Detecting Thermal Discomfort of Drivers Using Physiological Sensors and Thermal Imaging
Recent technological developments have been used extensively in manufacturing vehicles in order to improve the driving experience and add multiple safety features. This article introduces a novel machine learning approach using physiological sensors and thermal imaging of the subjects to detect huma...
Saved in:
Published in | IEEE intelligent systems Vol. 34; no. 5; pp. 3 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1541-1672 1941-1294 |
DOI | 10.1109/MIS.2019.2938713 |
Cover
Loading…
Abstract | Recent technological developments have been used extensively in manufacturing vehicles in order to improve the driving experience and add multiple safety features. This article introduces a novel machine learning approach using physiological sensors and thermal imaging of the subjects to detect human thermal discomfort in order to develop a fully automated climate control system in the vehicles that does not need any explicit input from individuals. To achieve this goal, a dataset of thermal videos and physiological signals from 50 subjects is collected, an extensive analysis of different feature sets is conducted, a multimodal approach is experimented, and a cascaded classification system is proposed. Our results evidently show the capability of specific feature sets of detecting human thermal discomfort as well as the superior performance of integrating multimodal features. |
---|---|
AbstractList | Recent technological developments have been used extensively in manufacturing vehicles in order to improve the driving experience and add multiple safety features. This article introduces a novel machine learning approach using physiological sensors and thermal imaging of the subjects to detect human thermal discomfort in order to develop a fully automated climate control system in the vehicles that does not need any explicit input from individuals. To achieve this goal, a dataset of thermal videos and physiological signals from 50 subjects is collected, an extensive analysis of different feature sets is conducted, a multimodal approach is experimented, and a cascaded classification system is proposed. Our results evidently show the capability of specific feature sets of detecting human thermal discomfort as well as the superior performance of integrating multimodal features. |
Author | Abouelenien, Mohamed Burzo, Mihai |
Author_xml | – sequence: 1 givenname: Mohamed surname: Abouelenien fullname: Abouelenien, Mohamed email: zmohamed@umich.edu organization: University of Michigan-Dearborn – sequence: 2 givenname: Mihai surname: Burzo fullname: Burzo, Mihai email: mburzo@umich.edu organization: University of Michigan-Flint |
BookMark | eNp9kE1rAjEQhkNpoWp7L_Sy0LM2M_uRzbFoPwRLCyo9hpjNamR3Y5O14L9vFsVDDz3NC_M8M_D2yWVjG03IHdARAOWP79P5CCnwEfI4ZxBfkB7wBIaAPLkMOe1yxvCa9L3fUooxhbxHvia61ao1zTpabLSrZRVNjFe2Lq1rI1tGE2d-tPPR0nfM5-bgja3s2qhAznXjbdjJpjjb01quA3lDrkpZeX17mgOyfHlejN-Gs4_X6fhpNlTIoR0il0BVKqHsBktlypFyXiAyzVfFKslyZEWGirKSpVqqpIh5pleoQoRcxQPycLy7c_Z7r30rtnbvmvBSYAyMIU-BBSo7UspZ750uhTKtbI1tWidNJYCKrkQRShRdieJUYhDpH3HnTC3d4T_l_qgYrfUZz3METJL4F_UDfqw |
CODEN | IISYF7 |
CitedBy_id | crossref_primary_10_1016_j_buildenv_2024_112118 crossref_primary_10_1016_j_buildenv_2024_112127 crossref_primary_10_3390_app10082924 crossref_primary_10_1016_j_enbuild_2023_113666 crossref_primary_10_1016_j_buildenv_2024_111825 crossref_primary_10_1109_JSEN_2020_3005998 |
Cites_doi | 10.1109/JSEN.2016.2628346 10.1016/j.buildenv.2011.09.012 10.1109/MIS.2005.73 10.1145/2971648.2971659 10.1109/MMUL.2018.2883128 10.1109/MIS.2005.85 10.1109/MIS.2008.34 10.1016/j.egypro.2015.12.229 10.1016/j.proeng.2015.09.157 10.1061/9780784479827.095 10.1109/MIS.2004.1274904 10.1145/3056540.3064957 10.1115/IMECE2017-72162 10.1109/TIFS.2016.2639344 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1109/MIS.2019.2938713 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1941-1294 |
EndPage | 13 |
ExternalDocumentID | 10_1109_MIS_2019_2938713 8821244 |
Genre | orig-research |
GroupedDBID | -DZ .DC 0R~ 29I 4.4 5GY 5VS 6IK 77K 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGOD ACIWK AENEX AETIX AFOGA AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IEDLZ IFIPE IPLJI JAVBF KZ1 LAI M43 OCL PQQKQ PZZ RIA RIE RNI RNS RZB WH7 AAYXX CITATION 7SC 7SP 8FD E3H F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-29a10c5a1f10c575a592099d227e9bdb46827d62c07f75eac4d396eb2cac418c3 |
IEDL.DBID | RIE |
ISSN | 1541-1672 |
IngestDate | Mon Jun 30 07:15:25 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Tue Jul 01 02:58:23 EDT 2025 Wed Aug 27 02:40:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-29a10c5a1f10c575a592099d227e9bdb46827d62c07f75eac4d396eb2cac418c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2317729517 |
PQPubID | 10583 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_MIS_2019_2938713 proquest_journals_2317729517 ieee_primary_8821244 crossref_citationtrail_10_1109_MIS_2019_2938713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Los Alamitos |
PublicationPlace_xml | – name: Los Alamitos |
PublicationTitle | IEEE intelligent systems |
PublicationTitleAbbrev | MIS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 sinha (ref15) 2006; 278 williams (ref1) 2009 ref10 ref2 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref5 doi: 10.1109/JSEN.2016.2628346 – year: 2009 ident: ref1 article-title: The Arbitron national in-car study – ident: ref11 doi: 10.1016/j.buildenv.2011.09.012 – ident: ref8 doi: 10.1109/MIS.2005.73 – ident: ref14 doi: 10.1145/2971648.2971659 – ident: ref3 doi: 10.1109/MMUL.2018.2883128 – ident: ref16 doi: 10.1109/MIS.2005.85 – ident: ref7 doi: 10.1109/MIS.2008.34 – ident: ref12 doi: 10.1016/j.egypro.2015.12.229 – ident: ref10 doi: 10.1016/j.proeng.2015.09.157 – ident: ref6 doi: 10.1061/9780784479827.095 – ident: ref9 doi: 10.1109/MIS.2004.1274904 – ident: ref4 doi: 10.1145/3056540.3064957 – ident: ref13 doi: 10.1115/IMECE2017-72162 – ident: ref2 doi: 10.1109/TIFS.2016.2639344 – volume: 278 start-page: 4321 year: 2006 ident: ref15 article-title: GPU-based video feature tracking and matching |
SSID | ssj0023018 |
Score | 2.2963667 |
Snippet | Recent technological developments have been used extensively in manufacturing vehicles in order to improve the driving experience and add multiple safety... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Automatic control Discomfort Feature extraction Heat detection Intelligent systems Machine learning Physiology Sensors Temperature sensors Thermal comfort Thermal imaging |
Title | Detecting Thermal Discomfort of Drivers Using Physiological Sensors and Thermal Imaging |
URI | https://ieeexplore.ieee.org/document/8821244 https://www.proquest.com/docview/2317729517 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJy-iohFF04MXExfost3SoxEJmOAFidw2u30kRmQNLBd_vdPuI_ER42mbbLvZdKYz87XfdACulJKKGhV6vqCJF4RaeiJm1NM0DrRGH69ju6E_ewwni-BhyZY1uKlyYbTWjnymu7bpzvJVKnd2q6yH0aB1R3WoI3DLc7UqcIWK6tLeWGALH3O_PJLsi95sOrccLtFF14b4YPDFBbmaKj8MsfMu4ybMyv_KSSWv3V2WdOXHtysb__vjB7BfhJnkNteLQ6jp9RE0yxIOpFjRLXgeaXuKgP6LoMKgkV6R0csWtRBj2Yykhow2jrhBHLWAOL5oaS7JHCFwiu_itapGT99c2aNjWIzvn-4mXlFrwZMopQxFFdO-ZDE19sFZzIRNqlW-z7VIVBKEQ5-r0Jd9bjgKUAZqIEKE5RKbdCgHJ9BYp2t9CoRrymMq0YqaQTA0XCgzZMogjjRSBYy1oVdOfySLi8htPYxV5ABJX0QosMgKLCoE1obrasR7fgnHH31bdv6rfsXUt6FTSjgqVuk2wtjWggtG-dnvo85hz34755R1oJFtdvoCg5AsuXTa9wkdNNkO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGGDhjShPDyxIpK3TOK5HREEtNF0Kgi1K_JAQJUUlXfj1nJ2HxEOIKZZiK5G_89199p0P4EwpqahRoecLmnpBqKUnEkY9TZNAa7TxOrEb-tE4HDwEt0_sqQEXdS6M1toFn-mWbbqzfDWTC7tV1kZv0JqjJVhBu89oka1V0ysUVZf4xgJb-pj71aFkR7Sj4cRGcYkWGjdkCN0vRshVVfmhip19udmAqPqzIqzkpbXI05b8-HZp439_fRPWS0eTXBaSsQUNnW3DRlXEgZRregce-9qeI6AFIygyqKanpP_8jnKI3mxOZob05y50g7jgAuIiRiuFSSZIgmf4LslUPXr46gof7cLDzfX91cArqy14EnHKEayEdiRLqLEPzhImbFqt8n2uRarSIOz5XIW-7HDDEUIZqK4IkZhLbNKe7O7BcjbL9D4QrilPqEQ9arpBz3ChTI8pg0zSSIXINaFdTX8sy6vIbUWMaewoSUfECFhsAYtLwJpwXo94K67h-KPvjp3_ul859U04qhCOy3X6HqN3a-kFo_zg91GnsDq4j0bxaDi-O4Q1-50iwuwIlvP5Qh-jS5KnJ04SPwGZqdxX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Thermal+Discomfort+of+Drivers+Using+Physiological+Sensors+and+Thermal+Imaging&rft.jtitle=IEEE+intelligent+systems&rft.au=Abouelenien%2C+Mohamed&rft.au=Burzo%2C+Mihai&rft.date=2019-09-01&rft.issn=1541-1672&rft.eissn=1941-1294&rft.volume=34&rft.issue=5&rft.spage=3&rft.epage=13&rft_id=info:doi/10.1109%2FMIS.2019.2938713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_MIS_2019_2938713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-1672&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-1672&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-1672&client=summon |