Data-Driven MPC for Quadrotors

Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedb...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 6; no. 2; pp. 3769 - 3776
Main Authors Torrente, Guillem, Kaufmann, Elia, Fohn, Philipp, Scaramuzza, Davide
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modeling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14 m/s and accelerations beyond 4 g.
AbstractList Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modeling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14 m/s and accelerations beyond 4 g.
Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modeling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14 m/s and accelerations beyond 4 g.
Author Torrente, Guillem
Kaufmann, Elia
Fohn, Philipp
Scaramuzza, Davide
Author_xml – sequence: 1
  givenname: Guillem
  orcidid: 0000-0003-2839-2774
  surname: Torrente
  fullname: Torrente, Guillem
  email: guillemtorrente@hotmail.com
  organization: Robotics and Perception Group, Department of Informatics, University of Zurich, and Department of Neuroinformatics, University of Zurich and ETH Zurich, Zürich, Switzerland
– sequence: 2
  givenname: Elia
  orcidid: 0000-0001-6094-5901
  surname: Kaufmann
  fullname: Kaufmann, Elia
  email: ekaufmann@ifi.uzh.ch
  organization: Robotics and Perception Group, Department of Informatics, University of Zurich, and Department of Neuroinformatics, University of Zurich and ETH Zurich, Zürich, Switzerland
– sequence: 3
  givenname: Philipp
  orcidid: 0000-0001-9585-1278
  surname: Fohn
  fullname: Fohn, Philipp
  email: foehn@ifi.uzh.ch
  organization: Robotics and Perception Group, Department of Informatics, University of Zurich, and Department of Neuroinformatics, University of Zurich and ETH Zurich, Zürich, Switzerland
– sequence: 4
  givenname: Davide
  orcidid: 0000-0002-3831-6778
  surname: Scaramuzza
  fullname: Scaramuzza, Davide
  email: davide.scaramuzza@ieee.org
  organization: Robotics and Perception Group, Department of Informatics, University of Zurich, and Department of Neuroinformatics, University of Zurich and ETH Zurich, Zürich, Switzerland
BookMark eNp9kE1LAzEQhoNUsNbeBUEKnrfOJE2yOZa2fkDFD_Qckt0EttRNTVLBf--WFhEPnmZg3ucdeE5Jrw2tI-QcYYwI6nr5Mh1ToDhmIJCBPCJ9yqQsmBSi92s_IcOUVgCAnEqmeJ9czk02xTw2n64dPTzNRj7E0fPW1DHkENMZOfZmndzwMAfk7WbxOrsrlo-397PpsqiowlxQ25VTbpUwllmUjqOQVcV4zUrGbWm9rI3nApCaCUJJbT1R0nuljDElVmxArva9mxg-ti5lvQrb2HYvNeWgQAqF2KXEPlXFkFJ0XldNNrkJbY6mWWsEvdOhOx16p0MfdHQg_AE3sXk38es_5GKPNM65n7hi3XXC2DfV_Wkp
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3183151
crossref_primary_10_1109_LCSYS_2023_3293277
crossref_primary_10_1109_TAI_2024_3404913
crossref_primary_10_1016_j_eswa_2024_125830
crossref_primary_10_2514_1_G008048
crossref_primary_10_1016_j_ast_2024_109596
crossref_primary_10_1109_ACCESS_2025_3539761
crossref_primary_10_3390_s22134712
crossref_primary_10_1007_s41745_025_00464_w
crossref_primary_10_3390_s24237657
crossref_primary_10_3390_rs15215237
crossref_primary_10_1109_ACCESS_2024_3403104
crossref_primary_10_1109_LRA_2024_3511436
crossref_primary_10_1016_j_ifacol_2023_10_1705
crossref_primary_10_1109_LRA_2022_3192609
crossref_primary_10_1016_j_arcontrol_2023_03_009
crossref_primary_10_1016_j_conengprac_2024_105879
crossref_primary_10_1109_ACCESS_2022_3160709
crossref_primary_10_1109_LRA_2022_3145063
crossref_primary_10_1109_LRA_2022_3176449
crossref_primary_10_1038_s41598_024_51822_0
crossref_primary_10_1016_j_actaastro_2024_11_004
crossref_primary_10_1007_s42405_024_00709_5
crossref_primary_10_1007_s11071_023_08971_0
crossref_primary_10_1016_j_robot_2023_104588
crossref_primary_10_3390_jmse9121420
crossref_primary_10_1109_TMECH_2023_3312562
crossref_primary_10_3390_drones6040084
crossref_primary_10_1109_LRA_2022_3189446
crossref_primary_10_1109_TVT_2023_3262705
crossref_primary_10_1109_TASE_2024_3479294
crossref_primary_10_1038_s41586_023_06419_4
crossref_primary_10_3390_aerospace9080460
crossref_primary_10_1108_RIA_01_2023_0006
crossref_primary_10_3390_drones8020035
crossref_primary_10_1109_TSMC_2024_3353802
crossref_primary_10_1109_TASE_2023_3341470
crossref_primary_10_1109_TRO_2022_3173711
crossref_primary_10_1038_s44182_024_00015_y
crossref_primary_10_1109_TASE_2024_3432405
crossref_primary_10_1109_TRO_2024_3400838
crossref_primary_10_3390_s22207887
crossref_primary_10_32604_cmc_2024_059123
crossref_primary_10_1109_JSEN_2022_3183187
crossref_primary_10_1002_rob_22165
crossref_primary_10_1109_TRO_2022_3177279
crossref_primary_10_1016_j_oceaneng_2022_113420
crossref_primary_10_1109_LRA_2024_3518922
crossref_primary_10_1002_rnc_7859
crossref_primary_10_1109_LRA_2023_3322075
crossref_primary_10_1109_ACCESS_2022_3142388
crossref_primary_10_3390_drones8030072
crossref_primary_10_1007_s11071_023_08787_y
crossref_primary_10_1016_j_neucom_2024_127706
crossref_primary_10_1126_scirobotics_abl6259
crossref_primary_10_1109_TCST_2024_3387228
crossref_primary_10_1109_TTE_2024_3369081
crossref_primary_10_1007_s13042_023_02095_y
crossref_primary_10_1016_j_ejcon_2022_100663
crossref_primary_10_1109_TIE_2023_3299019
crossref_primary_10_1016_j_ejcon_2023_100862
crossref_primary_10_1016_j_engappai_2024_108895
crossref_primary_10_1038_s41467_024_52369_4
crossref_primary_10_1109_TIV_2023_3327263
crossref_primary_10_1109_LRA_2022_3146930
crossref_primary_10_1109_TCSII_2024_3351686
crossref_primary_10_1080_00207179_2024_2340690
crossref_primary_10_3390_drones9010071
crossref_primary_10_1109_LRA_2021_3131690
crossref_primary_10_3390_aerospace11060486
crossref_primary_10_1126_scirobotics_abm6597
crossref_primary_10_1109_TPAMI_2024_3395484
crossref_primary_10_1109_LCSYS_2024_3520023
crossref_primary_10_1016_j_mechatronics_2022_102927
crossref_primary_10_1109_ACCESS_2023_3321651
crossref_primary_10_1109_TRO_2023_3339543
crossref_primary_10_1109_LRA_2024_3397540
crossref_primary_10_1080_21642583_2025_2479526
crossref_primary_10_1109_TCST_2024_3521182
crossref_primary_10_1016_j_ifacol_2023_12_034
crossref_primary_10_1109_TIV_2023_3282681
crossref_primary_10_1109_TCST_2023_3297744
crossref_primary_10_1016_j_ifacol_2024_05_037
crossref_primary_10_1109_TCYB_2024_3413072
crossref_primary_10_1109_ACCESS_2023_3336421
crossref_primary_10_1109_LCSYS_2023_3285616
crossref_primary_10_1016_j_ifacol_2024_08_532
crossref_primary_10_1142_S2737480725500025
crossref_primary_10_3390_drones7020144
crossref_primary_10_3390_drones7080514
crossref_primary_10_1109_TIV_2023_3331268
crossref_primary_10_1109_LRA_2022_3144787
crossref_primary_10_1109_LRA_2022_3154021
crossref_primary_10_1109_LRA_2023_3246839
crossref_primary_10_1002_rob_22460
crossref_primary_10_1109_TIE_2023_3323750
Cites_doi 10.1109/ROBOT.2010.5509980
10.1007/978-3-540-36119-0_4
10.1109/LRA.2019.2929987
10.15607/RSS.2020.XVI.087
10.1007/978-3-319-54927-9_1
10.1177/0278364918793717
10.1109/MRA.2012.2206474
10.1109/ICRA.2015.7139420
10.1109/IROS.2004.1389727
10.1109/LRA.2019.2926677
10.15607/RSS.2020.XVI.040
10.1007/s00162-020-00520-4
10.23919/ECC.2009.7074482
10.1109/ICRA.2017.7989202
10.1109/ICRA.2016.7487274
10.2514/1.C035135
10.1109/TCST.2020.3001117
10.1109/IROS.2017.8206343
10.1109/TCST.2019.2949757
10.15607/RSS.2020.XVI.081
10.1007/s10846-017-0549-y
10.1109/IROS.2018.8593739
10.1016/j.ifacol.2018.11.062
10.1007/978-3-319-26054-9_23
10.23919/ECC51009.2020.9143655
10.15607/RSS.2015.XI.012
10.1109/ICUAS.2017.7991347
10.1109/ROBOT.2010.5509452
10.1177/0278364911434236
10.1109/LRA.2017.2776353
10.1007/s12532-018-0139-4
10.1109/ChiCC.2015.7260264
10.1007/s10846-020-01250-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2021.3061307
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 3776
ExternalDocumentID 10_1109_LRA_2021_3061307
9361343
Genre orig-research
GrantInformation_xml – fundername: Swiss National Science Foundation
– fundername: European Research Council
  grantid: 864042
  funderid: 10.13039/501100000781
– fundername: European Union's Horizon 2020 Research and Innovation
  grantid: 871479
– fundername: National Centre of Competence in Research Robotics
  funderid: 10.13039/501100011021
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-2b76625b96ab3b17e5167cc35d3835b8bf7daf56012a41082bd497ff99aaa81c3
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Mon Jun 30 06:19:28 EDT 2025
Tue Jul 01 03:54:05 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Wed Aug 27 02:45:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-2b76625b96ab3b17e5167cc35d3835b8bf7daf56012a41082bd497ff99aaa81c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2839-2774
0000-0001-6094-5901
0000-0001-9585-1278
0000-0002-3831-6778
PQID 2509076911
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_LRA_2021_3061307
crossref_primary_10_1109_LRA_2021_3061307
ieee_primary_9361343
proquest_journals_2509076911
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref17
ref16
ref19
ref18
p (ref10) 0
song (ref8) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref7
ref9
ref4
ru (ref15) 2017; 4
ref3
ref6
ref5
References_xml – ident: ref27
  doi: 10.1109/ROBOT.2010.5509980
– ident: ref32
  doi: 10.1007/978-3-540-36119-0_4
– ident: ref23
  doi: 10.1109/LRA.2019.2929987
– ident: ref19
  doi: 10.15607/RSS.2020.XVI.087
– ident: ref3
  doi: 10.1007/978-3-319-54927-9_1
– volume: 4
  year: 2017
  ident: ref15
  publication-title: Nonlinear model predictive control for unmanned aerial vehicles
– ident: ref31
  doi: 10.1177/0278364918793717
– ident: ref28
  doi: 10.1109/MRA.2012.2206474
– ident: ref2
  doi: 10.1109/ICRA.2015.7139420
– ident: ref35
  doi: 10.1109/IROS.2004.1389727
– year: 0
  ident: ref10
  article-title: High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles
  publication-title: Proc AIAA Aerosp Sci Meeting
– ident: ref12
  doi: 10.1109/LRA.2019.2926677
– ident: ref6
  doi: 10.15607/RSS.2020.XVI.040
– ident: ref20
  doi: 10.1007/s00162-020-00520-4
– ident: ref26
  doi: 10.23919/ECC.2009.7074482
– ident: ref18
  doi: 10.1109/ICRA.2017.7989202
– ident: ref4
  doi: 10.1109/ICRA.2016.7487274
– ident: ref25
  doi: 10.2514/1.C035135
– ident: ref17
  doi: 10.1109/TCST.2020.3001117
– ident: ref22
  doi: 10.1109/IROS.2017.8206343
– ident: ref11
  doi: 10.1109/TCST.2019.2949757
– ident: ref7
  doi: 10.15607/RSS.2020.XVI.081
– ident: ref30
  doi: 10.1007/s10846-017-0549-y
– ident: ref1
  doi: 10.1109/IROS.2018.8593739
– ident: ref33
  doi: 10.1016/j.ifacol.2018.11.062
– ident: ref36
  doi: 10.1007/978-3-319-26054-9_23
– ident: ref29
  doi: 10.23919/ECC51009.2020.9143655
– ident: ref21
  doi: 10.15607/RSS.2015.XI.012
– ident: ref16
  doi: 10.1109/ICUAS.2017.7991347
– start-page: 7629
  year: 0
  ident: ref8
  article-title: Learning high-level policies for model predictive control
  publication-title: Proc IEEE/RSJ Int Conf Intell Robot Syst
– ident: ref9
  doi: 10.1109/ROBOT.2010.5509452
– ident: ref5
  doi: 10.1177/0278364911434236
– ident: ref24
  doi: 10.1109/LRA.2017.2776353
– ident: ref34
  doi: 10.1007/s12532-018-0139-4
– ident: ref14
  doi: 10.1109/ChiCC.2015.7260264
– ident: ref13
  doi: 10.1007/s10846-020-01250-9
SSID ssj0001527395
Score 2.584393
Snippet Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3769
SubjectTerms Aerial systems: perception and autonomy
Aerodynamic forces
Aerodynamics
Computational modeling
Control systems
Feedback control
Gaussian process
Gaussian processes
model learning for control
model predictive control
Predictive control
Predictive models
Real time
Rotary wing aircraft
Rotors
Stability
Tracking errors
Trajectory
Vehicle dynamics
Title Data-Driven MPC for Quadrotors
URI https://ieeexplore.ieee.org/document/9361343
https://www.proquest.com/docview/2509076911
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nWDgqyAKpcrAgkTSJrYTe6z6oQoRBIhK3SLbcRZQi0q6MPDbOSdpqQAhtgx2ZD3bd_fs8z2AS4omXynZcxmX1KWZIC5ngrs6YFwHhvhEWaIY34WTKb2ZsVkNrjdvYYwxRfKZ8exncZefLvTKHpV1BUHnQ0kd6kjcyrdaX-cptpKYYOubyJ7o3j72kf8Fvkesz7J6sVuep5BS-WF_C6cy3od4PZwyl-TZW-XK0-_fKjX-d7wHsFdFl06_XA6HUDPzI9jdqjnYhM5Q5tIdLq2Vc-L7gYNRq_OwkulyYYV3jmE6Hj0NJm4lkoBwCj93AxWFyGGUCKVCXCPD_DDSmrAUuSdTXGVRKjPLuwJJfXT4KqUiyjIhpJTc1-QEGvPF3JyCo2TIDaVWJEFQP6VciajHjSRphNOmWQu6awATXVUQt0IWL0nBJHoiQcgTC3lSQd6Cq02P17J6xh9tmxbBTbsKvBa013OUVNvrLcG4DUl9iIb67Pde57Bj_12m2LShkS9X5gKjh1x1oB5_jDrF4vkENhK_0Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMgADXwVRKCUDCxJpk9hO7LFqqQo0FaBWYotsx1lALSrJwq_HzkepACG2DLZiPdt39-zzPYBLrE2-ENyxCeXYxglDNiWM2tIjVHoKuUgYohhO_NEM3z2T5xpcr97CKKXy5DPVMZ_5XX68kJk5KusypJ0PRhuwqf0-cYvXWl8nKqaWGCPVXaTDuuOnnmaAnttBxmsZxdg135OLqfywwLlbGe5BWA2oyCZ56WSp6MiPb7Ua_zvifdgt40urVyyIA6ip-SHsrFUdbEB7wFNuD5bGzlnhQ9_Scav1mPF4uTDSO0cwG95M-yO7lEnQgDI3tT0R-JrFCOZzoZENFHH9QEpEYs0-iaAiCWKeGOblcexqly9izIIkYYxzTl2JjqE-X8zVCViC-1RhbGQSGHZjTAULHKo4igM9cZI0oVsBGMmyhriRsniNci7hsEhDHhnIoxLyJlyterwV9TP-aNswCK7aleA1oVXNUVRusPdIR26a1vvaVJ_-3usCtkbTcByNbyf3Z7Bt_lMk3LSgni4zda5jiVS08yX0Cdzgwek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+MPC+for+Quadrotors&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Torrente%2C+Guillem&rft.au=Kaufmann%2C+Elia&rft.au=Fohn%2C+Philipp&rft.au=Scaramuzza%2C+Davide&rft.date=2021-04-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=6&rft.issue=2&rft.spage=3769&rft.epage=3776&rft_id=info:doi/10.1109%2FLRA.2021.3061307&rft.externalDocID=9361343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon