EEGWaveNet: Multiscale CNN-Based Spatiotemporal Feature Extraction for EEG Seizure Detection

The detection of seizures in epileptic patients via Electroencephalography (EEG) is an essential key to medical treatment. With the advances in deep learning, many approaches are proposed to tackle this problem. However, concerns such as performance, speed, and subject-independency should still be c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 18; no. 8; pp. 5547 - 5557
Main Authors Thuwajit, Punnawish, Rangpong, Phurin, Sawangjai, Phattarapong, Autthasan, Phairot, Chaisaen, Rattanaphon, Banluesombatkul, Nannapas, Boonchit, Puttaranun, Tatsaringkansakul, Nattasate, Sudhawiyangkul, Thapanun, Wilaiprasitporn, Theerawit
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection of seizures in epileptic patients via Electroencephalography (EEG) is an essential key to medical treatment. With the advances in deep learning, many approaches are proposed to tackle this problem. However, concerns such as performance, speed, and subject-independency should still be considered for practical application. Thus, we propose EEGWaveNet, a novel end-to-end multiscale convolutional neural network designed to address epileptic seizure detection. Our network utilizes trainable depth-wise convolutions as discriminative filters to simultaneously gather features from each EEG channel and separate the signal into multiscale resolution. Then, the spatial-temporal features are extracted from each scale for further classification. To demonstrate the effectiveness of EEGWaveNet, we evaluate the model in three datasets: CHB-MIT, TUSZ, and BONN. From the results, EEGWaveNet's performance is comparable to other baseline methods in the subject-dependent approach and outperforms the others in subject-independent approaches. EEGWaveNet also has time complexity comparable to the compact EEGNet-8,2. Moreover, we transfer the model trained from the subject-independent approach and fine-tune it with a 1-h recording, significantly improving sensitivity and F1-score (Binary) compared to without fine-tuning. This article indicates the possibility of further developing this model and the fine-tuning methodology toward healthcare 5.0, where the AI aid clinicians in a manner of man-machine collaboration.
AbstractList The detection of seizures in epileptic patients via Electroencephalography (EEG) is an essential key to medical treatment. With the advances in deep learning, many approaches are proposed to tackle this problem. However, concerns such as performance, speed, and subject-independency should still be considered for practical application. Thus, we propose EEGWaveNet, a novel end-to-end multiscale convolutional neural network designed to address epileptic seizure detection. Our network utilizes trainable depth-wise convolutions as discriminative filters to simultaneously gather features from each EEG channel and separate the signal into multiscale resolution. Then, the spatial-temporal features are extracted from each scale for further classification. To demonstrate the effectiveness of EEGWaveNet, we evaluate the model in three datasets: CHB-MIT, TUSZ, and BONN. From the results, EEGWaveNet’s performance is comparable to other baseline methods in the subject-dependent approach and outperforms the others in subject-independent approaches. EEGWaveNet also has time complexity comparable to the compact EEGNet-8,2. Moreover, we transfer the model trained from the subject-independent approach and fine-tune it with a 1-h recording, significantly improving sensitivity and F1-score (Binary) compared to without fine-tuning. This article indicates the possibility of further developing this model and the fine-tuning methodology toward healthcare 5.0, where the AI aid clinicians in a manner of man–machine collaboration.
Author Autthasan, Phairot
Sudhawiyangkul, Thapanun
Boonchit, Puttaranun
Tatsaringkansakul, Nattasate
Rangpong, Phurin
Chaisaen, Rattanaphon
Thuwajit, Punnawish
Wilaiprasitporn, Theerawit
Sawangjai, Phattarapong
Banluesombatkul, Nannapas
Author_xml – sequence: 1
  givenname: Punnawish
  surname: Thuwajit
  fullname: Thuwajit, Punnawish
  email: konkuad2@gmail.com
  organization: Enrolling High-School, Suankularb Wittayalai School, Bangkok, Thailand
– sequence: 2
  givenname: Phurin
  surname: Rangpong
  fullname: Rangpong, Phurin
  email: poorin31632@gmail.com
  organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 3
  givenname: Phattarapong
  surname: Sawangjai
  fullname: Sawangjai, Phattarapong
  email: phattarapong.saw@gmail.com
  organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 4
  givenname: Phairot
  orcidid: 0000-0002-9566-8382
  surname: Autthasan
  fullname: Autthasan, Phairot
  email: phairot.a_s17@vistec.ac.th
  organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 5
  givenname: Rattanaphon
  orcidid: 0000-0003-1521-9956
  surname: Chaisaen
  fullname: Chaisaen, Rattanaphon
  email: rattanaphon.c_s18@vistec.ac.th
  organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 6
  givenname: Nannapas
  orcidid: 0000-0003-4067-0992
  surname: Banluesombatkul
  fullname: Banluesombatkul, Nannapas
  email: nannapas.b_s18@vistec.ac.th
  organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 7
  givenname: Puttaranun
  orcidid: 0000-0001-7183-2566
  surname: Boonchit
  fullname: Boonchit, Puttaranun
  email: puttaranun_jinny@hotmail.com
  organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 8
  givenname: Nattasate
  orcidid: 0000-0003-4775-5235
  surname: Tatsaringkansakul
  fullname: Tatsaringkansakul, Nattasate
  email: stampck2@hotmail.com
  organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 9
  givenname: Thapanun
  orcidid: 0000-0003-2486-9280
  surname: Sudhawiyangkul
  fullname: Sudhawiyangkul, Thapanun
  email: thapanun.s@vistec.ac.th
  organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 10
  givenname: Theerawit
  orcidid: 0000-0003-4941-4354
  surname: Wilaiprasitporn
  fullname: Wilaiprasitporn, Theerawit
  email: theerawit.w@vistec.ac.th
  organization: School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
BookMark eNp9kE1Lw0AQhhepYFu9C14WPKfO7iabrDetaS1oPbTiRQjbZAIpaRI3G1F_vRtbPHjwMjPwzjsfz4gMqrpCQs4ZTBgDdbVeLCYcOJsIJoSA8IgMmfKZBxDAwNVBwDzBQZyQUdtuAUQIQg3JaxzPX_Q7LtFe08eutEWb6hLpdLn0bnWLGV012ha1xV1TG13SGWrbGaTxhzU6dUpF89pQN4ausPjqpTu0-KOckuNcly2eHfKYPM_i9fTee3iaL6Y3D17KFbMez8HXkgmJjKdBHqL2tbs6AiVd3OgoUqiY9lWuuBTC36SQRr5WuMlklGVMjMnlfm5j6rcOW5ts685UbmXCpeSgQiZ91wX7rtTUbWswTxpT7LT5TBgkPcPEMUx6hsmBobPIP5a0sD2Oyj1flP8ZL_bGAhF_9yjpB0JI8Q3O8X7a
CODEN ITIICH
CitedBy_id crossref_primary_10_1088_1741_2552_adba8c
crossref_primary_10_1109_TIM_2022_3227604
crossref_primary_10_1109_ACCESS_2024_3487532
crossref_primary_10_1016_j_bspc_2023_105245
crossref_primary_10_1016_j_heliyon_2024_e26298
crossref_primary_10_1016_j_engappai_2024_108473
crossref_primary_10_1016_j_eswa_2023_120227
crossref_primary_10_1109_JBHI_2024_3432930
crossref_primary_10_1088_1741_2552_acb1d9
crossref_primary_10_1016_j_eswa_2024_126282
crossref_primary_10_1088_1741_2552_ada0e5
crossref_primary_10_1016_j_ins_2024_121699
crossref_primary_10_1088_1741_2552_ad0859
crossref_primary_10_1109_JTEHM_2023_3308196
crossref_primary_10_3390_bioengineering9120781
crossref_primary_10_1142_S0129065725500030
crossref_primary_10_1016_j_inat_2023_101879
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1016_j_bspc_2024_107394
crossref_primary_10_1142_S0129065724500606
crossref_primary_10_1109_JSEN_2024_3461682
crossref_primary_10_1109_TII_2023_3297323
crossref_primary_10_1109_JBHI_2024_3481005
crossref_primary_10_3390_biomedicines11092370
crossref_primary_10_1109_ACCESS_2022_3219606
crossref_primary_10_1109_LSENS_2023_3347626
crossref_primary_10_1038_s41746_024_01008_9
crossref_primary_10_1186_s12967_024_05678_7
crossref_primary_10_1109_TIM_2023_3312698
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_3390_sym16111413
crossref_primary_10_1016_j_neunet_2025_107337
crossref_primary_10_3390_app13158747
crossref_primary_10_1016_j_compbiomed_2024_108086
crossref_primary_10_1109_TII_2023_3274913
crossref_primary_10_1109_JIOT_2023_3265980
crossref_primary_10_1109_TNSRE_2022_3204540
crossref_primary_10_1109_ACCESS_2023_3277634
crossref_primary_10_1111_epi_18113
crossref_primary_10_1142_S0219519424400244
crossref_primary_10_1088_1741_2552_ad8839
crossref_primary_10_1109_JBHI_2024_3396130
crossref_primary_10_1109_ACCESS_2023_3285429
crossref_primary_10_3389_fmed_2025_1549491
crossref_primary_10_1007_s11571_024_10100_5
crossref_primary_10_1016_j_neunet_2024_106836
crossref_primary_10_1109_JBHI_2023_3278747
crossref_primary_10_1109_JSEN_2024_3471894
crossref_primary_10_1109_TNSRE_2023_3337802
crossref_primary_10_1109_JBHI_2024_3349583
crossref_primary_10_1016_j_eswa_2023_122424
crossref_primary_10_1016_j_neunet_2024_106351
crossref_primary_10_1109_TII_2022_3166790
crossref_primary_10_1142_S012906572550008X
crossref_primary_10_1109_TPWRS_2022_3208021
crossref_primary_10_3390_app15031538
crossref_primary_10_1016_j_engappai_2023_106237
crossref_primary_10_1109_TII_2022_3224968
crossref_primary_10_1117_1_JEI_33_6_063031
crossref_primary_10_3389_fpls_2024_1387977
crossref_primary_10_1016_j_neunet_2023_11_037
crossref_primary_10_1109_TNNLS_2024_3350085
crossref_primary_10_1109_JBHI_2024_3404664
crossref_primary_10_1016_j_bspc_2024_107379
crossref_primary_10_1016_j_bspc_2024_107377
crossref_primary_10_1109_JIOT_2023_3323264
crossref_primary_10_1109_TNSRE_2023_3244045
crossref_primary_10_2478_amns_2023_2_00244
crossref_primary_10_1016_j_ins_2025_122114
crossref_primary_10_1016_j_heliyon_2024_e36411
crossref_primary_10_1109_TII_2023_3280560
crossref_primary_10_1109_ACCESS_2024_3406909
Cites_doi 10.1109/TBCAS.2019.2929053
10.1109/JSEN.2021.3057076
10.1016/j.knosys.2019.105333
10.1109/TENCON.2015.7373154
10.1371/journal.pone.0096622
10.1109/TNSRE.2019.2940485
10.1109/CVPR.2017.106
10.1016/j.cmpb.2016.09.008
10.1016/j.compbiomed.2020.103671
10.1016/j.compbiomed.2017.09.017
10.1016/j.mcna.2018.10.002
10.1109/ACCESS.2019.2919143
10.1109/TII.2018.2868431
10.1038/s41582-018-0055-2
10.1111/epi.12550
10.1109/TII.2019.2925624
10.1103/PhysRevE.64.061907
10.1109/TNSRE.2020.2973434
10.1109/JBHI.2020.3037693
10.1049/el.2020.1471
10.1109/CloudCom.2019.00063
10.1109/JBHI.2018.2871678
10.1109/TBME.2017.2650259
10.1109/JBHI.2019.2933046
10.1088/1741-2552/aace8c
10.1109/TNSRE.2017.2748388
10.3389/fninf.2018.00083
10.1109/MCI.2021.3061875
10.1109/TBME.2017.2785401
10.1109/TCDS.2020.3012278
10.1016/j.cmpb.2016.08.013
10.1109/CVPR.2018.00745
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2021.3133307
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 5557
ExternalDocumentID 10_1109_TII_2021_3133307
9645336
Genre orig-research
GrantInformation_xml – fundername: Ministry of Higher Education, Science, Research and Innovation, Thailand; MHESI
  grantid: RGNS63-252
  funderid: 10.13039/501100016204
– fundername: NRCT
  grantid: N41A640131
– fundername: Thailand Science Research and Innovation; TSRI
  grantid: SRI62W1501
  funderid: 10.13039/501100017170
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-2f04a6136e12c5f7ea4a0508096508ba889e91a49f926334bc0c84a9ebd68dd13
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:07:00 EDT 2025
Tue Jul 01 03:00:16 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Wed Aug 27 02:22:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-2f04a6136e12c5f7ea4a0508096508ba889e91a49f926334bc0c84a9ebd68dd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2486-9280
0000-0002-9566-8382
0000-0003-1521-9956
0000-0003-4067-0992
0000-0001-7183-2566
0000-0003-4775-5235
0000-0003-4941-4354
PQID 2662097164
PQPubID 85507
PageCount 11
ParticipantIDs crossref_primary_10_1109_TII_2021_3133307
proquest_journals_2662097164
ieee_primary_9645336
crossref_citationtrail_10_1109_TII_2021_3133307
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
shoeb (ref20) 2009
ref15
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ahnaf (ref33) 2016; 136
(ref24) 0
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ahnaf (ref32) 2016; 137
ang (ref14) 0
ref5
References_xml – ident: ref12
  doi: 10.1109/TBCAS.2019.2929053
– ident: ref8
  doi: 10.1109/JSEN.2021.3057076
– ident: ref35
  doi: 10.1016/j.knosys.2019.105333
– ident: ref34
  doi: 10.1109/TENCON.2015.7373154
– ident: ref4
  doi: 10.1371/journal.pone.0096622
– year: 0
  ident: ref24
  article-title: EarlyStopping
– ident: ref15
  doi: 10.1109/TNSRE.2019.2940485
– ident: ref23
  doi: 10.1109/CVPR.2017.106
– volume: 137
  start-page: 247
  year: 2016
  ident: ref32
  article-title: Epileptic seizure detection in EEG signals using tunable-q factor wavelet transform and bootstrap aggregating
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2016.09.008
– year: 2009
  ident: ref20
  article-title: Application of machine learning to epileptic seizure onset detection and treatment
– ident: ref28
  doi: 10.1016/j.compbiomed.2020.103671
– ident: ref5
  doi: 10.1016/j.compbiomed.2017.09.017
– ident: ref1
  doi: 10.1016/j.mcna.2018.10.002
– ident: ref18
  doi: 10.1109/ACCESS.2019.2919143
– ident: ref29
  doi: 10.1109/TII.2018.2868431
– ident: ref3
  doi: 10.1038/s41582-018-0055-2
– ident: ref2
  doi: 10.1111/epi.12550
– ident: ref30
  doi: 10.1109/TII.2019.2925624
– ident: ref31
  doi: 10.1103/PhysRevE.64.061907
– ident: ref16
  doi: 10.1109/TNSRE.2020.2973434
– ident: ref17
  doi: 10.1109/JBHI.2020.3037693
– ident: ref13
  doi: 10.1049/el.2020.1471
– ident: ref19
  doi: 10.1109/CloudCom.2019.00063
– ident: ref6
  doi: 10.1109/JBHI.2018.2871678
– ident: ref25
  doi: 10.1109/TBME.2017.2650259
– ident: ref10
  doi: 10.1109/JBHI.2019.2933046
– ident: ref26
  doi: 10.1088/1741-2552/aace8c
– start-page: 2390
  year: 0
  ident: ref14
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: Proc IEEE Int Joint Conf Neural Netw (IEEE World Congr Comput Intell
– ident: ref9
  doi: 10.1109/TNSRE.2017.2748388
– ident: ref21
  doi: 10.3389/fninf.2018.00083
– ident: ref22
  doi: 10.1109/MCI.2021.3061875
– ident: ref7
  doi: 10.1109/TBME.2017.2785401
– ident: ref11
  doi: 10.1109/TCDS.2020.3012278
– volume: 136
  start-page: 65
  year: 2016
  ident: ref33
  article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2016.08.013
– ident: ref27
  doi: 10.1109/CVPR.2018.00745
SSID ssj0037039
Score 2.591254
Snippet The detection of seizures in epileptic patients via Electroencephalography (EEG) is an essential key to medical treatment. With the advances in deep learning,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5547
SubjectTerms Artificial neural networks
Brain modeling
Computational modeling
Convolutional neural network (CNN)
Convulsions & seizures
Data models
deep learning
Electroencephalography
Feature extraction
Machine learning
Mathematical models
seizure Electroencephalography (EEG)
Seizures
spatiotemporal neural network
Transfer learning
transfer learning (TL)
Title EEGWaveNet: Multiscale CNN-Based Spatiotemporal Feature Extraction for EEG Seizure Detection
URI https://ieeexplore.ieee.org/document/9645336
https://www.proquest.com/docview/2662097164
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4DcR4KQcuSHRLm6xruPEYMCR2AQQHpCpNXQkxbWjrENqvx0nbiZcQt0pJqsh248-N_RngQJIT1pHSFJagpgAlVZ5W6HtJmIos4zrEItuiF17dy-vH1uMcHM1qYRDRJZ9hwz66u_x0aCb2V1lThZLQSTgP8xS4FbVa1akryHKV40Zt-Z4IuKiuJLlq3nW7FAgGPsWngsL39hcX5Hqq_DiInXe5WIGbal9FUslLY5InDTP9Rtn4342vwnIJM9lJYRdrMIeDdVj6RD5Yg6dO5_JBv2EP82Pm6nDHpC9kZ72ed0q-LWW3Ltu6JK_qM4sWJyNknfd8VJRDMEK8jF7DbvF5aofOMXepXYMNuL_o3J1deWWvBc8Eys-9IONSk2sP0Q9MK2ujlpoTeLPkMDxKdBQpVL6WKlNBKIRMDDeRJLUmaRilqS82YWEwHOAWME0I0Xa24olIJA1pRaDDmBbPuIpI_nVoVuKPTUlEbvth9GMXkHAVk8Jiq7C4VFgdDmcrXgsSjj_m1qz8Z_NK0ddht9JwXH6l45jASeA4tOT276t2YDGw5Q4u4W8XFvLRBPcIhOTJvrO-D-D-1k8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6N7QH2AIMyrTA2P_CCRFondrKYNxjdWmjz0lb0ASlynIs0rWpRm6Jpv35nJ6mATWhvkWxH1t3F91189x3Ae0lOWMdKU1iCmgKUXHlaoe9lUS6KgusIq2yLJOpP5bdZONuBj9taGER0yWfYsY_uLj9fmo39VdZVkSR0Ej2BPfL7oV9VazXnriDbVY4dNfQ9EXDRXEpy1Z0MBhQKBj5FqIIC-LO_nJDrqnLvKHb-5eIFjJqdVWkl151NmXXM7T-kjY_d-gE8r4Em-1xZxkvYwcUr2P-DfrAFP3u9yx_6NyZYfmKuEndNGkN2niTeF_JuORu7fOuavmrOLF7crJD1bspVVRDBCPMyeg0b49WtHfqKpUvuWryG6UVvct736m4LngmUX3pBwaUm5x6hH5iwOEMtNSf4ZulheJzpOFaofC1VoYJICJkZbmJJis3yKM5zXxzC7mK5wCNgmjCi7W3FM5FJGtKKYIcxIS-4ikn-beg24k9NTUVuO2LMUxeScJWSwlKrsLRWWBs-bFf8qmg4_jO3ZeW_nVeLvg3HjYbT-jtdpwRPAseiJd88vOoUnvYno2E6HCTf38KzwBY_uPS_Y9gtVxt8R5CkzE6cJd4BO9bZmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEGWaveNet%3A+Multiscale+CNN-Based+Spatiotemporal+Feature+Extraction+for+EEG+Seizure+Detection&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Thuwajit%2C+Punnawish&rft.au=Rangpong%2C+Phurin&rft.au=Sawangjai%2C+Phattarapong&rft.au=Autthasan%2C+Phairot&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=18&rft.issue=8&rft.spage=5547&rft_id=info:doi/10.1109%2FTII.2021.3133307&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon