EEGWaveNet: Multiscale CNN-Based Spatiotemporal Feature Extraction for EEG Seizure Detection
The detection of seizures in epileptic patients via Electroencephalography (EEG) is an essential key to medical treatment. With the advances in deep learning, many approaches are proposed to tackle this problem. However, concerns such as performance, speed, and subject-independency should still be c...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 18; no. 8; pp. 5547 - 5557 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detection of seizures in epileptic patients via Electroencephalography (EEG) is an essential key to medical treatment. With the advances in deep learning, many approaches are proposed to tackle this problem. However, concerns such as performance, speed, and subject-independency should still be considered for practical application. Thus, we propose EEGWaveNet, a novel end-to-end multiscale convolutional neural network designed to address epileptic seizure detection. Our network utilizes trainable depth-wise convolutions as discriminative filters to simultaneously gather features from each EEG channel and separate the signal into multiscale resolution. Then, the spatial-temporal features are extracted from each scale for further classification. To demonstrate the effectiveness of EEGWaveNet, we evaluate the model in three datasets: CHB-MIT, TUSZ, and BONN. From the results, EEGWaveNet's performance is comparable to other baseline methods in the subject-dependent approach and outperforms the others in subject-independent approaches. EEGWaveNet also has time complexity comparable to the compact EEGNet-8,2. Moreover, we transfer the model trained from the subject-independent approach and fine-tune it with a 1-h recording, significantly improving sensitivity and F1-score (Binary) compared to without fine-tuning. This article indicates the possibility of further developing this model and the fine-tuning methodology toward healthcare 5.0, where the AI aid clinicians in a manner of man-machine collaboration. |
---|---|
AbstractList | The detection of seizures in epileptic patients via Electroencephalography (EEG) is an essential key to medical treatment. With the advances in deep learning, many approaches are proposed to tackle this problem. However, concerns such as performance, speed, and subject-independency should still be considered for practical application. Thus, we propose EEGWaveNet, a novel end-to-end multiscale convolutional neural network designed to address epileptic seizure detection. Our network utilizes trainable depth-wise convolutions as discriminative filters to simultaneously gather features from each EEG channel and separate the signal into multiscale resolution. Then, the spatial-temporal features are extracted from each scale for further classification. To demonstrate the effectiveness of EEGWaveNet, we evaluate the model in three datasets: CHB-MIT, TUSZ, and BONN. From the results, EEGWaveNet’s performance is comparable to other baseline methods in the subject-dependent approach and outperforms the others in subject-independent approaches. EEGWaveNet also has time complexity comparable to the compact EEGNet-8,2. Moreover, we transfer the model trained from the subject-independent approach and fine-tune it with a 1-h recording, significantly improving sensitivity and F1-score (Binary) compared to without fine-tuning. This article indicates the possibility of further developing this model and the fine-tuning methodology toward healthcare 5.0, where the AI aid clinicians in a manner of man–machine collaboration. |
Author | Autthasan, Phairot Sudhawiyangkul, Thapanun Boonchit, Puttaranun Tatsaringkansakul, Nattasate Rangpong, Phurin Chaisaen, Rattanaphon Thuwajit, Punnawish Wilaiprasitporn, Theerawit Sawangjai, Phattarapong Banluesombatkul, Nannapas |
Author_xml | – sequence: 1 givenname: Punnawish surname: Thuwajit fullname: Thuwajit, Punnawish email: konkuad2@gmail.com organization: Enrolling High-School, Suankularb Wittayalai School, Bangkok, Thailand – sequence: 2 givenname: Phurin surname: Rangpong fullname: Rangpong, Phurin email: poorin31632@gmail.com organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 3 givenname: Phattarapong surname: Sawangjai fullname: Sawangjai, Phattarapong email: phattarapong.saw@gmail.com organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 4 givenname: Phairot orcidid: 0000-0002-9566-8382 surname: Autthasan fullname: Autthasan, Phairot email: phairot.a_s17@vistec.ac.th organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 5 givenname: Rattanaphon orcidid: 0000-0003-1521-9956 surname: Chaisaen fullname: Chaisaen, Rattanaphon email: rattanaphon.c_s18@vistec.ac.th organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 6 givenname: Nannapas orcidid: 0000-0003-4067-0992 surname: Banluesombatkul fullname: Banluesombatkul, Nannapas email: nannapas.b_s18@vistec.ac.th organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 7 givenname: Puttaranun orcidid: 0000-0001-7183-2566 surname: Boonchit fullname: Boonchit, Puttaranun email: puttaranun_jinny@hotmail.com organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 8 givenname: Nattasate orcidid: 0000-0003-4775-5235 surname: Tatsaringkansakul fullname: Tatsaringkansakul, Nattasate email: stampck2@hotmail.com organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 9 givenname: Thapanun orcidid: 0000-0003-2486-9280 surname: Sudhawiyangkul fullname: Sudhawiyangkul, Thapanun email: thapanun.s@vistec.ac.th organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 10 givenname: Theerawit orcidid: 0000-0003-4941-4354 surname: Wilaiprasitporn fullname: Wilaiprasitporn, Theerawit email: theerawit.w@vistec.ac.th organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand |
BookMark | eNp9kE1Lw0AQhhepYFu9C14WPKfO7iabrDetaS1oPbTiRQjbZAIpaRI3G1F_vRtbPHjwMjPwzjsfz4gMqrpCQs4ZTBgDdbVeLCYcOJsIJoSA8IgMmfKZBxDAwNVBwDzBQZyQUdtuAUQIQg3JaxzPX_Q7LtFe08eutEWb6hLpdLn0bnWLGV012ha1xV1TG13SGWrbGaTxhzU6dUpF89pQN4ausPjqpTu0-KOckuNcly2eHfKYPM_i9fTee3iaL6Y3D17KFbMez8HXkgmJjKdBHqL2tbs6AiVd3OgoUqiY9lWuuBTC36SQRr5WuMlklGVMjMnlfm5j6rcOW5ts685UbmXCpeSgQiZ91wX7rtTUbWswTxpT7LT5TBgkPcPEMUx6hsmBobPIP5a0sD2Oyj1flP8ZL_bGAhF_9yjpB0JI8Q3O8X7a |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1088_1741_2552_adba8c crossref_primary_10_1109_TIM_2022_3227604 crossref_primary_10_1109_ACCESS_2024_3487532 crossref_primary_10_1016_j_bspc_2023_105245 crossref_primary_10_1016_j_heliyon_2024_e26298 crossref_primary_10_1016_j_engappai_2024_108473 crossref_primary_10_1016_j_eswa_2023_120227 crossref_primary_10_1109_JBHI_2024_3432930 crossref_primary_10_1088_1741_2552_acb1d9 crossref_primary_10_1016_j_eswa_2024_126282 crossref_primary_10_1088_1741_2552_ada0e5 crossref_primary_10_1016_j_ins_2024_121699 crossref_primary_10_1088_1741_2552_ad0859 crossref_primary_10_1109_JTEHM_2023_3308196 crossref_primary_10_3390_bioengineering9120781 crossref_primary_10_1142_S0129065725500030 crossref_primary_10_1016_j_inat_2023_101879 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1016_j_bspc_2024_107394 crossref_primary_10_1142_S0129065724500606 crossref_primary_10_1109_JSEN_2024_3461682 crossref_primary_10_1109_TII_2023_3297323 crossref_primary_10_1109_JBHI_2024_3481005 crossref_primary_10_3390_biomedicines11092370 crossref_primary_10_1109_ACCESS_2022_3219606 crossref_primary_10_1109_LSENS_2023_3347626 crossref_primary_10_1038_s41746_024_01008_9 crossref_primary_10_1186_s12967_024_05678_7 crossref_primary_10_1109_TIM_2023_3312698 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_3390_sym16111413 crossref_primary_10_1016_j_neunet_2025_107337 crossref_primary_10_3390_app13158747 crossref_primary_10_1016_j_compbiomed_2024_108086 crossref_primary_10_1109_TII_2023_3274913 crossref_primary_10_1109_JIOT_2023_3265980 crossref_primary_10_1109_TNSRE_2022_3204540 crossref_primary_10_1109_ACCESS_2023_3277634 crossref_primary_10_1111_epi_18113 crossref_primary_10_1142_S0219519424400244 crossref_primary_10_1088_1741_2552_ad8839 crossref_primary_10_1109_JBHI_2024_3396130 crossref_primary_10_1109_ACCESS_2023_3285429 crossref_primary_10_3389_fmed_2025_1549491 crossref_primary_10_1007_s11571_024_10100_5 crossref_primary_10_1016_j_neunet_2024_106836 crossref_primary_10_1109_JBHI_2023_3278747 crossref_primary_10_1109_JSEN_2024_3471894 crossref_primary_10_1109_TNSRE_2023_3337802 crossref_primary_10_1109_JBHI_2024_3349583 crossref_primary_10_1016_j_eswa_2023_122424 crossref_primary_10_1016_j_neunet_2024_106351 crossref_primary_10_1109_TII_2022_3166790 crossref_primary_10_1142_S012906572550008X crossref_primary_10_1109_TPWRS_2022_3208021 crossref_primary_10_3390_app15031538 crossref_primary_10_1016_j_engappai_2023_106237 crossref_primary_10_1109_TII_2022_3224968 crossref_primary_10_1117_1_JEI_33_6_063031 crossref_primary_10_3389_fpls_2024_1387977 crossref_primary_10_1016_j_neunet_2023_11_037 crossref_primary_10_1109_TNNLS_2024_3350085 crossref_primary_10_1109_JBHI_2024_3404664 crossref_primary_10_1016_j_bspc_2024_107379 crossref_primary_10_1016_j_bspc_2024_107377 crossref_primary_10_1109_JIOT_2023_3323264 crossref_primary_10_1109_TNSRE_2023_3244045 crossref_primary_10_2478_amns_2023_2_00244 crossref_primary_10_1016_j_ins_2025_122114 crossref_primary_10_1016_j_heliyon_2024_e36411 crossref_primary_10_1109_TII_2023_3280560 crossref_primary_10_1109_ACCESS_2024_3406909 |
Cites_doi | 10.1109/TBCAS.2019.2929053 10.1109/JSEN.2021.3057076 10.1016/j.knosys.2019.105333 10.1109/TENCON.2015.7373154 10.1371/journal.pone.0096622 10.1109/TNSRE.2019.2940485 10.1109/CVPR.2017.106 10.1016/j.cmpb.2016.09.008 10.1016/j.compbiomed.2020.103671 10.1016/j.compbiomed.2017.09.017 10.1016/j.mcna.2018.10.002 10.1109/ACCESS.2019.2919143 10.1109/TII.2018.2868431 10.1038/s41582-018-0055-2 10.1111/epi.12550 10.1109/TII.2019.2925624 10.1103/PhysRevE.64.061907 10.1109/TNSRE.2020.2973434 10.1109/JBHI.2020.3037693 10.1049/el.2020.1471 10.1109/CloudCom.2019.00063 10.1109/JBHI.2018.2871678 10.1109/TBME.2017.2650259 10.1109/JBHI.2019.2933046 10.1088/1741-2552/aace8c 10.1109/TNSRE.2017.2748388 10.3389/fninf.2018.00083 10.1109/MCI.2021.3061875 10.1109/TBME.2017.2785401 10.1109/TCDS.2020.3012278 10.1016/j.cmpb.2016.08.013 10.1109/CVPR.2018.00745 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2021.3133307 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 5557 |
ExternalDocumentID | 10_1109_TII_2021_3133307 9645336 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Higher Education, Science, Research and Innovation, Thailand; MHESI grantid: RGNS63-252 funderid: 10.13039/501100016204 – fundername: NRCT grantid: N41A640131 – fundername: Thailand Science Research and Innovation; TSRI grantid: SRI62W1501 funderid: 10.13039/501100017170 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-2f04a6136e12c5f7ea4a0508096508ba889e91a49f926334bc0c84a9ebd68dd13 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:07:00 EDT 2025 Tue Jul 01 03:00:16 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Wed Aug 27 02:22:58 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-2f04a6136e12c5f7ea4a0508096508ba889e91a49f926334bc0c84a9ebd68dd13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2486-9280 0000-0002-9566-8382 0000-0003-1521-9956 0000-0003-4067-0992 0000-0001-7183-2566 0000-0003-4775-5235 0000-0003-4941-4354 |
PQID | 2662097164 |
PQPubID | 85507 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TII_2021_3133307 proquest_journals_2662097164 ieee_primary_9645336 crossref_citationtrail_10_1109_TII_2021_3133307 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 shoeb (ref20) 2009 ref15 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ahnaf (ref33) 2016; 136 (ref24) 0 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ahnaf (ref32) 2016; 137 ang (ref14) 0 ref5 |
References_xml | – ident: ref12 doi: 10.1109/TBCAS.2019.2929053 – ident: ref8 doi: 10.1109/JSEN.2021.3057076 – ident: ref35 doi: 10.1016/j.knosys.2019.105333 – ident: ref34 doi: 10.1109/TENCON.2015.7373154 – ident: ref4 doi: 10.1371/journal.pone.0096622 – year: 0 ident: ref24 article-title: EarlyStopping – ident: ref15 doi: 10.1109/TNSRE.2019.2940485 – ident: ref23 doi: 10.1109/CVPR.2017.106 – volume: 137 start-page: 247 year: 2016 ident: ref32 article-title: Epileptic seizure detection in EEG signals using tunable-q factor wavelet transform and bootstrap aggregating publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2016.09.008 – year: 2009 ident: ref20 article-title: Application of machine learning to epileptic seizure onset detection and treatment – ident: ref28 doi: 10.1016/j.compbiomed.2020.103671 – ident: ref5 doi: 10.1016/j.compbiomed.2017.09.017 – ident: ref1 doi: 10.1016/j.mcna.2018.10.002 – ident: ref18 doi: 10.1109/ACCESS.2019.2919143 – ident: ref29 doi: 10.1109/TII.2018.2868431 – ident: ref3 doi: 10.1038/s41582-018-0055-2 – ident: ref2 doi: 10.1111/epi.12550 – ident: ref30 doi: 10.1109/TII.2019.2925624 – ident: ref31 doi: 10.1103/PhysRevE.64.061907 – ident: ref16 doi: 10.1109/TNSRE.2020.2973434 – ident: ref17 doi: 10.1109/JBHI.2020.3037693 – ident: ref13 doi: 10.1049/el.2020.1471 – ident: ref19 doi: 10.1109/CloudCom.2019.00063 – ident: ref6 doi: 10.1109/JBHI.2018.2871678 – ident: ref25 doi: 10.1109/TBME.2017.2650259 – ident: ref10 doi: 10.1109/JBHI.2019.2933046 – ident: ref26 doi: 10.1088/1741-2552/aace8c – start-page: 2390 year: 0 ident: ref14 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: Proc IEEE Int Joint Conf Neural Netw (IEEE World Congr Comput Intell – ident: ref9 doi: 10.1109/TNSRE.2017.2748388 – ident: ref21 doi: 10.3389/fninf.2018.00083 – ident: ref22 doi: 10.1109/MCI.2021.3061875 – ident: ref7 doi: 10.1109/TBME.2017.2785401 – ident: ref11 doi: 10.1109/TCDS.2020.3012278 – volume: 136 start-page: 65 year: 2016 ident: ref33 article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2016.08.013 – ident: ref27 doi: 10.1109/CVPR.2018.00745 |
SSID | ssj0037039 |
Score | 2.591254 |
Snippet | The detection of seizures in epileptic patients via Electroencephalography (EEG) is an essential key to medical treatment. With the advances in deep learning,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5547 |
SubjectTerms | Artificial neural networks Brain modeling Computational modeling Convolutional neural network (CNN) Convulsions & seizures Data models deep learning Electroencephalography Feature extraction Machine learning Mathematical models seizure Electroencephalography (EEG) Seizures spatiotemporal neural network Transfer learning transfer learning (TL) |
Title | EEGWaveNet: Multiscale CNN-Based Spatiotemporal Feature Extraction for EEG Seizure Detection |
URI | https://ieeexplore.ieee.org/document/9645336 https://www.proquest.com/docview/2662097164 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4DcR4KQcuSHRLm6xruPEYMCR2AQQHpCpNXQkxbWjrENqvx0nbiZcQt0pJqsh248-N_RngQJIT1pHSFJagpgAlVZ5W6HtJmIos4zrEItuiF17dy-vH1uMcHM1qYRDRJZ9hwz66u_x0aCb2V1lThZLQSTgP8xS4FbVa1akryHKV40Zt-Z4IuKiuJLlq3nW7FAgGPsWngsL39hcX5Hqq_DiInXe5WIGbal9FUslLY5InDTP9Rtn4342vwnIJM9lJYRdrMIeDdVj6RD5Yg6dO5_JBv2EP82Pm6nDHpC9kZ72ed0q-LWW3Ltu6JK_qM4sWJyNknfd8VJRDMEK8jF7DbvF5aofOMXepXYMNuL_o3J1deWWvBc8Eys-9IONSk2sP0Q9MK2ujlpoTeLPkMDxKdBQpVL6WKlNBKIRMDDeRJLUmaRilqS82YWEwHOAWME0I0Xa24olIJA1pRaDDmBbPuIpI_nVoVuKPTUlEbvth9GMXkHAVk8Jiq7C4VFgdDmcrXgsSjj_m1qz8Z_NK0ddht9JwXH6l45jASeA4tOT276t2YDGw5Q4u4W8XFvLRBPcIhOTJvrO-D-D-1k8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6N7QH2AIMyrTA2P_CCRFondrKYNxjdWmjz0lb0ASlynIs0rWpRm6Jpv35nJ6mATWhvkWxH1t3F91189x3Ae0lOWMdKU1iCmgKUXHlaoe9lUS6KgusIq2yLJOpP5bdZONuBj9taGER0yWfYsY_uLj9fmo39VdZVkSR0Ej2BPfL7oV9VazXnriDbVY4dNfQ9EXDRXEpy1Z0MBhQKBj5FqIIC-LO_nJDrqnLvKHb-5eIFjJqdVWkl151NmXXM7T-kjY_d-gE8r4Em-1xZxkvYwcUr2P-DfrAFP3u9yx_6NyZYfmKuEndNGkN2niTeF_JuORu7fOuavmrOLF7crJD1bspVVRDBCPMyeg0b49WtHfqKpUvuWryG6UVvct736m4LngmUX3pBwaUm5x6hH5iwOEMtNSf4ZulheJzpOFaofC1VoYJICJkZbmJJis3yKM5zXxzC7mK5wCNgmjCi7W3FM5FJGtKKYIcxIS-4ikn-beg24k9NTUVuO2LMUxeScJWSwlKrsLRWWBs-bFf8qmg4_jO3ZeW_nVeLvg3HjYbT-jtdpwRPAseiJd88vOoUnvYno2E6HCTf38KzwBY_uPS_Y9gtVxt8R5CkzE6cJd4BO9bZmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEGWaveNet%3A+Multiscale+CNN-Based+Spatiotemporal+Feature+Extraction+for+EEG+Seizure+Detection&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Thuwajit%2C+Punnawish&rft.au=Rangpong%2C+Phurin&rft.au=Sawangjai%2C+Phattarapong&rft.au=Autthasan%2C+Phairot&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=18&rft.issue=8&rft.spage=5547&rft_id=info:doi/10.1109%2FTII.2021.3133307&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |