Omics-based deep learning approaches for lung cancer decision-making and therapeutics development
Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung...
Saved in:
Published in | Briefings in functional genomics Vol. 23; no. 3; pp. 181 - 192 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
15.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research. |
---|---|
AbstractList | Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research. Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research.Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research. |
Author | Vo, Thanh Hoa Le, Nguyen Quoc Khanh Tran, Thi-Oanh |
Author_xml | – sequence: 1 givenname: Thi-Oanh orcidid: 0000-0001-7077-5627 surname: Tran fullname: Tran, Thi-Oanh – sequence: 2 givenname: Thanh Hoa surname: Vo fullname: Vo, Thanh Hoa – sequence: 3 givenname: Nguyen Quoc Khanh orcidid: 0000-0003-4896-7926 surname: Le fullname: Le, Nguyen Quoc Khanh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37519050$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1PwzAMhiM0xMbYjTPqkQNlSdu0zRFNfEmTdoFz5KbuFmjTkrRI_HtStnFA5OBY9uNX9ntOJqY1SMglo7eMinhZVNtuiTWUNGYnZBbRhIVRyrPJb56IKVk490b9i1mSMHpGpnHGmaCczghsGq1cWIDDMigRu6BGsEabbQBdZ1tQO3RB1dqgHnxNgVFoPai0060JG3j_QU0Z9Du00OHQez0PfGLddg2a_oKcVlA7XBz-OXl9uH9ZPYXrzePz6m4dqkiwPowUMBBVKYqyEFUac-BxngHwFNMsL8YuT6MxCmA85SrOhQcpKhoBKIzn5Hqv67f-GND1stFOYV2DwXZwMsqThOaZyJhHrw7oUDRYys7qBuyXPNrigWgPKNs6Z7GSSvfQ-4t7C7qWjMrRfjnaLw_2-6GbP0NH3X_xb9SCikU |
CitedBy_id | crossref_primary_10_3390_ijms242115858 crossref_primary_10_1093_bib_bbae540 crossref_primary_10_1080_17425255_2024_2356162 crossref_primary_10_1186_s12859_024_05716_7 crossref_primary_10_3390_a17030106 crossref_primary_10_3390_app132312843 crossref_primary_10_1007_s00330_024_11157_w crossref_primary_10_1093_nargab_lqae188 crossref_primary_10_1109_ACCESS_2025_3539122 crossref_primary_10_3389_fphys_2024_1432987 crossref_primary_10_3390_ani14040628 crossref_primary_10_1093_bib_bbad451 crossref_primary_10_1016_j_bspc_2025_107698 crossref_primary_10_3390_electronics13091734 crossref_primary_10_1007_s10495_024_02050_4 crossref_primary_10_2147_CMAR_S510811 crossref_primary_10_3389_fdgth_2024_1471200 crossref_primary_10_3389_fpls_2024_1451784 crossref_primary_10_1007_s13205_025_04222_8 crossref_primary_10_1186_s12864_023_09866_5 crossref_primary_10_2147_IJGM_S501401 crossref_primary_10_3390_cancers17050882 crossref_primary_10_3390_electronics12173557 crossref_primary_10_3389_fbioe_2024_1398237 |
Cites_doi | 10.1016/j.jtho.2018.11.023 10.1093/bib/bbz156 10.1214/aoms/1177729694 10.1186/s12935-021-02165-7 10.1093/database/bar026 10.1038/nature14539 10.1038/modpathol.2011.215 10.1016/j.jtho.2021.11.003 10.1097/JTO.0b013e3182a4dd6e 10.1186/s12885-021-09111-w 10.2174/1566523222666220324110914 10.1097/JTO.0000000000000431 10.1016/j.mrfmmm.2020.111737 10.1016/j.jtho.2019.04.001 10.1016/j.isci.2019.09.018 10.1016/j.tele.2021.101623 10.4103/0970-2113.92356 10.3390/biom10101460 10.3322/caac.21763 10.1038/s41598-020-61588-w 10.1093/bib/bbz008 10.1016/S0169-5002(00)80835-1 10.1038/nature01626 10.1371/journal.pone.0233112 10.1016/j.tibtech.2021.11.006 10.1186/s12859-022-04689-9 10.7150/jca.43268 10.3389/fendo.2022.970269 10.1038/s41598-021-95128-x 10.1038/s41586-021-03898-1 10.1097/JTO.0b013e318206a221 10.1016/S0140-6736(17)30123-X 10.1016/j.gpb.2019.02.003 10.1186/s13073-022-01089-9 10.3390/ijms22084217 10.1613/jair.953 10.7326/0003-4819-157-4-201208210-00004 10.1093/bib/bbab315 10.1186/1471-2105-11-523 10.1155/2018/2914280 10.1016/j.cmpb.2017.09.005 10.2147/CMAR.S258396 10.1142/S0219720019400079 10.1159/000487440 10.1016/j.compbiolchem.2020.107277 10.1016/j.lungcan.2018.07.003 10.1038/nbt.2877 10.1007/s42979-021-00592-x 10.1007/s00066-020-01625-9 10.1186/s13578-019-0314-y 10.1016/j.molonc.2014.07.021 10.1056/NEJMoa1311107 10.1016/j.jaci.2018.02.025 10.1183/16000617.0052-2019 10.1038/s43018-021-00195-8 10.1186/s12920-020-00829-3 10.1158/1055-9965.EPI-19-0221 10.1158/1078-0432.CCR-21-1157 10.1001/jamainternmed.2018.3763 10.1109/JBHI.2020.3039741 10.1161/CIRCULATIONAHA.115.001593 10.1142/9789813235533_0008 10.3322/caac.21654 10.3390/ijms22168661 10.1016/j.procs.2019.09.167 10.1016/j.csbj.2021.01.009 10.1007/s12525-021-00475-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/bfgp/elad031 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-2657 |
EndPage | 192 |
ExternalDocumentID | 37519050 10_1093_bfgp_elad031 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: MOST110-2221-E-038-001-MY2 |
GroupedDBID | --- .2P .I3 0R~ 4.4 48X 53G 5VS 6J9 70D AAHBH AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABJNI ABMNT ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACPRK ACUFI ACUHS ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADNBA ADOCK ADPDF ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHXPO AIAGR AIJHB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AMNDL APIBT APWMN ARIXL AXUDD AYOIW BAWUL BAYMD BEYMZ BHONS BQDIO BSWAC C45 CDBKE CITATION CZ4 DAKXR DILTD DU5 D~K EAD EAP EAS EBD EBS EE~ EMK EMOBN ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KOP KSI KSN M-Z N9A NGC NLBLG NOMLY O9- OAWHX ODMLO OJQWA OJZSN OK1 OVD PAFKI PEELM PQQKQ Q1. Q5Y RD5 RPM RUSNO RW1 RXO SV3 TEORI TLC TOX TR2 TUS X7H Y6R YAYTL YKOAZ YXANX ~91 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c291t-2ca1a9fd9bdb9f635a5387aa56e678bca1a562a1a59a1565c389b9f0ec02aace3 |
ISSN | 2041-2649 2041-2657 |
IngestDate | Fri Jul 11 05:55:33 EDT 2025 Thu Aug 28 04:24:25 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Jul 01 03:26:57 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | lung cancer deep learning omics data genomics decision making therapeutic development |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c291t-2ca1a9fd9bdb9f635a5387aa56e678bca1a562a1a59a1565c389b9f0ec02aace3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4896-7926 0000-0001-7077-5627 |
PMID | 37519050 |
PQID | 2844087971 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2844087971 pubmed_primary_37519050 crossref_citationtrail_10_1093_bfgp_elad031 crossref_primary_10_1093_bfgp_elad031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-15 |
PublicationDateYYYYMMDD | 2024-05-15 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in functional genomics |
PublicationTitleAlternate | Brief Funct Genomics |
PublicationYear | 2024 |
References | Li (2024051606331747300_ref34) 2020; 25 Wessolly (2024051606331747300_ref36) 2022; 22 Nosi (2024051606331747300_ref41) 2021; 22 Jiao (2024051606331747300_ref52) 2018; 123 Menyhárt (2024051606331747300_ref75) 2021; 19 Mohammed (2024051606331747300_ref29) 2021; 11 Travis (2024051606331747300_ref3) 2011; 6 Passaro (2024051606331747300_ref6) 2021; 2 Tang (2024051606331747300_ref69) 2019; 9 Mellema (2024051606331747300_ref10) 2015; 10 Cheng (2024051606331747300_ref19) 2012; 25 Tan (2024051606331747300_ref66) 2014 Chawla (2024051606331747300_ref59) 2002; 16 Costello (2024051606331747300_ref71) 2014; 32 Li (2024051606331747300_ref81) 2022; 14 Siegel (2024051606331747300_ref2) 2023; 73 Collins (2024051606331747300_ref22) 2003; 422 Liu (2024051606331747300_ref37) 2022; 23 Nooreldeen (2024051606331747300_ref13) 2021; 22 Janiesch (2024051606331747300_ref76) 2021; 31 Ahmed (2024051606331747300_ref70) 2020; 13 Withnell (2024051606331747300_ref79) 2021; 22 Kennedy (2024051606331747300_ref17) 2000; 1 Anders (2024051606331747300_ref57) 2010; 2010 Stitik (2024051606331747300_ref15) 1978; 16 Nicholson (2024051606331747300_ref4) 2022; 17 Cirenajwis (2024051606331747300_ref35) 2020; 21 Cerami (2024051606331747300_ref54) 2012; 2 Kullback (2024051606331747300_ref61) 1951; 22 Liang (2024051606331747300_ref62) 2021; 62 Gianfrancesco (2024051606331747300_ref77) 2018; 178 Wang (2024051606331747300_ref40) 2022; 13 Cong (2024051606331747300_ref33) 2020; 11 Pandey (2024051606331747300_ref65) 2021; 822 Deo (2024051606331747300_ref26) 2015; 132 Avanzo (2024051606331747300_ref32) 2020; 196 Wang (2024051606331747300_ref44) 2019; 20 Salto-Tellez (2024051606331747300_ref18) 2014; 8 Robichaux (2024051606331747300_ref5) 2021; 597 Ramos (2024051606331747300_ref39) 2021 Matsubara (2024051606331747300_ref46) 2019; 17 Tanaka (2024051606331747300_ref23) 2021; 21 LeCun (2024051606331747300_ref28) 2015; 521 Takahashi (2024051606331747300_ref43) 2020; 10 Soria (2024051606331747300_ref8) 2017; 389 Wang (2024051606331747300_ref50) 2020; 18 Schabath (2024051606331747300_ref12) 2019; 28 Guibert (2024051606331747300_ref20) 2020; 29 Witten (2024051606331747300_ref25) 2005; 2 Muthukrishnan (2024051606331747300_ref58) 2016 Wnuk (2024051606331747300_ref53) 2019; 20 Go (2024051606331747300_ref9) 2013; 8 Balamurali (2024051606331747300_ref64) 2020 Lai (2024051606331747300_ref47) 2020; 10 Li (2024051606331747300_ref51) 2020; 15 Chen (2024051606331747300_ref73) 2022; 28 Raji (2024051606331747300_ref14) 2012; 157 Li (2024051606331747300_ref80) 2022; 23 Ammanagi (2024051606331747300_ref16) 2012; 29 Xiao (2024051606331747300_ref38) 2018; 153 Li (2024051606331747300_ref67) 2022; 12 Shi (2024051606331747300_ref30) 2021; 22 Min (2024051606331747300_ref31) 2017; 18 Seijo (2024051606331747300_ref21) 2019; 14 Cheng (2024051606331747300_ref68) 2022; 22 Kashyap (2024051606331747300_ref72) 2022; 40 Shaw (2024051606331747300_ref7) 2014; 370 Li (2024051606331747300_ref48) 2022; 13 Bach (2024051606331747300_ref60) 2019; 159 Way (2024051606331747300_ref63) 2018 de Sousa (2024051606331747300_ref74) 2018; 85 Lee (2024051606331747300_ref42) 2020; 87 Wessolly (2024051606331747300_ref45) 2020; 12 Adjei (2024051606331747300_ref1) 2019; 14 Zhang (2024051606331747300_ref55) 2011; 2011 Vo (2024051606331747300_ref78) 2022; 20 Mehta (2024051606331747300_ref24) 2018; 141 Blagus (2024051606331747300_ref56) 2010; 11 Siegel (2024051606331747300_ref11) 2021; 71 Choi (2024051606331747300_ref49) 2018; 2018 Sarker (2024051606331747300_ref27) 2021; 2 37721137 - Brief Funct Genomics. 2024 Sep 27;23(5):680-681. doi: 10.1093/bfgp/elad046. |
References_xml | – volume: 14 start-page: 343 issue: 3 year: 2019 ident: 2024051606331747300_ref21 article-title: Biomarkers in lung cancer screening: achievements, promises, and challenges publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2018.11.023 – volume: 22 start-page: 194 issue: 1 year: 2021 ident: 2024051606331747300_ref30 article-title: Deep learning for mining protein data publication-title: Brief Bioinform doi: 10.1093/bib/bbz156 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 2024051606331747300_ref61 article-title: On information and sufficiency publication-title: Ann Math Stat doi: 10.1214/aoms/1177729694 – volume: 21 start-page: 1 year: 2021 ident: 2024051606331747300_ref23 article-title: The current issues and future perspective of artificial intelligence for developing new treatment strategy in non-small cell lung cancer: harmonization of molecular cancer biology and artificial intelligence publication-title: Cancer Cell Int doi: 10.1186/s12935-021-02165-7 – volume: 2010 start-page: 1 year: 2010 ident: 2024051606331747300_ref57 article-title: Differential expression analysis for sequence count data publication-title: Nature Precedings – volume: 2 start-page: 401 issue: 5 year: 2012 ident: 2024051606331747300_ref54 article-title: The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer publication-title: Discovery – volume: 2011 year: 2011 ident: 2024051606331747300_ref55 article-title: International cancer genome consortium data portal—a one-stop shop for cancer genomics data publication-title: Database doi: 10.1093/database/bar026 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2024051606331747300_ref28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 25 start-page: 347 issue: 3 year: 2012 ident: 2024051606331747300_ref19 article-title: Molecular pathology of lung cancer: key to personalized medicine publication-title: Mod Pathol doi: 10.1038/modpathol.2011.215 – volume: 17 start-page: 362 issue: 3 year: 2022 ident: 2024051606331747300_ref4 article-title: The 2021 who classification of lung tumors: impact of advances since 2015 publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2021.11.003 – volume: 8 start-page: 1445 issue: 11 year: 2013 ident: 2024051606331747300_ref9 article-title: Clinicopathologic analysis of ros1-rearranged non–small-cell lung cancer and proposal of a diagnostic algorithm publication-title: J Thorac Oncol doi: 10.1097/JTO.0b013e3182a4dd6e – volume: 22 start-page: 1 issue: 1 year: 2022 ident: 2024051606331747300_ref36 article-title: Digital gene expression analysis of nsclc-patients reveals strong immune pressure, resulting in an immune escape under immunotherapy publication-title: BMC Cancer doi: 10.1186/s12885-021-09111-w – volume: 22 start-page: 439 issue: 5 year: 2022 ident: 2024051606331747300_ref68 article-title: Inferring cell-type-specific genes of lung cancer based on deep learning publication-title: Curr Gene Ther doi: 10.2174/1566523222666220324110914 – volume: 10 start-page: e9 issue: 2 year: 2015 ident: 2024051606331747300_ref10 article-title: Difference in outcome between types of kras mutation may point toward difference in tumor biology publication-title: J Thorac Oncol doi: 10.1097/JTO.0000000000000431 – volume: 2 year: 2005 ident: 2024051606331747300_ref25 article-title: Practical machine learning tools and techniques publication-title: Data Mining – volume: 18 start-page: 851 issue: 5 year: 2017 ident: 2024051606331747300_ref31 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform – volume: 822 start-page: 111737 year: 2021 ident: 2024051606331747300_ref65 article-title: Predicting potential residues associated with lung cancer using deep neural network publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2020.111737 – volume: 14 start-page: 956 issue: 6 year: 2019 ident: 2024051606331747300_ref1 article-title: Lung cancer worldwide publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2019.04.001 – volume: 20 start-page: 119 year: 2019 ident: 2024051606331747300_ref53 article-title: Deep learning implicitly handles tissue specific phenomena to predict tumor dna accessibility and immune activity publication-title: iScience doi: 10.1016/j.isci.2019.09.018 – volume: 62 start-page: 101623 year: 2021 ident: 2024051606331747300_ref62 article-title: Decreasing social contagion effects in diffusion cascades: Modeling message spreading on social media publication-title: Telemat Inform doi: 10.1016/j.tele.2021.101623 – volume: 29 start-page: 19 issue: 1 year: 2012 ident: 2024051606331747300_ref16 article-title: Sputum cytology in suspected cases of carcinoma of lung (sputum cytology a poor man’s bronchoscopy!) publication-title: Lung India doi: 10.4103/0970-2113.92356 – volume: 10 start-page: 1460 issue: 10 year: 2020 ident: 2024051606331747300_ref43 article-title: Predicting deep learning based multi-omics parallel integration survival subtypes in lung cancer using reverse phase protein array data publication-title: Biomolecules doi: 10.3390/biom10101460 – volume: 73 start-page: 17 issue: 1 year: 2023 ident: 2024051606331747300_ref2 article-title: Cancer statistics, 2023 publication-title: CA Cancer J Clin doi: 10.3322/caac.21763 – start-page: 1 volume-title: t-Distributed Stochastic Neighbor Embedding year: 2020 ident: 2024051606331747300_ref64 – start-page: 132 volume-title: Pacific Symposium on Biocomputing year: 2014 ident: 2024051606331747300_ref66 article-title: Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 2024051606331747300_ref47 article-title: Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning publication-title: Sci Rep doi: 10.1038/s41598-020-61588-w – volume: 21 start-page: 729 issue: 2 year: 2020 ident: 2024051606331747300_ref35 article-title: Performance of gene expression–based single sample predictors for assessment of clinicopathological subgroups and molecular subtypes in cancers: a case comparison study in non-small cell lung cancer publication-title: Brief Bioinform doi: 10.1093/bib/bbz008 – volume: 1 start-page: 244 issue: 29 year: 2000 ident: 2024051606331747300_ref17 article-title: A randomized study of fluorescence bronchoscopy versus white-light bronchoscopy for early detection of lung cancer in high risk patients publication-title: Lung Cancer doi: 10.1016/S0169-5002(00)80835-1 – volume: 422 start-page: 835 issue: 6934 year: 2003 ident: 2024051606331747300_ref22 article-title: A vision for the future of genomics research publication-title: Nature doi: 10.1038/nature01626 – volume: 15 start-page: e0233112 issue: 6 year: 2020 ident: 2024051606331747300_ref51 article-title: A novel drug repurposing approach for non-small cell lung cancer using deep learning publication-title: PloS One doi: 10.1371/journal.pone.0233112 – volume: 40 year: 2022 ident: 2024051606331747300_ref72 article-title: Quantification of tumor heterogeneity: from data acquisition to metric generation publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2021.11.006 – volume: 23 start-page: 1 issue: 1 year: 2022 ident: 2024051606331747300_ref37 article-title: Prediction of lung cancer using gene expression and deep learning with kl divergence gene selection publication-title: BMC Bioinformatics doi: 10.1186/s12859-022-04689-9 – volume: 12 start-page: 949546 year: 2022 ident: 2024051606331747300_ref67 article-title: Deep-lc: a novel deep learning method of identifying non-small cell lung cancer-related genes. Frontiers publication-title: Oncology – volume: 11 start-page: 3615 issue: 12 year: 2020 ident: 2024051606331747300_ref33 article-title: Deep learning model as a new trend in computer-aided diagnosis of tumor pathology for lung cancer publication-title: J Cancer doi: 10.7150/jca.43268 – volume: 13 start-page: 970269 year: 2022 ident: 2024051606331747300_ref48 article-title: Deep learning reveals cuproptosis features assist in predict prognosis and guide immunotherapy in lung adenocarcinoma publication-title: Front Endocrinol doi: 10.3389/fendo.2022.970269 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 2024051606331747300_ref29 article-title: A stacking ensemble deep learning approach to cancer type classification based on tcga data publication-title: Sci Rep doi: 10.1038/s41598-021-95128-x – volume: 597 start-page: 732 issue: 7878 year: 2021 ident: 2024051606331747300_ref5 article-title: Structure-based classification predicts drug response in egfr-mutant nsclc publication-title: Nature doi: 10.1038/s41586-021-03898-1 – volume: 6 start-page: 244 issue: 2 year: 2011 ident: 2024051606331747300_ref3 article-title: International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma publication-title: J Thorac Oncol doi: 10.1097/JTO.0b013e318206a221 – volume: 389 start-page: 917 issue: 10072 year: 2017 ident: 2024051606331747300_ref8 article-title: First-line ceritinib versus platinum-based chemotherapy in advanced alk-rearranged non-small-cell lung cancer (ascend-4): a randomised, open-label, phase 3 study publication-title: Lancet doi: 10.1016/S0140-6736(17)30123-X – volume: 18 start-page: 468 issue: 4 year: 2020 ident: 2024051606331747300_ref50 article-title: Denoising autoencoder, a deep learning algorithm, aids the identification of a novel molecular signature of lung adenocarcinoma publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2019.02.003 – volume: 14 start-page: 1 issue: 1 year: 2022 ident: 2024051606331747300_ref81 article-title: Molecular profiling of human non-small cell lung cancer by single-cell rna-seq publication-title: Genome Med doi: 10.1186/s13073-022-01089-9 – volume: 22 start-page: 4217 issue: 8 year: 2021 ident: 2024051606331747300_ref41 article-title: Met exon 14 skipping: a case study for the detection of genetic variants in cancer driver genes by deep learning publication-title: Int J Mol Sci doi: 10.3390/ijms22084217 – volume: 16 start-page: 321 year: 2002 ident: 2024051606331747300_ref59 article-title: Smote: synthetic minority over-sampling technique publication-title: J Artif Intell Res doi: 10.1613/jair.953 – volume: 157 start-page: 242 issue: 4 year: 2012 ident: 2024051606331747300_ref14 article-title: Predictive accuracy of the Liverpool lung project risk model for stratifying patients for computed tomography screening for lung cancer: a case–control and cohort validation study publication-title: Ann Intern Med doi: 10.7326/0003-4819-157-4-201208210-00004 – volume: 22 start-page: bbab315 issue: 6 year: 2021 ident: 2024051606331747300_ref79 article-title: Xomivae: an interpretable deep learning model for cancer classification using high-dimensional omics data publication-title: Brief Bioinform doi: 10.1093/bib/bbab315 – volume: 20 start-page: 2112 year: 2022 ident: 2024051606331747300_ref78 article-title: On the road to explainable ai in drug-drug interactions prediction: a systematic review. Computational and structural publication-title: Biotechnol J – volume: 11 start-page: 1 issue: 1 year: 2010 ident: 2024051606331747300_ref56 article-title: Class prediction for high-dimensional class-imbalanced data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-523 – volume: 2018 year: 2018 ident: 2024051606331747300_ref49 article-title: A risk stratification model for lung cancer based on gene coexpression network and deep learning publication-title: Biomed Res Int doi: 10.1155/2018/2914280 – volume: 153 start-page: 1 year: 2018 ident: 2024051606331747300_ref38 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.09.005 – volume: 12 start-page: 7881 year: 2020 ident: 2024051606331747300_ref45 article-title: A novel epitope quality-based immune escape mechanism reveals patient’s suitability for immune checkpoint inhibition publication-title: Cancer Manag Res doi: 10.2147/CMAR.S258396 – volume: 17 start-page: 1940007 issue: 03 year: 2019 ident: 2024051606331747300_ref46 article-title: Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720019400079 – volume: 85 start-page: 96 issue: 1–2 year: 2018 ident: 2024051606331747300_ref74 article-title: Heterogeneity in lung cancer publication-title: Pathobiology doi: 10.1159/000487440 – volume: 23 start-page: 8969 issue: 1 year: 2022 ident: 2024051606331747300_ref80 article-title: Interpretdl: explaining deep models in paddlepaddle publication-title: J Mach Learn Res – volume: 87 start-page: 107277 year: 2020 ident: 2024051606331747300_ref42 article-title: Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2020.107277 – volume: 123 start-page: 70 year: 2018 ident: 2024051606331747300_ref52 article-title: The prognostic value of tp53 and its correlation with egfr mutation in advanced non-small cell lung cancer, an analysis based on cbioportal data base publication-title: Lung Cancer doi: 10.1016/j.lungcan.2018.07.003 – volume: 16 start-page: 347 issue: 3 year: 1978 ident: 2024051606331747300_ref15 article-title: Radiographic screening in the early detection of lung cancer publication-title: Radiol Clin North Am – volume: 32 start-page: 1202 issue: 12 year: 2014 ident: 2024051606331747300_ref71 article-title: A community effort to assess and improve drug sensitivity prediction algorithms publication-title: Nat Biotechnol doi: 10.1038/nbt.2877 – volume: 2 start-page: 1 issue: 3 year: 2021 ident: 2024051606331747300_ref27 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN Comput Sci doi: 10.1007/s42979-021-00592-x – volume: 196 start-page: 879 issue: 10 year: 2020 ident: 2024051606331747300_ref32 article-title: Radiomics and deep learning in lung cancer publication-title: Strahlenther Onkol doi: 10.1007/s00066-020-01625-9 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 2024051606331747300_ref69 article-title: The single-cell sequencing: new developments and medical applications publication-title: Cell Biosci doi: 10.1186/s13578-019-0314-y – volume: 8 start-page: 1163 issue: 7 year: 2014 ident: 2024051606331747300_ref18 article-title: Molecular pathology–the value of an integrative approach publication-title: Mol Oncol doi: 10.1016/j.molonc.2014.07.021 – volume: 370 start-page: 1189 year: 2014 ident: 2024051606331747300_ref7 article-title: Ceritinib in alk-rearranged non–small-cell lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1311107 – volume: 141 start-page: 2019 issue: 6 year: 2018 ident: 2024051606331747300_ref24 article-title: Machine learning, natural language programming, and electronic health records: the next step in the artificial intelligence journey? publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2018.02.025 – start-page: 18 volume-title: In 2016 IEEE international conference on advances in computer applications (ICACA) year: 2016 ident: 2024051606331747300_ref58 article-title: Lasso: A feature selection technique in predictive modeling for machine learning – volume: 29 year: 2020 ident: 2024051606331747300_ref20 article-title: Current and future applications of liquid biopsy in nonsmall cell lung cancer from early to advanced stages publication-title: Eur Respir Rev doi: 10.1183/16000617.0052-2019 – volume: 20 start-page: 1 issue: 18 year: 2019 ident: 2024051606331747300_ref44 article-title: Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders publication-title: BMC Bioinformatics – volume: 2 start-page: 377 issue: 4 year: 2021 ident: 2024051606331747300_ref6 article-title: Overcoming therapy resistance in egfr-mutant lung cancer publication-title: Nat Cancer doi: 10.1038/s43018-021-00195-8 – volume: 13 year: 2020 ident: 2024051606331747300_ref70 article-title: Network-based drug sensitivity prediction publication-title: BMC Med Genomics doi: 10.1186/s12920-020-00829-3 – volume: 28 start-page: 1563 issue: 10 year: 2019 ident: 2024051606331747300_ref12 article-title: Cancer progress and priorities: lung cancer publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-19-0221 – start-page: 1707 volume-title: In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) year: 2021 ident: 2024051606331747300_ref39 article-title: An interpretable approach for lung cancer prediction and subtype classification using gene expression – volume: 28 start-page: 1896 issue: 9 year: 2022 ident: 2024051606331747300_ref73 article-title: Multiomic analysis reveals comprehensive tumor heterogeneity and distinct immune subtypes in multifocal intrahepatic cholangiocarcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-21-1157 – volume: 178 start-page: 1544 issue: 11 year: 2018 ident: 2024051606331747300_ref77 article-title: Potential biases in machine learning algorithms using electronic health record data publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2018.3763 – volume: 25 start-page: 429 issue: 2 year: 2020 ident: 2024051606331747300_ref34 article-title: Deep learning methods for lung cancer segmentation in whole-slide histopathology images—the acdc@ lunghp challenge 2019 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.3039741 – volume: 132 start-page: 1920 issue: 20 year: 2015 ident: 2024051606331747300_ref26 article-title: Machine learning in medicine publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.001593 – start-page: 80 volume-title: PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018: Proceedings of the Pacific Symposium year: 2018 ident: 2024051606331747300_ref63 article-title: Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders doi: 10.1142/9789813235533_0008 – volume: 71 start-page: 7 issue: 1 year: 2021 ident: 2024051606331747300_ref11 article-title: Cancer statistics, 2021 publication-title: CA Cancer J Clin doi: 10.3322/caac.21654 – volume: 22 start-page: 8661 issue: 16 year: 2021 ident: 2024051606331747300_ref13 article-title: Current and future development in lung cancer diagnosis publication-title: Int J Mol Sci doi: 10.3390/ijms22168661 – volume: 13 year: 2022 ident: 2024051606331747300_ref40 article-title: A novel deep learning method to predict lung cancer long-term survival with biological knowledge incorporated gene expression images and clinical data publication-title: Front Genet – volume: 159 start-page: 125 year: 2019 ident: 2024051606331747300_ref60 article-title: The proposal of undersampling method for learning from imbalanced datasets publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.09.167 – volume: 19 start-page: 949 year: 2021 ident: 2024051606331747300_ref75 article-title: Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2021.01.009 – volume: 31 start-page: 685 issue: 3 year: 2021 ident: 2024051606331747300_ref76 article-title: Machine learning and deep learning publication-title: Electronic Markets doi: 10.1007/s12525-021-00475-2 – reference: 37721137 - Brief Funct Genomics. 2024 Sep 27;23(5):680-681. doi: 10.1093/bfgp/elad046. |
SSID | ssj0000314410 |
Score | 2.5224237 |
SecondaryResourceType | review_article |
Snippet | Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests,... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 181 |
SubjectTerms | Biomarkers, Tumor - genetics Decision Making Deep Learning Genomics - methods Humans Lung Neoplasms - genetics Lung Neoplasms - pathology |
Title | Omics-based deep learning approaches for lung cancer decision-making and therapeutics development |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37519050 https://www.proquest.com/docview/2844087971 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ji9swFBbtlEIvpdN1ugwqtCejGVm24-pYygyhTRMKScnNyJKcBhI7NPFh-uv7niU7ng2mvQgjy7LR-3ib30LIBxOmxpjcMpUrzuKQR0wWYPPotEilSHIQmmgofh8PhrP46zyZ79MVm-ySXX6i_9yYV_I_VIU5oCtmyf4DZbtNYQKugb4wAoVhvBONJ-ul3jIURCYw1m7aHhCLrlS4bcotBKsaU2uRwNgP3HXVYeumEVUbQtlmYW3bPKouJGZf_sgWTZPPZRmgOPReRKzyuu7FzKP0c6FHSzZRZedu_lm5WZgKhlUnDUaNR3W8qC9sGfyoKx18-9U-5b0RIsYf6S4f0zEtweOQiYErOn1ib5jzXNdlGXt0RT0WGroWLtdYuyt7lReLDdJ6pQz34uNSDe3xJDufjUbZ9Gw-vU8eCDAeRM-H08jnCI1IdL51H-YzIuAVp_iCU7_9ZV3lFgOkUUSmT8hjb0HQzw4Oh-SeLZ-Sh66n6MUzonqgoAgK2oKC7kFBARQUQUEdKOgVUFAABe2DgvZA8ZzMzs-mX4bM99FgWshwx4RWoZKFkbnJZQEapgIplyqVDCyoKjneBS0YR6nAnE80KLGwkFvNhVLaRi_IQVmV9hWhAykLJYHpG25iExWwpdWRsolKQdsS_IgE7Yll2heZx14nq8wFO0QZnm_mz_eIfOxWb1xxlVvWvW8PPwPuh7-0VGmrepuBchXzT6lMYc1LR5VupygF64Qn_PUdnn5DHu3R_JYc7H7X9h1om7v8uAHPX9QZiE4 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Omics-based+deep+learning+approaches+for+lung+cancer+decision-making+and+therapeutics+development&rft.jtitle=Briefings+in+functional+genomics&rft.au=Tran%2C+Thi-Oanh&rft.au=Vo%2C+Thanh+Hoa&rft.au=Le%2C+Nguyen+Quoc+Khanh&rft.date=2024-05-15&rft.issn=2041-2657&rft.eissn=2041-2657&rft.volume=23&rft.issue=3&rft.spage=181&rft_id=info:doi/10.1093%2Fbfgp%2Felad031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon |