Omics-based deep learning approaches for lung cancer decision-making and therapeutics development

Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung...

Full description

Saved in:
Bibliographic Details
Published inBriefings in functional genomics Vol. 23; no. 3; pp. 181 - 192
Main Authors Tran, Thi-Oanh, Vo, Thanh Hoa, Le, Nguyen Quoc Khanh
Format Journal Article
LanguageEnglish
Published England 15.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research.
AbstractList Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research.
Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research.Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research.
Author Vo, Thanh Hoa
Le, Nguyen Quoc Khanh
Tran, Thi-Oanh
Author_xml – sequence: 1
  givenname: Thi-Oanh
  orcidid: 0000-0001-7077-5627
  surname: Tran
  fullname: Tran, Thi-Oanh
– sequence: 2
  givenname: Thanh Hoa
  surname: Vo
  fullname: Vo, Thanh Hoa
– sequence: 3
  givenname: Nguyen Quoc Khanh
  orcidid: 0000-0003-4896-7926
  surname: Le
  fullname: Le, Nguyen Quoc Khanh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37519050$$D View this record in MEDLINE/PubMed
BookMark eNptkE1PwzAMhiM0xMbYjTPqkQNlSdu0zRFNfEmTdoFz5KbuFmjTkrRI_HtStnFA5OBY9uNX9ntOJqY1SMglo7eMinhZVNtuiTWUNGYnZBbRhIVRyrPJb56IKVk490b9i1mSMHpGpnHGmaCczghsGq1cWIDDMigRu6BGsEabbQBdZ1tQO3RB1dqgHnxNgVFoPai0060JG3j_QU0Z9Du00OHQez0PfGLddg2a_oKcVlA7XBz-OXl9uH9ZPYXrzePz6m4dqkiwPowUMBBVKYqyEFUac-BxngHwFNMsL8YuT6MxCmA85SrOhQcpKhoBKIzn5Hqv67f-GND1stFOYV2DwXZwMsqThOaZyJhHrw7oUDRYys7qBuyXPNrigWgPKNs6Z7GSSvfQ-4t7C7qWjMrRfjnaLw_2-6GbP0NH3X_xb9SCikU
CitedBy_id crossref_primary_10_3390_ijms242115858
crossref_primary_10_1093_bib_bbae540
crossref_primary_10_1080_17425255_2024_2356162
crossref_primary_10_1186_s12859_024_05716_7
crossref_primary_10_3390_a17030106
crossref_primary_10_3390_app132312843
crossref_primary_10_1007_s00330_024_11157_w
crossref_primary_10_1093_nargab_lqae188
crossref_primary_10_1109_ACCESS_2025_3539122
crossref_primary_10_3389_fphys_2024_1432987
crossref_primary_10_3390_ani14040628
crossref_primary_10_1093_bib_bbad451
crossref_primary_10_1016_j_bspc_2025_107698
crossref_primary_10_3390_electronics13091734
crossref_primary_10_1007_s10495_024_02050_4
crossref_primary_10_2147_CMAR_S510811
crossref_primary_10_3389_fdgth_2024_1471200
crossref_primary_10_3389_fpls_2024_1451784
crossref_primary_10_1007_s13205_025_04222_8
crossref_primary_10_1186_s12864_023_09866_5
crossref_primary_10_2147_IJGM_S501401
crossref_primary_10_3390_cancers17050882
crossref_primary_10_3390_electronics12173557
crossref_primary_10_3389_fbioe_2024_1398237
Cites_doi 10.1016/j.jtho.2018.11.023
10.1093/bib/bbz156
10.1214/aoms/1177729694
10.1186/s12935-021-02165-7
10.1093/database/bar026
10.1038/nature14539
10.1038/modpathol.2011.215
10.1016/j.jtho.2021.11.003
10.1097/JTO.0b013e3182a4dd6e
10.1186/s12885-021-09111-w
10.2174/1566523222666220324110914
10.1097/JTO.0000000000000431
10.1016/j.mrfmmm.2020.111737
10.1016/j.jtho.2019.04.001
10.1016/j.isci.2019.09.018
10.1016/j.tele.2021.101623
10.4103/0970-2113.92356
10.3390/biom10101460
10.3322/caac.21763
10.1038/s41598-020-61588-w
10.1093/bib/bbz008
10.1016/S0169-5002(00)80835-1
10.1038/nature01626
10.1371/journal.pone.0233112
10.1016/j.tibtech.2021.11.006
10.1186/s12859-022-04689-9
10.7150/jca.43268
10.3389/fendo.2022.970269
10.1038/s41598-021-95128-x
10.1038/s41586-021-03898-1
10.1097/JTO.0b013e318206a221
10.1016/S0140-6736(17)30123-X
10.1016/j.gpb.2019.02.003
10.1186/s13073-022-01089-9
10.3390/ijms22084217
10.1613/jair.953
10.7326/0003-4819-157-4-201208210-00004
10.1093/bib/bbab315
10.1186/1471-2105-11-523
10.1155/2018/2914280
10.1016/j.cmpb.2017.09.005
10.2147/CMAR.S258396
10.1142/S0219720019400079
10.1159/000487440
10.1016/j.compbiolchem.2020.107277
10.1016/j.lungcan.2018.07.003
10.1038/nbt.2877
10.1007/s42979-021-00592-x
10.1007/s00066-020-01625-9
10.1186/s13578-019-0314-y
10.1016/j.molonc.2014.07.021
10.1056/NEJMoa1311107
10.1016/j.jaci.2018.02.025
10.1183/16000617.0052-2019
10.1038/s43018-021-00195-8
10.1186/s12920-020-00829-3
10.1158/1055-9965.EPI-19-0221
10.1158/1078-0432.CCR-21-1157
10.1001/jamainternmed.2018.3763
10.1109/JBHI.2020.3039741
10.1161/CIRCULATIONAHA.115.001593
10.1142/9789813235533_0008
10.3322/caac.21654
10.3390/ijms22168661
10.1016/j.procs.2019.09.167
10.1016/j.csbj.2021.01.009
10.1007/s12525-021-00475-2
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bfgp/elad031
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-2657
EndPage 192
ExternalDocumentID 37519050
10_1093_bfgp_elad031
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: MOST110-2221-E-038-001-MY2
GroupedDBID ---
.2P
.I3
0R~
4.4
48X
53G
5VS
6J9
70D
AAHBH
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABJNI
ABMNT
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACPRK
ACUFI
ACUHS
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADNBA
ADOCK
ADPDF
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BSWAC
C45
CDBKE
CITATION
CZ4
DAKXR
DILTD
DU5
D~K
EAD
EAP
EAS
EBD
EBS
EE~
EMK
EMOBN
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KOP
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OJZSN
OK1
OVD
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TLC
TOX
TR2
TUS
X7H
Y6R
YAYTL
YKOAZ
YXANX
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c291t-2ca1a9fd9bdb9f635a5387aa56e678bca1a562a1a59a1565c389b9f0ec02aace3
ISSN 2041-2649
2041-2657
IngestDate Fri Jul 11 05:55:33 EDT 2025
Thu Aug 28 04:24:25 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Jul 01 03:26:57 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords lung cancer
deep learning
omics data
genomics
decision making
therapeutic development
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-2ca1a9fd9bdb9f635a5387aa56e678bca1a562a1a59a1565c389b9f0ec02aace3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4896-7926
0000-0001-7077-5627
PMID 37519050
PQID 2844087971
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2844087971
pubmed_primary_37519050
crossref_citationtrail_10_1093_bfgp_elad031
crossref_primary_10_1093_bfgp_elad031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in functional genomics
PublicationTitleAlternate Brief Funct Genomics
PublicationYear 2024
References Li (2024051606331747300_ref34) 2020; 25
Wessolly (2024051606331747300_ref36) 2022; 22
Nosi (2024051606331747300_ref41) 2021; 22
Jiao (2024051606331747300_ref52) 2018; 123
Menyhárt (2024051606331747300_ref75) 2021; 19
Mohammed (2024051606331747300_ref29) 2021; 11
Travis (2024051606331747300_ref3) 2011; 6
Passaro (2024051606331747300_ref6) 2021; 2
Tang (2024051606331747300_ref69) 2019; 9
Mellema (2024051606331747300_ref10) 2015; 10
Cheng (2024051606331747300_ref19) 2012; 25
Tan (2024051606331747300_ref66) 2014
Chawla (2024051606331747300_ref59) 2002; 16
Costello (2024051606331747300_ref71) 2014; 32
Li (2024051606331747300_ref81) 2022; 14
Siegel (2024051606331747300_ref2) 2023; 73
Collins (2024051606331747300_ref22) 2003; 422
Liu (2024051606331747300_ref37) 2022; 23
Nooreldeen (2024051606331747300_ref13) 2021; 22
Janiesch (2024051606331747300_ref76) 2021; 31
Ahmed (2024051606331747300_ref70) 2020; 13
Withnell (2024051606331747300_ref79) 2021; 22
Kennedy (2024051606331747300_ref17) 2000; 1
Anders (2024051606331747300_ref57) 2010; 2010
Stitik (2024051606331747300_ref15) 1978; 16
Nicholson (2024051606331747300_ref4) 2022; 17
Cirenajwis (2024051606331747300_ref35) 2020; 21
Cerami (2024051606331747300_ref54) 2012; 2
Kullback (2024051606331747300_ref61) 1951; 22
Liang (2024051606331747300_ref62) 2021; 62
Gianfrancesco (2024051606331747300_ref77) 2018; 178
Wang (2024051606331747300_ref40) 2022; 13
Cong (2024051606331747300_ref33) 2020; 11
Pandey (2024051606331747300_ref65) 2021; 822
Deo (2024051606331747300_ref26) 2015; 132
Avanzo (2024051606331747300_ref32) 2020; 196
Wang (2024051606331747300_ref44) 2019; 20
Salto-Tellez (2024051606331747300_ref18) 2014; 8
Robichaux (2024051606331747300_ref5) 2021; 597
Ramos (2024051606331747300_ref39) 2021
Matsubara (2024051606331747300_ref46) 2019; 17
Tanaka (2024051606331747300_ref23) 2021; 21
LeCun (2024051606331747300_ref28) 2015; 521
Takahashi (2024051606331747300_ref43) 2020; 10
Soria (2024051606331747300_ref8) 2017; 389
Wang (2024051606331747300_ref50) 2020; 18
Schabath (2024051606331747300_ref12) 2019; 28
Guibert (2024051606331747300_ref20) 2020; 29
Witten (2024051606331747300_ref25) 2005; 2
Muthukrishnan (2024051606331747300_ref58) 2016
Wnuk (2024051606331747300_ref53) 2019; 20
Go (2024051606331747300_ref9) 2013; 8
Balamurali (2024051606331747300_ref64) 2020
Lai (2024051606331747300_ref47) 2020; 10
Li (2024051606331747300_ref51) 2020; 15
Chen (2024051606331747300_ref73) 2022; 28
Raji (2024051606331747300_ref14) 2012; 157
Li (2024051606331747300_ref80) 2022; 23
Ammanagi (2024051606331747300_ref16) 2012; 29
Xiao (2024051606331747300_ref38) 2018; 153
Li (2024051606331747300_ref67) 2022; 12
Shi (2024051606331747300_ref30) 2021; 22
Min (2024051606331747300_ref31) 2017; 18
Seijo (2024051606331747300_ref21) 2019; 14
Cheng (2024051606331747300_ref68) 2022; 22
Kashyap (2024051606331747300_ref72) 2022; 40
Shaw (2024051606331747300_ref7) 2014; 370
Li (2024051606331747300_ref48) 2022; 13
Bach (2024051606331747300_ref60) 2019; 159
Way (2024051606331747300_ref63) 2018
de Sousa (2024051606331747300_ref74) 2018; 85
Lee (2024051606331747300_ref42) 2020; 87
Wessolly (2024051606331747300_ref45) 2020; 12
Adjei (2024051606331747300_ref1) 2019; 14
Zhang (2024051606331747300_ref55) 2011; 2011
Vo (2024051606331747300_ref78) 2022; 20
Mehta (2024051606331747300_ref24) 2018; 141
Blagus (2024051606331747300_ref56) 2010; 11
Siegel (2024051606331747300_ref11) 2021; 71
Choi (2024051606331747300_ref49) 2018; 2018
Sarker (2024051606331747300_ref27) 2021; 2
37721137 - Brief Funct Genomics. 2024 Sep 27;23(5):680-681. doi: 10.1093/bfgp/elad046.
References_xml – volume: 14
  start-page: 343
  issue: 3
  year: 2019
  ident: 2024051606331747300_ref21
  article-title: Biomarkers in lung cancer screening: achievements, promises, and challenges
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2018.11.023
– volume: 22
  start-page: 194
  issue: 1
  year: 2021
  ident: 2024051606331747300_ref30
  article-title: Deep learning for mining protein data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz156
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 2024051606331747300_ref61
  article-title: On information and sufficiency
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– volume: 21
  start-page: 1
  year: 2021
  ident: 2024051606331747300_ref23
  article-title: The current issues and future perspective of artificial intelligence for developing new treatment strategy in non-small cell lung cancer: harmonization of molecular cancer biology and artificial intelligence
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-021-02165-7
– volume: 2010
  start-page: 1
  year: 2010
  ident: 2024051606331747300_ref57
  article-title: Differential expression analysis for sequence count data
  publication-title: Nature Precedings
– volume: 2
  start-page: 401
  issue: 5
  year: 2012
  ident: 2024051606331747300_ref54
  article-title: The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer
  publication-title: Discovery
– volume: 2011
  year: 2011
  ident: 2024051606331747300_ref55
  article-title: International cancer genome consortium data portal—a one-stop shop for cancer genomics data
  publication-title: Database
  doi: 10.1093/database/bar026
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2024051606331747300_ref28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 25
  start-page: 347
  issue: 3
  year: 2012
  ident: 2024051606331747300_ref19
  article-title: Molecular pathology of lung cancer: key to personalized medicine
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2011.215
– volume: 17
  start-page: 362
  issue: 3
  year: 2022
  ident: 2024051606331747300_ref4
  article-title: The 2021 who classification of lung tumors: impact of advances since 2015
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2021.11.003
– volume: 8
  start-page: 1445
  issue: 11
  year: 2013
  ident: 2024051606331747300_ref9
  article-title: Clinicopathologic analysis of ros1-rearranged non–small-cell lung cancer and proposal of a diagnostic algorithm
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0b013e3182a4dd6e
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  ident: 2024051606331747300_ref36
  article-title: Digital gene expression analysis of nsclc-patients reveals strong immune pressure, resulting in an immune escape under immunotherapy
  publication-title: BMC Cancer
  doi: 10.1186/s12885-021-09111-w
– volume: 22
  start-page: 439
  issue: 5
  year: 2022
  ident: 2024051606331747300_ref68
  article-title: Inferring cell-type-specific genes of lung cancer based on deep learning
  publication-title: Curr Gene Ther
  doi: 10.2174/1566523222666220324110914
– volume: 10
  start-page: e9
  issue: 2
  year: 2015
  ident: 2024051606331747300_ref10
  article-title: Difference in outcome between types of kras mutation may point toward difference in tumor biology
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0000000000000431
– volume: 2
  year: 2005
  ident: 2024051606331747300_ref25
  article-title: Practical machine learning tools and techniques
  publication-title: Data Mining
– volume: 18
  start-page: 851
  issue: 5
  year: 2017
  ident: 2024051606331747300_ref31
  article-title: Deep learning in bioinformatics
  publication-title: Brief Bioinform
– volume: 822
  start-page: 111737
  year: 2021
  ident: 2024051606331747300_ref65
  article-title: Predicting potential residues associated with lung cancer using deep neural network
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2020.111737
– volume: 14
  start-page: 956
  issue: 6
  year: 2019
  ident: 2024051606331747300_ref1
  article-title: Lung cancer worldwide
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2019.04.001
– volume: 20
  start-page: 119
  year: 2019
  ident: 2024051606331747300_ref53
  article-title: Deep learning implicitly handles tissue specific phenomena to predict tumor dna accessibility and immune activity
  publication-title: iScience
  doi: 10.1016/j.isci.2019.09.018
– volume: 62
  start-page: 101623
  year: 2021
  ident: 2024051606331747300_ref62
  article-title: Decreasing social contagion effects in diffusion cascades: Modeling message spreading on social media
  publication-title: Telemat Inform
  doi: 10.1016/j.tele.2021.101623
– volume: 29
  start-page: 19
  issue: 1
  year: 2012
  ident: 2024051606331747300_ref16
  article-title: Sputum cytology in suspected cases of carcinoma of lung (sputum cytology a poor man’s bronchoscopy!)
  publication-title: Lung India
  doi: 10.4103/0970-2113.92356
– volume: 10
  start-page: 1460
  issue: 10
  year: 2020
  ident: 2024051606331747300_ref43
  article-title: Predicting deep learning based multi-omics parallel integration survival subtypes in lung cancer using reverse phase protein array data
  publication-title: Biomolecules
  doi: 10.3390/biom10101460
– volume: 73
  start-page: 17
  issue: 1
  year: 2023
  ident: 2024051606331747300_ref2
  article-title: Cancer statistics, 2023
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21763
– start-page: 1
  volume-title: t-Distributed Stochastic Neighbor Embedding
  year: 2020
  ident: 2024051606331747300_ref64
– start-page: 132
  volume-title: Pacific Symposium on Biocomputing
  year: 2014
  ident: 2024051606331747300_ref66
  article-title: Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 2024051606331747300_ref47
  article-title: Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-61588-w
– volume: 21
  start-page: 729
  issue: 2
  year: 2020
  ident: 2024051606331747300_ref35
  article-title: Performance of gene expression–based single sample predictors for assessment of clinicopathological subgroups and molecular subtypes in cancers: a case comparison study in non-small cell lung cancer
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz008
– volume: 1
  start-page: 244
  issue: 29
  year: 2000
  ident: 2024051606331747300_ref17
  article-title: A randomized study of fluorescence bronchoscopy versus white-light bronchoscopy for early detection of lung cancer in high risk patients
  publication-title: Lung Cancer
  doi: 10.1016/S0169-5002(00)80835-1
– volume: 422
  start-page: 835
  issue: 6934
  year: 2003
  ident: 2024051606331747300_ref22
  article-title: A vision for the future of genomics research
  publication-title: Nature
  doi: 10.1038/nature01626
– volume: 15
  start-page: e0233112
  issue: 6
  year: 2020
  ident: 2024051606331747300_ref51
  article-title: A novel drug repurposing approach for non-small cell lung cancer using deep learning
  publication-title: PloS One
  doi: 10.1371/journal.pone.0233112
– volume: 40
  year: 2022
  ident: 2024051606331747300_ref72
  article-title: Quantification of tumor heterogeneity: from data acquisition to metric generation
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2021.11.006
– volume: 23
  start-page: 1
  issue: 1
  year: 2022
  ident: 2024051606331747300_ref37
  article-title: Prediction of lung cancer using gene expression and deep learning with kl divergence gene selection
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-022-04689-9
– volume: 12
  start-page: 949546
  year: 2022
  ident: 2024051606331747300_ref67
  article-title: Deep-lc: a novel deep learning method of identifying non-small cell lung cancer-related genes. Frontiers
  publication-title: Oncology
– volume: 11
  start-page: 3615
  issue: 12
  year: 2020
  ident: 2024051606331747300_ref33
  article-title: Deep learning model as a new trend in computer-aided diagnosis of tumor pathology for lung cancer
  publication-title: J Cancer
  doi: 10.7150/jca.43268
– volume: 13
  start-page: 970269
  year: 2022
  ident: 2024051606331747300_ref48
  article-title: Deep learning reveals cuproptosis features assist in predict prognosis and guide immunotherapy in lung adenocarcinoma
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2022.970269
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 2024051606331747300_ref29
  article-title: A stacking ensemble deep learning approach to cancer type classification based on tcga data
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95128-x
– volume: 597
  start-page: 732
  issue: 7878
  year: 2021
  ident: 2024051606331747300_ref5
  article-title: Structure-based classification predicts drug response in egfr-mutant nsclc
  publication-title: Nature
  doi: 10.1038/s41586-021-03898-1
– volume: 6
  start-page: 244
  issue: 2
  year: 2011
  ident: 2024051606331747300_ref3
  article-title: International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0b013e318206a221
– volume: 389
  start-page: 917
  issue: 10072
  year: 2017
  ident: 2024051606331747300_ref8
  article-title: First-line ceritinib versus platinum-based chemotherapy in advanced alk-rearranged non-small-cell lung cancer (ascend-4): a randomised, open-label, phase 3 study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)30123-X
– volume: 18
  start-page: 468
  issue: 4
  year: 2020
  ident: 2024051606331747300_ref50
  article-title: Denoising autoencoder, a deep learning algorithm, aids the identification of a novel molecular signature of lung adenocarcinoma
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2019.02.003
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  ident: 2024051606331747300_ref81
  article-title: Molecular profiling of human non-small cell lung cancer by single-cell rna-seq
  publication-title: Genome Med
  doi: 10.1186/s13073-022-01089-9
– volume: 22
  start-page: 4217
  issue: 8
  year: 2021
  ident: 2024051606331747300_ref41
  article-title: Met exon 14 skipping: a case study for the detection of genetic variants in cancer driver genes by deep learning
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22084217
– volume: 16
  start-page: 321
  year: 2002
  ident: 2024051606331747300_ref59
  article-title: Smote: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 157
  start-page: 242
  issue: 4
  year: 2012
  ident: 2024051606331747300_ref14
  article-title: Predictive accuracy of the Liverpool lung project risk model for stratifying patients for computed tomography screening for lung cancer: a case–control and cohort validation study
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-157-4-201208210-00004
– volume: 22
  start-page: bbab315
  issue: 6
  year: 2021
  ident: 2024051606331747300_ref79
  article-title: Xomivae: an interpretable deep learning model for cancer classification using high-dimensional omics data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab315
– volume: 20
  start-page: 2112
  year: 2022
  ident: 2024051606331747300_ref78
  article-title: On the road to explainable ai in drug-drug interactions prediction: a systematic review. Computational and structural
  publication-title: Biotechnol J
– volume: 11
  start-page: 1
  issue: 1
  year: 2010
  ident: 2024051606331747300_ref56
  article-title: Class prediction for high-dimensional class-imbalanced data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-523
– volume: 2018
  year: 2018
  ident: 2024051606331747300_ref49
  article-title: A risk stratification model for lung cancer based on gene coexpression network and deep learning
  publication-title: Biomed Res Int
  doi: 10.1155/2018/2914280
– volume: 153
  start-page: 1
  year: 2018
  ident: 2024051606331747300_ref38
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.09.005
– volume: 12
  start-page: 7881
  year: 2020
  ident: 2024051606331747300_ref45
  article-title: A novel epitope quality-based immune escape mechanism reveals patient’s suitability for immune checkpoint inhibition
  publication-title: Cancer Manag Res
  doi: 10.2147/CMAR.S258396
– volume: 17
  start-page: 1940007
  issue: 03
  year: 2019
  ident: 2024051606331747300_ref46
  article-title: Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720019400079
– volume: 85
  start-page: 96
  issue: 1–2
  year: 2018
  ident: 2024051606331747300_ref74
  article-title: Heterogeneity in lung cancer
  publication-title: Pathobiology
  doi: 10.1159/000487440
– volume: 23
  start-page: 8969
  issue: 1
  year: 2022
  ident: 2024051606331747300_ref80
  article-title: Interpretdl: explaining deep models in paddlepaddle
  publication-title: J Mach Learn Res
– volume: 87
  start-page: 107277
  year: 2020
  ident: 2024051606331747300_ref42
  article-title: Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2020.107277
– volume: 123
  start-page: 70
  year: 2018
  ident: 2024051606331747300_ref52
  article-title: The prognostic value of tp53 and its correlation with egfr mutation in advanced non-small cell lung cancer, an analysis based on cbioportal data base
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2018.07.003
– volume: 16
  start-page: 347
  issue: 3
  year: 1978
  ident: 2024051606331747300_ref15
  article-title: Radiographic screening in the early detection of lung cancer
  publication-title: Radiol Clin North Am
– volume: 32
  start-page: 1202
  issue: 12
  year: 2014
  ident: 2024051606331747300_ref71
  article-title: A community effort to assess and improve drug sensitivity prediction algorithms
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2877
– volume: 2
  start-page: 1
  issue: 3
  year: 2021
  ident: 2024051606331747300_ref27
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00592-x
– volume: 196
  start-page: 879
  issue: 10
  year: 2020
  ident: 2024051606331747300_ref32
  article-title: Radiomics and deep learning in lung cancer
  publication-title: Strahlenther Onkol
  doi: 10.1007/s00066-020-01625-9
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 2024051606331747300_ref69
  article-title: The single-cell sequencing: new developments and medical applications
  publication-title: Cell Biosci
  doi: 10.1186/s13578-019-0314-y
– volume: 8
  start-page: 1163
  issue: 7
  year: 2014
  ident: 2024051606331747300_ref18
  article-title: Molecular pathology–the value of an integrative approach
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2014.07.021
– volume: 370
  start-page: 1189
  year: 2014
  ident: 2024051606331747300_ref7
  article-title: Ceritinib in alk-rearranged non–small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1311107
– volume: 141
  start-page: 2019
  issue: 6
  year: 2018
  ident: 2024051606331747300_ref24
  article-title: Machine learning, natural language programming, and electronic health records: the next step in the artificial intelligence journey?
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2018.02.025
– start-page: 18
  volume-title: In 2016 IEEE international conference on advances in computer applications (ICACA)
  year: 2016
  ident: 2024051606331747300_ref58
  article-title: Lasso: A feature selection technique in predictive modeling for machine learning
– volume: 29
  year: 2020
  ident: 2024051606331747300_ref20
  article-title: Current and future applications of liquid biopsy in nonsmall cell lung cancer from early to advanced stages
  publication-title: Eur Respir Rev
  doi: 10.1183/16000617.0052-2019
– volume: 20
  start-page: 1
  issue: 18
  year: 2019
  ident: 2024051606331747300_ref44
  article-title: Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders
  publication-title: BMC Bioinformatics
– volume: 2
  start-page: 377
  issue: 4
  year: 2021
  ident: 2024051606331747300_ref6
  article-title: Overcoming therapy resistance in egfr-mutant lung cancer
  publication-title: Nat Cancer
  doi: 10.1038/s43018-021-00195-8
– volume: 13
  year: 2020
  ident: 2024051606331747300_ref70
  article-title: Network-based drug sensitivity prediction
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-020-00829-3
– volume: 28
  start-page: 1563
  issue: 10
  year: 2019
  ident: 2024051606331747300_ref12
  article-title: Cancer progress and priorities: lung cancer
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-19-0221
– start-page: 1707
  volume-title: In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
  year: 2021
  ident: 2024051606331747300_ref39
  article-title: An interpretable approach for lung cancer prediction and subtype classification using gene expression
– volume: 28
  start-page: 1896
  issue: 9
  year: 2022
  ident: 2024051606331747300_ref73
  article-title: Multiomic analysis reveals comprehensive tumor heterogeneity and distinct immune subtypes in multifocal intrahepatic cholangiocarcinoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-21-1157
– volume: 178
  start-page: 1544
  issue: 11
  year: 2018
  ident: 2024051606331747300_ref77
  article-title: Potential biases in machine learning algorithms using electronic health record data
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2018.3763
– volume: 25
  start-page: 429
  issue: 2
  year: 2020
  ident: 2024051606331747300_ref34
  article-title: Deep learning methods for lung cancer segmentation in whole-slide histopathology images—the acdc@ lunghp challenge 2019
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.3039741
– volume: 132
  start-page: 1920
  issue: 20
  year: 2015
  ident: 2024051606331747300_ref26
  article-title: Machine learning in medicine
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– start-page: 80
  volume-title: PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018: Proceedings of the Pacific Symposium
  year: 2018
  ident: 2024051606331747300_ref63
  article-title: Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders
  doi: 10.1142/9789813235533_0008
– volume: 71
  start-page: 7
  issue: 1
  year: 2021
  ident: 2024051606331747300_ref11
  article-title: Cancer statistics, 2021
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21654
– volume: 22
  start-page: 8661
  issue: 16
  year: 2021
  ident: 2024051606331747300_ref13
  article-title: Current and future development in lung cancer diagnosis
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22168661
– volume: 13
  year: 2022
  ident: 2024051606331747300_ref40
  article-title: A novel deep learning method to predict lung cancer long-term survival with biological knowledge incorporated gene expression images and clinical data
  publication-title: Front Genet
– volume: 159
  start-page: 125
  year: 2019
  ident: 2024051606331747300_ref60
  article-title: The proposal of undersampling method for learning from imbalanced datasets
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.09.167
– volume: 19
  start-page: 949
  year: 2021
  ident: 2024051606331747300_ref75
  article-title: Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.01.009
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  ident: 2024051606331747300_ref76
  article-title: Machine learning and deep learning
  publication-title: Electronic Markets
  doi: 10.1007/s12525-021-00475-2
– reference: 37721137 - Brief Funct Genomics. 2024 Sep 27;23(5):680-681. doi: 10.1093/bfgp/elad046.
SSID ssj0000314410
Score 2.5224237
SecondaryResourceType review_article
Snippet Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 181
SubjectTerms Biomarkers, Tumor - genetics
Decision Making
Deep Learning
Genomics - methods
Humans
Lung Neoplasms - genetics
Lung Neoplasms - pathology
Title Omics-based deep learning approaches for lung cancer decision-making and therapeutics development
URI https://www.ncbi.nlm.nih.gov/pubmed/37519050
https://www.proquest.com/docview/2844087971
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ji9swFBbtlEIvpdN1ugwqtCejGVm24-pYygyhTRMKScnNyJKcBhI7NPFh-uv7niU7ng2mvQgjy7LR-3ib30LIBxOmxpjcMpUrzuKQR0wWYPPotEilSHIQmmgofh8PhrP46zyZ79MVm-ySXX6i_9yYV_I_VIU5oCtmyf4DZbtNYQKugb4wAoVhvBONJ-ul3jIURCYw1m7aHhCLrlS4bcotBKsaU2uRwNgP3HXVYeumEVUbQtlmYW3bPKouJGZf_sgWTZPPZRmgOPReRKzyuu7FzKP0c6FHSzZRZedu_lm5WZgKhlUnDUaNR3W8qC9sGfyoKx18-9U-5b0RIsYf6S4f0zEtweOQiYErOn1ib5jzXNdlGXt0RT0WGroWLtdYuyt7lReLDdJ6pQz34uNSDe3xJDufjUbZ9Gw-vU8eCDAeRM-H08jnCI1IdL51H-YzIuAVp_iCU7_9ZV3lFgOkUUSmT8hjb0HQzw4Oh-SeLZ-Sh66n6MUzonqgoAgK2oKC7kFBARQUQUEdKOgVUFAABe2DgvZA8ZzMzs-mX4bM99FgWshwx4RWoZKFkbnJZQEapgIplyqVDCyoKjneBS0YR6nAnE80KLGwkFvNhVLaRi_IQVmV9hWhAykLJYHpG25iExWwpdWRsolKQdsS_IgE7Yll2heZx14nq8wFO0QZnm_mz_eIfOxWb1xxlVvWvW8PPwPuh7-0VGmrepuBchXzT6lMYc1LR5VupygF64Qn_PUdnn5DHu3R_JYc7H7X9h1om7v8uAHPX9QZiE4
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Omics-based+deep+learning+approaches+for+lung+cancer+decision-making+and+therapeutics+development&rft.jtitle=Briefings+in+functional+genomics&rft.au=Tran%2C+Thi-Oanh&rft.au=Vo%2C+Thanh+Hoa&rft.au=Le%2C+Nguyen+Quoc+Khanh&rft.date=2024-05-15&rft.issn=2041-2657&rft.eissn=2041-2657&rft.volume=23&rft.issue=3&rft.spage=181&rft_id=info:doi/10.1093%2Fbfgp%2Felad031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon