1RFzlnzftTeBkxbJP1LrB6Xk3Dg5HBM3AUB9ms1hmB4fOW7Tu3R2u5SlczWer6YL3dRi4kzbZciWC9ahHOe-kIHutTOpEe2NQXbCqTBBloYXwWl8gwM5kwahQm6AcPkSl1DM4bNomPAeWqrqUpRHKXfjUqbSqrc5s5iupa5caM4LJAEzh-iTlVCtjXURjRdgCoSwIyqKHcgRv9j02XYKOf7Q9IWT27XpQRnA-YF_0J_hbQZkUKbef0ad_7_UK7i9W-WVx-X758QweSOK6RG7aORxuv-7CC1RWttXLuEd_AG9V4-E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupled+Magnetic+Field-Thermal+Network+Analysis+of+Modular-Spoke-Type+Permanent-Magnet+Machine+for+Electric+Motorcycle&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Yu%2C+Wenfei&rft.au=Hua%2C+Wei&rft.au=Qi%2C+Ji&rft.au=Zhang%2C+Hengliang&rft.date=2021-03-01&rft.issn=0885-8969&rft.eissn=1558-0059&rft.volume=36&rft.issue=1&rft.spage=120&rft.epage=130&rft_id=info:doi/10.1109%2FTEC.2020.3006098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEC_2020_3006098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon |