Detecting Thermal Discomfort of Drivers Using Physiological Sensors and Thermal Imaging

Recent technological developments have been used extensively in manufacturing vehicles in order to improve the driving experience and add multiple safety features. This article introduces a novel machine learning approach using physiological sensors and thermal imaging of the subjects to detect huma...

Full description

Saved in:
Bibliographic Details
Published inIEEE intelligent systems Vol. 34; no. 5; pp. 3 - 13
Main Authors Abouelenien, Mohamed, Burzo, Mihai
Format Journal Article
LanguageEnglish
Published Los Alamitos IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1541-1672
1941-1294
DOI10.1109/MIS.2019.2938713

Cover

Loading…
Abstract Recent technological developments have been used extensively in manufacturing vehicles in order to improve the driving experience and add multiple safety features. This article introduces a novel machine learning approach using physiological sensors and thermal imaging of the subjects to detect human thermal discomfort in order to develop a fully automated climate control system in the vehicles that does not need any explicit input from individuals. To achieve this goal, a dataset of thermal videos and physiological signals from 50 subjects is collected, an extensive analysis of different feature sets is conducted, a multimodal approach is experimented, and a cascaded classification system is proposed. Our results evidently show the capability of specific feature sets of detecting human thermal discomfort as well as the superior performance of integrating multimodal features.
AbstractList Recent technological developments have been used extensively in manufacturing vehicles in order to improve the driving experience and add multiple safety features. This article introduces a novel machine learning approach using physiological sensors and thermal imaging of the subjects to detect human thermal discomfort in order to develop a fully automated climate control system in the vehicles that does not need any explicit input from individuals. To achieve this goal, a dataset of thermal videos and physiological signals from 50 subjects is collected, an extensive analysis of different feature sets is conducted, a multimodal approach is experimented, and a cascaded classification system is proposed. Our results evidently show the capability of specific feature sets of detecting human thermal discomfort as well as the superior performance of integrating multimodal features.
Author Abouelenien, Mohamed
Burzo, Mihai
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Abouelenien
  fullname: Abouelenien, Mohamed
  email: zmohamed@umich.edu
  organization: University of Michigan-Dearborn
– sequence: 2
  givenname: Mihai
  surname: Burzo
  fullname: Burzo, Mihai
  email: mburzo@umich.edu
  organization: University of Michigan-Flint
BookMark eNp9kE1rAjEQhkNpoWp7L_Sy0LM2M_uRzbFoPwRLCyo9hpjNamR3Y5O14L9vFsVDDz3NC_M8M_D2yWVjG03IHdARAOWP79P5CCnwEfI4ZxBfkB7wBIaAPLkMOe1yxvCa9L3fUooxhbxHvia61ao1zTpabLSrZRVNjFe2Lq1rI1tGE2d-tPPR0nfM5-bgja3s2qhAznXjbdjJpjjb01quA3lDrkpZeX17mgOyfHlejN-Gs4_X6fhpNlTIoR0il0BVKqHsBktlypFyXiAyzVfFKslyZEWGirKSpVqqpIh5pleoQoRcxQPycLy7c_Z7r30rtnbvmvBSYAyMIU-BBSo7UspZ750uhTKtbI1tWidNJYCKrkQRShRdieJUYhDpH3HnTC3d4T_l_qgYrfUZz3METJL4F_UDfqw
CODEN IISYF7
CitedBy_id crossref_primary_10_1016_j_buildenv_2024_112118
crossref_primary_10_1016_j_buildenv_2024_112127
crossref_primary_10_3390_app10082924
crossref_primary_10_1016_j_enbuild_2023_113666
crossref_primary_10_1016_j_buildenv_2024_111825
crossref_primary_10_1109_JSEN_2020_3005998
Cites_doi 10.1109/JSEN.2016.2628346
10.1016/j.buildenv.2011.09.012
10.1109/MIS.2005.73
10.1145/2971648.2971659
10.1109/MMUL.2018.2883128
10.1109/MIS.2005.85
10.1109/MIS.2008.34
10.1016/j.egypro.2015.12.229
10.1016/j.proeng.2015.09.157
10.1061/9780784479827.095
10.1109/MIS.2004.1274904
10.1145/3056540.3064957
10.1115/IMECE2017-72162
10.1109/TIFS.2016.2639344
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1109/MIS.2019.2938713
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1941-1294
EndPage 13
ExternalDocumentID 10_1109_MIS_2019_2938713
8821244
Genre orig-research
GroupedDBID -DZ
.DC
0R~
29I
4.4
5GY
5VS
6IK
77K
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGOD
ACIWK
AENEX
AETIX
AFOGA
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IEDLZ
IFIPE
IPLJI
JAVBF
KZ1
LAI
M43
OCL
PQQKQ
PZZ
RIA
RIE
RNI
RNS
RZB
WH7
AAYXX
CITATION
7SC
7SP
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-29a10c5a1f10c575a592099d227e9bdb46827d62c07f75eac4d396eb2cac418c3
IEDL.DBID RIE
ISSN 1541-1672
IngestDate Mon Jun 30 07:15:25 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Tue Jul 01 02:58:23 EDT 2025
Wed Aug 27 02:40:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-29a10c5a1f10c575a592099d227e9bdb46827d62c07f75eac4d396eb2cac418c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2317729517
PQPubID 10583
PageCount 11
ParticipantIDs crossref_primary_10_1109_MIS_2019_2938713
proquest_journals_2317729517
ieee_primary_8821244
crossref_citationtrail_10_1109_MIS_2019_2938713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos
PublicationPlace_xml – name: Los Alamitos
PublicationTitle IEEE intelligent systems
PublicationTitleAbbrev MIS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
sinha (ref15) 2006; 278
williams (ref1) 2009
ref10
ref2
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1109/JSEN.2016.2628346
– year: 2009
  ident: ref1
  article-title: The Arbitron national in-car study
– ident: ref11
  doi: 10.1016/j.buildenv.2011.09.012
– ident: ref8
  doi: 10.1109/MIS.2005.73
– ident: ref14
  doi: 10.1145/2971648.2971659
– ident: ref3
  doi: 10.1109/MMUL.2018.2883128
– ident: ref16
  doi: 10.1109/MIS.2005.85
– ident: ref7
  doi: 10.1109/MIS.2008.34
– ident: ref12
  doi: 10.1016/j.egypro.2015.12.229
– ident: ref10
  doi: 10.1016/j.proeng.2015.09.157
– ident: ref6
  doi: 10.1061/9780784479827.095
– ident: ref9
  doi: 10.1109/MIS.2004.1274904
– ident: ref4
  doi: 10.1145/3056540.3064957
– ident: ref13
  doi: 10.1115/IMECE2017-72162
– ident: ref2
  doi: 10.1109/TIFS.2016.2639344
– volume: 278
  start-page: 4321
  year: 2006
  ident: ref15
  article-title: GPU-based video feature tracking and matching
SSID ssj0023018
Score 2.2963667
Snippet Recent technological developments have been used extensively in manufacturing vehicles in order to improve the driving experience and add multiple safety...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Automatic control
Discomfort
Feature extraction
Heat detection
Intelligent systems
Machine learning
Physiology
Sensors
Temperature sensors
Thermal comfort
Thermal imaging
Title Detecting Thermal Discomfort of Drivers Using Physiological Sensors and Thermal Imaging
URI https://ieeexplore.ieee.org/document/8821244
https://www.proquest.com/docview/2317729517
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJy-iohFF04MXExfost3SoxEJmOAFidw2u30kRmQNLBd_vdPuI_ER42mbbLvZdKYz87XfdACulJKKGhV6vqCJF4RaeiJm1NM0DrRGH69ju6E_ewwni-BhyZY1uKlyYbTWjnymu7bpzvJVKnd2q6yH0aB1R3WoI3DLc7UqcIWK6tLeWGALH3O_PJLsi95sOrccLtFF14b4YPDFBbmaKj8MsfMu4ybMyv_KSSWv3V2WdOXHtysb__vjB7BfhJnkNteLQ6jp9RE0yxIOpFjRLXgeaXuKgP6LoMKgkV6R0csWtRBj2Yykhow2jrhBHLWAOL5oaS7JHCFwiu_itapGT99c2aNjWIzvn-4mXlFrwZMopQxFFdO-ZDE19sFZzIRNqlW-z7VIVBKEQ5-r0Jd9bjgKUAZqIEKE5RKbdCgHJ9BYp2t9CoRrymMq0YqaQTA0XCgzZMogjjRSBYy1oVdOfySLi8htPYxV5ABJX0QosMgKLCoE1obrasR7fgnHH31bdv6rfsXUt6FTSjgqVuk2wtjWggtG-dnvo85hz34755R1oJFtdvoCg5AsuXTa9wkdNNkO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGGDhjShPDyxIpK3TOK5HREEtNF0Kgi1K_JAQJUUlXfj1nJ2HxEOIKZZiK5G_89199p0P4EwpqahRoecLmnpBqKUnEkY9TZNAa7TxOrEb-tE4HDwEt0_sqQEXdS6M1toFn-mWbbqzfDWTC7tV1kZv0JqjJVhBu89oka1V0ysUVZf4xgJb-pj71aFkR7Sj4cRGcYkWGjdkCN0vRshVVfmhip19udmAqPqzIqzkpbXI05b8-HZp439_fRPWS0eTXBaSsQUNnW3DRlXEgZRregce-9qeI6AFIygyqKanpP_8jnKI3mxOZob05y50g7jgAuIiRiuFSSZIgmf4LslUPXr46gof7cLDzfX91cArqy14EnHKEayEdiRLqLEPzhImbFqt8n2uRarSIOz5XIW-7HDDEUIZqK4IkZhLbNKe7O7BcjbL9D4QrilPqEQ9arpBz3ChTI8pg0zSSIXINaFdTX8sy6vIbUWMaewoSUfECFhsAYtLwJpwXo94K67h-KPvjp3_ul859U04qhCOy3X6HqN3a-kFo_zg91GnsDq4j0bxaDi-O4Q1-50iwuwIlvP5Qh-jS5KnJ04SPwGZqdxX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Thermal+Discomfort+of+Drivers+Using+Physiological+Sensors+and+Thermal+Imaging&rft.jtitle=IEEE+intelligent+systems&rft.au=Abouelenien%2C+Mohamed&rft.au=Burzo%2C+Mihai&rft.date=2019-09-01&rft.issn=1541-1672&rft.eissn=1941-1294&rft.volume=34&rft.issue=5&rft.spage=3&rft.epage=13&rft_id=info:doi/10.1109%2FMIS.2019.2938713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_MIS_2019_2938713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-1672&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-1672&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-1672&client=summon