Approximate Inferences for Nonlinear Mixed Effects Models with Scale Mixtures of Skew-Normal Distributions
Nonlinear mixed effects models have received a great deal of attention in the statistical literature in recent years because of their flexibility in handling longitudinal studies, including human immunodeficiency virus viral dynamics, pharmacokinetic analyses, and studies of growth and decay. A stan...
Saved in:
Published in | Journal of statistical theory and practice Vol. 15; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonlinear mixed effects models have received a great deal of attention in the statistical literature in recent years because of their flexibility in handling longitudinal studies, including human immunodeficiency virus viral dynamics, pharmacokinetic analyses, and studies of growth and decay. A standard assumption in nonlinear mixed effects models for continuous responses is that the random effects and the within-subject errors are normally distributed, making the model sensitive to outliers. We present a novel class of asymmetric nonlinear mixed effects models that provides efficient parameters estimation in the analysis of longitudinal data. We assume that, marginally, the random effects follow a multivariate scale mixtures of skew-normal distribution and that the random errors follow a symmetric scale mixtures of normal distribution, providing an appealing robust alternative to the usual normal distribution. We propose an approximate method for maximum likelihood estimation based on an EM-type algorithm that produces approximate maximum likelihood estimates and significantly reduces the numerical difficulties associated with the exact maximum likelihood estimation. Techniques for prediction of future responses under this class of distributions are also briefly discussed. The methodology is illustrated through an application to Theophylline kinetics data and through some simulating studies. |
---|---|
AbstractList | Nonlinear mixed effects models have received a great deal of attention in the statistical literature in recent years because of their flexibility in handling longitudinal studies, including human immunodeficiency virus viral dynamics, pharmacokinetic analyses, and studies of growth and decay. A standard assumption in nonlinear mixed effects models for continuous responses is that the random effects and the within-subject errors are normally distributed, making the model sensitive to outliers. We present a novel class of asymmetric nonlinear mixed effects models that provides efficient parameters estimation in the analysis of longitudinal data. We assume that, marginally, the random effects follow a multivariate scale mixtures of skew-normal distribution and that the random errors follow a symmetric scale mixtures of normal distribution, providing an appealing robust alternative to the usual normal distribution. We propose an approximate method for maximum likelihood estimation based on an EM-type algorithm that produces approximate maximum likelihood estimates and significantly reduces the numerical difficulties associated with the exact maximum likelihood estimation. Techniques for prediction of future responses under this class of distributions are also briefly discussed. The methodology is illustrated through an application to Theophylline kinetics data and through some simulating studies. |
ArticleNumber | 60 |
Author | Schumacher, Fernanda L. Dey, Dipak K. Lachos, Victor H. |
Author_xml | – sequence: 1 givenname: Fernanda L. surname: Schumacher fullname: Schumacher, Fernanda L. organization: Department of Statistics, Campinas State University – sequence: 2 givenname: Dipak K. orcidid: 0000-0002-9367-9731 surname: Dey fullname: Dey, Dipak K. email: dipak.dey@uconn.edu organization: Department of Statistics, University of Connecticut – sequence: 3 givenname: Victor H. surname: Lachos fullname: Lachos, Victor H. organization: Department of Statistics, University of Connecticut |
BookMark | eNp9kM1OAjEQgBuDiYC-gKe-wOq0Zf-OBFFJAA_oedPdnWpxaUlbAr69RYwHD2QOM8nMN5n5BqRnrEFCbhncMYD83o94ysoEOEsAWM6T9IL0WZqWSZGxrPdXQ3FFBt6vATIGQvTJerzdOnvQGxmQzoxCh6ZBT5V1dGlNpw1KRxf6gC2dKoVN8HRhW-w83evwQVeN7PDYDzsXMavo6hP3ydK6jezog_bB6XoXtDX-mlwq2Xm8-c1D8vY4fZ08J_OXp9lkPE8aXrKQcMVFXad1luccQEmsRZlzlKAEFmU8G7K8VjBi0KoCeda2dYz0-HbGhGjFkBSnvY2z3jtUVaODPJ4QnNRdxaA6OqtOzqrorPpxVqUR5f_QrYtq3Nd5SJwgH4fNO7pqbXfOxBfPUd-42oJs |
CitedBy_id | crossref_primary_10_1002_sim_9895 crossref_primary_10_1016_j_compbiomed_2024_109186 crossref_primary_10_1016_j_idm_2024_09_001 crossref_primary_10_1016_j_coisb_2021_100359 crossref_primary_10_1080_02664763_2022_2034141 crossref_primary_10_1002_env_2793 crossref_primary_10_3390_math10152820 crossref_primary_10_1109_JTEHM_2023_3257179 |
Cites_doi | 10.1080/01621459.1996.10476679 10.1002/bimj.200390034 10.1198/016214504000001006 10.1198/10618600152628059 10.1002/sim.3157 10.1002/pst.1598 10.6339/JDS.2005.03(4).238 10.1007/978-1-4419-0318-1 10.1007/s11222-010-9212-1 10.1080/02664763.2018.1557122 10.1111/j.1541-0420.2011.01586.x 10.1002/cjs.11338 10.1016/j.csda.2013.02.011 10.2307/2532087 10.1111/1467-9868.00194 10.1111/insr.12378 10.1016/j.csda.2009.05.004 10.1006/jmva.2000.1960 10.1007/s00362-018-0988-y 10.1111/j.0006-341X.2001.00795.x 10.1016/S0167-9473(99)00076-6 10.1080/10618600.1995.10474663 10.1111/j.2517-6161.1977.tb01600.x 10.1002/sim.8870 10.32614/CRAN.package.skewlmm |
ContentType | Journal Article |
Copyright | Grace Scientific Publishing 2021 |
Copyright_xml | – notice: Grace Scientific Publishing 2021 |
DBID | AAYXX CITATION |
DOI | 10.1007/s42519-021-00172-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1559-8616 |
ExternalDocumentID | 10_1007_s42519_021_00172_5 |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: http://dx.doi.org/10.13039/501100003593 |
GroupedDBID | -EM .7F 0R~ 4.4 406 8UJ AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABFIM ABFTV ABJNI ABKCH ABMQK ABPEM ABTAI ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACTIO ACZOJ ADCVX ADKNI ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AIGIU AIJEM AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AQRUH AVBZW AXYYD BGNMA CCCUG CSCUP DKSSO DPUIP EBLON EBS EJD E~A E~B F5P FIGPU FINBP FNLPD FSGXE GGCAI GTTXZ H13 HZ~ H~P IKXTQ IWAJR J9A JZLTJ J~4 KOV LLZTM M4Y M4Z NPVJJ NQJWS NU0 O9- P2P PT4 ROL RSV S-T SJN SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE TDBHL TFL TFT TFW TSG UOJIU UT5 UTJUX UU3 VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c291t-2f23bb5b677200faeb3972ea0f3e89610067bf0410df8e26ddbdbd500176133d3 |
ISSN | 1559-8608 |
IngestDate | Tue Jul 01 00:35:15 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Fri Feb 21 02:47:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Approximate likelihood Nonlinear mixed effects models Scale mixtures of skew-normal distributions EM-algorithm Linearization |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c291t-2f23bb5b677200faeb3972ea0f3e89610067bf0410df8e26ddbdbd500176133d3 |
ORCID | 0000-0002-9367-9731 |
ParticipantIDs | crossref_citationtrail_10_1007_s42519_021_00172_5 crossref_primary_10_1007_s42519_021_00172_5 springer_journals_10_1007_s42519_021_00172_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Journal of statistical theory and practice |
PublicationTitleAbbrev | J Stat Theory Pract |
PublicationYear | 2021 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Arellano-Valle, Bolfarine, Lachos (CR1) 2005; 3 Rosa, Padovani, Gianola (CR27) 2003; 45 Azzalini, Capitanio (CR2) 1999; 61 Lachos, Bandyopadhyay, Dey (CR11) 2011; 67 Lachos, Ghosh, Arellano-Valle (CR13) 2010; 20 Lachos, Castro, Dey (CR12) 2013; 64 Pereira, Russo (CR21) 2019; 46 Wu (CR34) 2010 CR31 Liu, Rubin (CR17) 1994; 80 CR30 Pinheiro, Liu, Wu (CR24) 2001; 10 Lindstrom, Bates (CR15) 1990; 46 Pinheiro, Bates (CR22) 1995; 4 Wu (CR33) 2004; 99 Russo, Paula, Aoki (CR28) 2009; 53 Matos, Prates, Chen, Lachos (CR18) 2013; 23 De la Cruz (CR5) 2014; 13 Hui, Müller, Welsh (CR10) 2020 Zhang, Davidian (CR35) 2001; 57 Meng, Rubin (CR19) 1993; 81 Pinheiro, Bates (CR23) 2000 CR3 Lin, Wang (CR14) 2017; 18 Healy (CR9) 1968; 17 Branco, Dey (CR4) 2001; 79 Litière, Alonso, Molenberghs (CR16) 2007; 27 CR25 Rao, Ali (CR26) 1998; 2 Verbeke, Lesaffre (CR32) 1996; 91 Galarza, Castro, Louzada, Lachos (CR7) 2020; 61 Hartford, Davidian (CR8) 2000; 34 Dempster, Laird, Rubin (CR6) 1977; 39 Meza, Osorio, De la Cruz (CR20) 2012; 22 Schumacher, Lachos, Dey (CR29) 2017; 45 CM Russo (172_CR28) 2009; 53 X Meng (172_CR19) 1993; 81 CR Rao (172_CR26) 1998; 2 RB Arellano-Valle (172_CR1) 2005; 3 A Azzalini (172_CR2) 1999; 61 C Meza (172_CR20) 2012; 22 JC Pinheiro (172_CR23) 2000 GJM Rosa (172_CR27) 2003; 45 MD Branco (172_CR4) 2001; 79 MJ Lindstrom (172_CR15) 1990; 46 CE Galarza (172_CR7) 2020; 61 JC Pinheiro (172_CR22) 1995; 4 VH Lachos (172_CR11) 2011; 67 R De la Cruz (172_CR5) 2014; 13 VH Lachos (172_CR12) 2013; 64 MJR Healy (172_CR9) 1968; 17 172_CR31 G Verbeke (172_CR32) 1996; 91 S Litière (172_CR16) 2007; 27 D Zhang (172_CR35) 2001; 57 172_CR30 L Wu (172_CR34) 2010 JC Pinheiro (172_CR24) 2001; 10 172_CR3 A Dempster (172_CR6) 1977; 39 TI Lin (172_CR14) 2017; 18 FL Schumacher (172_CR29) 2017; 45 VH Lachos (172_CR13) 2010; 20 C Liu (172_CR17) 1994; 80 LA Matos (172_CR18) 2013; 23 A Hartford (172_CR8) 2000; 34 172_CR25 MAA Pereira (172_CR21) 2019; 46 FKC Hui (172_CR10) 2020 L Wu (172_CR33) 2004; 99 |
References_xml | – volume: 80 start-page: 267 year: 1994 end-page: 278 ident: CR17 article-title: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence publication-title: Biometrika – volume: 91 start-page: 217 year: 1996 end-page: 221 ident: CR32 article-title: A linear mixed-effects model with heterogeneity in the random-effects population publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476679 – volume: 45 start-page: 573 year: 2003 end-page: 590 ident: CR27 article-title: Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation publication-title: Biom J doi: 10.1002/bimj.200390034 – volume: 99 start-page: 700 year: 2004 end-page: 709 ident: CR33 article-title: Exact and approximate inferences for nonlinear mixed-effects models with missing covariates publication-title: J Am Stat Assoc doi: 10.1198/016214504000001006 – volume: 18 start-page: 666 issue: 4 year: 2017 end-page: 681 ident: CR14 article-title: Multivariate-nonlinear mixed models with application to censored multi-outcome aids studies publication-title: Biostatistics – volume: 10 start-page: 249 year: 2001 end-page: 276 ident: CR24 article-title: Efficient algorithms for robust estimation in linear mixed-effects models using a multivariate t-distribution publication-title: J Comput Graph Stat doi: 10.1198/10618600152628059 – volume: 20 start-page: 303 year: 2010 end-page: 322 ident: CR13 article-title: Likelihood based inference for skew-normal independent linear mixed models publication-title: Stat Sin – volume: 27 start-page: 3125 year: 2007 end-page: 31447 ident: CR16 article-title: The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models publication-title: Stat Med doi: 10.1002/sim.3157 – ident: CR30 – volume: 13 start-page: 81 issue: 1 year: 2014 end-page: 93 ident: CR5 article-title: Bayesian analysis for nonlinear mixed-effects models under heavy-tailed distributions publication-title: Pharm Stat doi: 10.1002/pst.1598 – volume: 3 start-page: 415 year: 2005 end-page: 438 ident: CR1 article-title: Skew-normal linear mixed models publication-title: J Data Sci doi: 10.6339/JDS.2005.03(4).238 – year: 2000 ident: CR23 publication-title: Mixed-effects models in S and S-PLUS doi: 10.1007/978-1-4419-0318-1 – volume: 22 start-page: 121 issue: 1 year: 2012 end-page: 139 ident: CR20 article-title: Estimation in nonlinear mixed-effects models using heavy-tailed distributions publication-title: Stat Comput doi: 10.1007/s11222-010-9212-1 – volume: 2 start-page: 317 year: 1998 end-page: 324 ident: CR26 article-title: An overall test for multivariate normality publication-title: Student – year: 2010 ident: CR34 publication-title: Mixed effects models for complex data – volume: 46 start-page: 1602 issue: 9 year: 2019 end-page: 1620 ident: CR21 article-title: Nonlinear mixed-effects models with scale mixture of skew-normal distributions publication-title: J Appl Stat doi: 10.1080/02664763.2018.1557122 – ident: CR25 – volume: 67 start-page: 1594 issue: 4 year: 2011 end-page: 1604 ident: CR11 article-title: Linear and nonlinear mixed-effects models for censored HIV viral loads using normal/independent distributions publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01586.x – volume: 45 start-page: 375 issue: 4 year: 2017 end-page: 392 ident: CR29 article-title: Censored regression models with autoregressive errors: a likelihood-based perspective publication-title: Can J Stat doi: 10.1002/cjs.11338 – volume: 64 start-page: 237 year: 2013 end-page: 252 ident: CR12 article-title: Bayesian inference in nonlinear mixed-effects models using normal independent distributions publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.02.011 – volume: 23 start-page: 1323 year: 2013 end-page: 1345 ident: CR18 article-title: Likelihood-based inference for mixed-effects models with censored response using the multivariate-t distribution publication-title: Stat Sin – volume: 46 start-page: 673 year: 1990 end-page: 687 ident: CR15 article-title: Nonlinear mixed-effects models for repeated-measures data publication-title: Biometrics doi: 10.2307/2532087 – volume: 61 start-page: 579 year: 1999 end-page: 602 ident: CR2 article-title: Statistical applications of the multivariate skew-normal distribution publication-title: J R Stat Soc doi: 10.1111/1467-9868.00194 – ident: CR3 – year: 2020 ident: CR10 article-title: Random effects misspecification can have severe consequences for random effects inference in linear mixed models publication-title: Int Stat Rev doi: 10.1111/insr.12378 – volume: 4 start-page: 12 year: 1995 end-page: 35 ident: CR22 article-title: Approximations to the log-likelihood function in the nonlinear mixed effects model publication-title: J Comput Graph Stat – volume: 81 start-page: 633 year: 1993 end-page: 648 ident: CR19 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika – ident: CR31 – volume: 53 start-page: 4143 year: 2009 end-page: 4156 ident: CR28 article-title: Influence diagnostics in nonlinear mixed-effects elliptical models publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.05.004 – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: CR6 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B – volume: 79 start-page: 99 year: 2001 end-page: 113 ident: CR4 article-title: A general class of multivariate skew-elliptical distributions publication-title: J Multivar Anal doi: 10.1006/jmva.2000.1960 – volume: 61 start-page: 1281 issue: 3 year: 2020 end-page: 1307 ident: CR7 article-title: Quantile regression for nonlinear mixed effects models: a likelihood based perspective publication-title: Stat Pap doi: 10.1007/s00362-018-0988-y – volume: 17 start-page: 157 issue: 2 year: 1968 end-page: 161 ident: CR9 article-title: Multivariate normal plotting publication-title: J R Stat Soc Ser C (Appl Stat) – volume: 57 start-page: 795 year: 2001 end-page: 802 ident: CR35 article-title: Linear mixed models with flexible distributions of random effects for longitudinal data publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00795.x – volume: 34 start-page: 139 year: 2000 end-page: 164 ident: CR8 article-title: Consequences of misspecifying assumptions in nonlinear mixed effects models publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(99)00076-6 – volume: 61 start-page: 1281 issue: 3 year: 2020 ident: 172_CR7 publication-title: Stat Pap doi: 10.1007/s00362-018-0988-y – volume: 4 start-page: 12 year: 1995 ident: 172_CR22 publication-title: J Comput Graph Stat doi: 10.1080/10618600.1995.10474663 – volume: 34 start-page: 139 year: 2000 ident: 172_CR8 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(99)00076-6 – volume: 18 start-page: 666 issue: 4 year: 2017 ident: 172_CR14 publication-title: Biostatistics – ident: 172_CR25 – volume: 57 start-page: 795 year: 2001 ident: 172_CR35 publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00795.x – volume: 80 start-page: 267 year: 1994 ident: 172_CR17 publication-title: Biometrika – volume: 13 start-page: 81 issue: 1 year: 2014 ident: 172_CR5 publication-title: Pharm Stat doi: 10.1002/pst.1598 – volume: 39 start-page: 1 year: 1977 ident: 172_CR6 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 53 start-page: 4143 year: 2009 ident: 172_CR28 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.05.004 – volume-title: Mixed effects models for complex data year: 2010 ident: 172_CR34 – volume: 27 start-page: 3125 year: 2007 ident: 172_CR16 publication-title: Stat Med doi: 10.1002/sim.3157 – ident: 172_CR31 doi: 10.1002/sim.8870 – volume: 67 start-page: 1594 issue: 4 year: 2011 ident: 172_CR11 publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01586.x – volume: 20 start-page: 303 year: 2010 ident: 172_CR13 publication-title: Stat Sin – volume: 91 start-page: 217 year: 1996 ident: 172_CR32 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476679 – year: 2020 ident: 172_CR10 publication-title: Int Stat Rev doi: 10.1111/insr.12378 – volume: 23 start-page: 1323 year: 2013 ident: 172_CR18 publication-title: Stat Sin – volume: 81 start-page: 633 year: 1993 ident: 172_CR19 publication-title: Biometrika – ident: 172_CR30 doi: 10.32614/CRAN.package.skewlmm – volume: 64 start-page: 237 year: 2013 ident: 172_CR12 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.02.011 – volume: 2 start-page: 317 year: 1998 ident: 172_CR26 publication-title: Student – volume: 45 start-page: 375 issue: 4 year: 2017 ident: 172_CR29 publication-title: Can J Stat doi: 10.1002/cjs.11338 – ident: 172_CR3 – volume: 79 start-page: 99 year: 2001 ident: 172_CR4 publication-title: J Multivar Anal doi: 10.1006/jmva.2000.1960 – volume: 46 start-page: 673 year: 1990 ident: 172_CR15 publication-title: Biometrics doi: 10.2307/2532087 – volume: 45 start-page: 573 year: 2003 ident: 172_CR27 publication-title: Biom J doi: 10.1002/bimj.200390034 – volume: 99 start-page: 700 year: 2004 ident: 172_CR33 publication-title: J Am Stat Assoc doi: 10.1198/016214504000001006 – volume: 3 start-page: 415 year: 2005 ident: 172_CR1 publication-title: J Data Sci doi: 10.6339/JDS.2005.03(4).238 – volume-title: Mixed-effects models in S and S-PLUS year: 2000 ident: 172_CR23 doi: 10.1007/978-1-4419-0318-1 – volume: 17 start-page: 157 issue: 2 year: 1968 ident: 172_CR9 publication-title: J R Stat Soc Ser C (Appl Stat) – volume: 61 start-page: 579 year: 1999 ident: 172_CR2 publication-title: J R Stat Soc doi: 10.1111/1467-9868.00194 – volume: 10 start-page: 249 year: 2001 ident: 172_CR24 publication-title: J Comput Graph Stat doi: 10.1198/10618600152628059 – volume: 46 start-page: 1602 issue: 9 year: 2019 ident: 172_CR21 publication-title: J Appl Stat doi: 10.1080/02664763.2018.1557122 – volume: 22 start-page: 121 issue: 1 year: 2012 ident: 172_CR20 publication-title: Stat Comput doi: 10.1007/s11222-010-9212-1 |
SSID | ssj0061033 |
Score | 2.2337906 |
Snippet | Nonlinear mixed effects models have received a great deal of attention in the statistical literature in recent years because of their flexibility in handling... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Celebrating the Centenary of Professor C. R. Rao Mathematics and Statistics Original Article Probability Theory and Stochastic Processes Statistical Theory and Methods Statistics |
Title | Approximate Inferences for Nonlinear Mixed Effects Models with Scale Mixtures of Skew-Normal Distributions |
URI | https://link.springer.com/article/10.1007/s42519-021-00172-5 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELa6cGEPaHmJxy7ygVtIlcR21B4LC6p2oZeCxC2KE1sqoIJIEYi_wp9lxnaclJeWVaWoct028nyxP4_nmyFkjwmuZM4xzk_ABgU4cCi5QDdcrDUXRcyUifIdpcNz_udCXHQ6z62opfuZ7BZP7-pK_seq0AZ2RZXsFyzrfxQa4D3YF65gYbj-k40HmBD8cQKkEyMgnXLPJFgIRjYFBmbpmTwCqTxycRtY--zaSdrGYB-Fn-MpggnpGF-ph3CENBYnw8pXw6o-4LAoRzKZnjFk3aj8XeIBK71qTnmwFGAND-e6zoOTrqfR1nH-e3KbXwV_ffMJlnKx5doneLgQDLttL0US-zCseS_lKz9n42prT8HomEwjOyurdptVZfp5W7Twyd5dDmwESMVRnhuau8Itbyiaxc-HJPr0zaZzBp0z0zkT38hiAnsQmEQXB8cHB6N6oQfiyYx-o75hp8kyysw3fznPe-YP3Q2XOftBlp0B6cAiaoV01HSVfD_1GXyrVbI0rk1brZHLFtBoAzQKQKMeaNQAjTqgUQs0ikCjBmi0Bhq90bQFNDoHtHVyfnx0djgMXZGOsEj68SxMdMKkFDKFIYoinSsJDDdReaSZ6vVhjIAOSR3xOCp1TyVpWUp4CRwVYJKsZBtkYXozVZuEpnmpBcsVcHbGi6SUBWxX-rzHelJoLeUWieshzAqXwR4LqVxnHxtviwT-O7c2f8unvfdry2TuOa8-6b79te47ZKl5NH6ShdndvfoFlHYmdx20XgDvRJ89 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Inferences+for+Nonlinear+Mixed+Effects+Models+with+Scale+Mixtures+of+Skew-Normal+Distributions&rft.jtitle=Journal+of+statistical+theory+and+practice&rft.au=Schumacher%2C+Fernanda+L.&rft.au=Dey%2C+Dipak+K.&rft.au=Lachos%2C+Victor+H.&rft.date=2021-09-01&rft.pub=Springer+International+Publishing&rft.issn=1559-8608&rft.eissn=1559-8616&rft.volume=15&rft.issue=3&rft_id=info:doi/10.1007%2Fs42519-021-00172-5&rft.externalDocID=10_1007_s42519_021_00172_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-8608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-8608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-8608&client=summon |