Fundamental Rate Limits of UAV-Enabled Multiple Access Channel With Trajectory Optimization
This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a mobile UAV in the sky. We consider a linear topology scenario, where these users locate in a straight line and the UAV flies at a fixed altitude...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 19; no. 1; pp. 458 - 474 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a mobile UAV in the sky. We consider a linear topology scenario, where these users locate in a straight line and the UAV flies at a fixed altitude above the line connecting them. Under this setup, we jointly optimize the one-dimensional (1D) UAV trajectory and wireless resource allocation to reveal the fundamental rate limits of the UAV-enabled MAC, under the users' individual maximum power constraints and the UAV's maximum flight speed constraints. First, we consider the capacity-achieving non-orthogonal multiple access (NOMA) transmission with successive interference cancellation (SIC) at the UAV receiver. In this case, we characterize the capacity region by maximizing the average sum-rate of all users subject to a set of rate profile constraints. To optimally solve this highly non-convex problem with infinitely many UAV location variables over time, we show that any speed-constrained UAV trajectory is equivalent to the combination of a maximum-speed flying trajectory and a speed-free trajectory, and accordingly transform the original speed-constrained trajectory optimization problem into a speed-free problem that is optimally solvable via the Lagrange dual decomposition. It is rigorously proved that the optimal 1D trajectory solution follows the successive hover-and-fly (SHF) structure, i.e., the UAV successively hovers above a number of optimized locations, and flies unidirectionally among them at the maximum speed. Next, we consider two orthogonal multiple access (OMA) transmission schemes, i.e., frequency-division multiple access (FDMA) and time-division multiple access (TDMA). We maximize the achievable rate regions in the two cases by jointly optimizing the 1D trajectory design and wireless resource (frequency/time) allocation. It is shown that the optimal trajectory solutions still follow the SHF structure but with different hovering locations for each scheme. Finally, numerical results show that the proposed optimal trajectory designs achieve considerable rate gains over other benchmark schemes, and the capacity region achieved by NOMA significantly outperforms the rate regions by FDMA and TDMA. |
---|---|
AbstractList | This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a mobile UAV in the sky. We consider a linear topology scenario, where these users locate in a straight line and the UAV flies at a fixed altitude above the line connecting them. Under this setup, we jointly optimize the one-dimensional (1D) UAV trajectory and wireless resource allocation to reveal the fundamental rate limits of the UAV-enabled MAC, under the users' individual maximum power constraints and the UAV's maximum flight speed constraints. First, we consider the capacity-achieving non-orthogonal multiple access (NOMA) transmission with successive interference cancellation (SIC) at the UAV receiver. In this case, we characterize the capacity region by maximizing the average sum-rate of all users subject to a set of rate profile constraints. To optimally solve this highly non-convex problem with infinitely many UAV location variables over time, we show that any speed-constrained UAV trajectory is equivalent to the combination of a maximum-speed flying trajectory and a speed-free trajectory, and accordingly transform the original speed-constrained trajectory optimization problem into a speed-free problem that is optimally solvable via the Lagrange dual decomposition. It is rigorously proved that the optimal 1D trajectory solution follows the successive hover-and-fly (SHF) structure, i.e., the UAV successively hovers above a number of optimized locations, and flies unidirectionally among them at the maximum speed. Next, we consider two orthogonal multiple access (OMA) transmission schemes, i.e., frequency-division multiple access (FDMA) and time-division multiple access (TDMA). We maximize the achievable rate regions in the two cases by jointly optimizing the 1D trajectory design and wireless resource (frequency/time) allocation. It is shown that the optimal trajectory solutions still follow the SHF structure but with different hovering locations for each scheme. Finally, numerical results show that the proposed optimal trajectory designs achieve considerable rate gains over other benchmark schemes, and the capacity region achieved by NOMA significantly outperforms the rate regions by FDMA and TDMA. |
Author | Xu, Jie Li, Peiming |
Author_xml | – sequence: 1 givenname: Peiming orcidid: 0000-0001-9495-1752 surname: Li fullname: Li, Peiming email: peiminglee@outlook.com organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Jie orcidid: 0000-0002-4854-8839 surname: Xu fullname: Xu, Jie email: jiexu.ustc@gmail.com organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China |
BookMark | eNp9kDtPwzAUhS1UJNrCjsRiiTnFj9iJxyoqD6moEmrpwBA5jqO6Sp1gu0P59bi0YmDgLvcM57v36IzAwHZWA3CL0QRjJB6W62JCEBYTIlKOGb0AQ8xYnhCS5oOjpjzBJONXYOT9FiGcccaG4ONxb2u50zbIFr7JoOHc7EzwsGvgavqezKysWl3D130bTN9qOFVKew-LjbRWt3BtwgYundxqFTp3gIs-RP5LBtPZa3DZyNbrm_Meg9XjbFk8J_PF00sxnSeKCBwSkmOVZhVuMOWkqSmpaIOzKlOIp0IoXaW0poJTRqocEZQ1LFVVHMxQFELRMbg_3e1d97nXPpTbbu9sfFkSSgWlLEtJdPGTS7nOe6ebUpnwkzM4adoSo_JYZBmLLI9FluciI4j-gL0zO-kO_yF3J8RorX_teZ7F_Jx-A3I2f3c |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3328214 crossref_primary_10_1109_JSAC_2022_3196108 crossref_primary_10_1002_adc2_202 crossref_primary_10_1109_TGCN_2023_3243394 crossref_primary_10_1109_TVT_2022_3160746 crossref_primary_10_3390_app12042226 crossref_primary_10_3390_electronics12132817 crossref_primary_10_1109_TGCN_2023_3330481 crossref_primary_10_1016_j_phycom_2024_102306 crossref_primary_10_1109_TIT_2022_3149827 crossref_primary_10_1109_TAES_2024_3378203 crossref_primary_10_1109_TWC_2022_3211533 crossref_primary_10_1109_ACCESS_2020_3020821 crossref_primary_10_1109_TCOMM_2022_3218651 crossref_primary_10_1109_TWC_2021_3073570 crossref_primary_10_1109_JIOT_2021_3094651 crossref_primary_10_1109_TITS_2023_3300777 crossref_primary_10_1109_TNSM_2024_3443644 crossref_primary_10_1109_TCOMM_2022_3220903 crossref_primary_10_1109_TR_2022_3158279 crossref_primary_10_1109_LWC_2020_3030768 crossref_primary_10_1109_JIOT_2022_3150747 crossref_primary_10_1016_j_dcan_2023_07_006 crossref_primary_10_1109_JSAC_2021_3088623 crossref_primary_10_1109_JSAC_2021_3088667 crossref_primary_10_1109_TWC_2021_3103739 crossref_primary_10_1109_TVT_2024_3387752 crossref_primary_10_1109_TWC_2022_3222067 crossref_primary_10_1109_JSAC_2021_3088720 crossref_primary_10_1109_TVT_2023_3333054 crossref_primary_10_1155_2022_9778188 crossref_primary_10_3390_s24196496 crossref_primary_10_1109_JSAC_2021_3088682 crossref_primary_10_1016_j_phycom_2024_102555 crossref_primary_10_1109_JIOT_2022_3230786 crossref_primary_10_1109_TGCN_2021_3073916 crossref_primary_10_1109_MNET_013_2000385 crossref_primary_10_3390_photonics10111210 crossref_primary_10_1016_j_sigpro_2024_109844 crossref_primary_10_1016_j_comcom_2023_05_013 crossref_primary_10_1109_TVT_2023_3275758 crossref_primary_10_1109_TVT_2023_3332851 crossref_primary_10_1109_TWC_2020_3030773 crossref_primary_10_1109_JIOT_2021_3126290 crossref_primary_10_1109_JSAC_2021_3088627 crossref_primary_10_1016_j_cja_2021_10_039 crossref_primary_10_1016_j_aeue_2023_154619 |
Cites_doi | 10.1109/TWC.2018.2838134 10.1109/MWC.2018.1800221 10.1109/MCOM.2016.7470933 10.1017/CBO9780511804441 10.1109/JSAC.2018.2864426 10.1109/TWC.2019.2902559 10.1109/TWC.2017.2751045 10.1109/MCOM.2017.1500657CM 10.1109/TWC.2017.2688328 10.1109/TVT.2017.2706308 10.1109/TWC.2016.2531652 10.1109/LWC.2014.2342736 10.1109/TCOMM.2019.2931322 10.1109/TCOMM.2006.877962 10.1007/BF02124750 10.1109/MWC.2018.1800196 10.1109/TIT.2004.826646 10.1109/ICC.2017.7996921 10.1109/TWC.2017.2789293 10.1109/ICCChina.2019.8855837 10.1109/TCOMM.2016.2611512 10.1109/SPAWC.2018.8445768 10.1007/s41650-018-0040-3 10.1007/s41650-018-0034-1 10.1109/18.737513 10.1109/JSAC.2018.2864421 10.1109/LWC.2017.2752161 10.1109/LCOMM.2018.2800737 10.1109/LWC.2017.2776922 10.23919/JCIN.2019.8916643 10.1109/JIOT.2018.2875446 10.1109/TCOMM.2018.2865922 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2019.2946153 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 474 |
ExternalDocumentID | 10_1109_TWC_2019_2946153 8870206 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871137 funderid: 10.13039/501100001809 – fundername: Open Research Fund of National Mobile Communications Research Laboratory – fundername: Guangdong Province Key Area Research Development Program grantid: 2018B030338001 – fundername: Guangdong Province Basic Research Program (Natural Science) grantid: 2018KZDXM028 – fundername: National Key Program of China grantid: 2018YFB1800800 – fundername: Southeast University grantid: 2019D08 funderid: 10.13039/501100008081 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-281c47b1f1362fd32b3f17b7c06499ceb43d396352b80207f54cbbbb1504cb9c3 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Fri Jul 25 12:27:39 EDT 2025 Tue Jul 01 04:13:25 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Wed Aug 27 02:40:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-281c47b1f1362fd32b3f17b7c06499ceb43d396352b80207f54cbbbb1504cb9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4854-8839 0000-0001-9495-1752 |
PQID | 2339335742 |
PQPubID | 105736 |
PageCount | 17 |
ParticipantIDs | ieee_primary_8870206 crossref_citationtrail_10_1109_TWC_2019_2946153 proquest_journals_2339335742 crossref_primary_10_1109_TWC_2019_2946153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan. 2020-1-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 (ref5) 2019 ref30 ref33 ref11 (ref7) 2019 ref32 ref10 ref2 ref1 ref17 ref19 ref18 zeng (ref23) 0 liu (ref29) 2019; 4 zhang (ref16) 2017; 35 (ref4) 2019 ref24 (ref6) 2019 ref26 ref25 ref20 ref42 ref41 ref22 ref21 you (ref39) 0 ref28 ref27 ref8 grant (ref37) 2018 (ref3) 2019 ref9 boyd (ref38) 2019 ref40 |
References_xml | – year: 2019 ident: ref38 publication-title: Convex Optimization II – ident: ref19 doi: 10.1109/TWC.2018.2838134 – ident: ref26 doi: 10.1109/MWC.2018.1800221 – ident: ref2 doi: 10.1109/MCOM.2016.7470933 – ident: ref36 doi: 10.1017/CBO9780511804441 – ident: ref22 doi: 10.1109/JSAC.2018.2864426 – ident: ref42 doi: 10.1109/TWC.2019.2902559 – ident: ref11 doi: 10.1109/TWC.2017.2751045 – ident: ref30 doi: 10.1109/MCOM.2017.1500657CM – ident: ref41 doi: 10.1109/TWC.2017.2688328 – ident: ref21 doi: 10.1109/TVT.2017.2706308 – volume: 35 start-page: 136 year: 2017 ident: ref16 article-title: Spectrum sharing for drone networks publication-title: IEEE J Sel Areas Commun – year: 2018 ident: ref37 publication-title: CVX MATLAB Software for Disciplined Convex Programming – ident: ref15 doi: 10.1109/TWC.2016.2531652 – ident: ref12 doi: 10.1109/LWC.2014.2342736 – ident: ref17 doi: 10.1109/TCOMM.2019.2931322 – year: 0 ident: ref23 article-title: Access from the sky: A tutorial on UAV communications for 5G and beyond publication-title: Proc IEEE – ident: ref35 doi: 10.1109/TCOMM.2006.877962 – ident: ref40 doi: 10.1007/BF02124750 – ident: ref34 doi: 10.1109/MWC.2018.1800196 – ident: ref31 doi: 10.1109/TIT.2004.826646 – ident: ref9 doi: 10.1109/ICC.2017.7996921 – ident: ref28 doi: 10.1109/TWC.2017.2789293 – year: 2019 ident: ref3 publication-title: Google's Project Loon Internet Balloons to Circle Earth – ident: ref1 doi: 10.1109/ICCChina.2019.8855837 – year: 2019 ident: ref5 publication-title: Nokia Enters the Drone Industry – ident: ref8 doi: 10.1109/TCOMM.2016.2611512 – ident: ref24 doi: 10.1109/SPAWC.2018.8445768 – ident: ref13 doi: 10.1007/s41650-018-0040-3 – ident: ref18 doi: 10.1007/s41650-018-0034-1 – ident: ref32 doi: 10.1109/18.737513 – ident: ref33 doi: 10.1109/JSAC.2018.2864421 – year: 0 ident: ref39 article-title: Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channel publication-title: IEEE Trans Wireless Commun – ident: ref14 doi: 10.1109/LWC.2017.2752161 – ident: ref10 doi: 10.1109/LCOMM.2018.2800737 – year: 2019 ident: ref6 publication-title: China Mobile Spent 21 Million Calling for Bids for UAV Base Stations For Emergency Communication – year: 2019 ident: ref7 publication-title: Alibaba Cloud Speeds Up IoT Strategy at the Computing Conference – ident: ref27 doi: 10.1109/LWC.2017.2776922 – year: 2019 ident: ref4 publication-title: Facebook takes flight – volume: 4 start-page: 24 year: 2019 ident: ref29 article-title: Optimized trajectory design in UAV based cellular networks for 3D users: A double Q-learning approach publication-title: J Commun Inf Netw doi: 10.23919/JCIN.2019.8916643 – ident: ref20 doi: 10.1109/JIOT.2018.2875446 – ident: ref25 doi: 10.1109/TCOMM.2018.2865922 |
SSID | ssj0017655 |
Score | 2.5179186 |
Snippet | This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 458 |
SubjectTerms | Airspeed capacity region Constraints Design optimization Frequency division multiaccess Frequency division multiple access Hovering Maximum power multiple access channel (MAC) NOMA non-orthogonal multiple access (NOMA) Resource allocation Resource management Superhigh frequencies Time Division Multiple Access Topology Trajectory trajectory design Trajectory optimization Unmanned aerial vehicle (UAV) Unmanned aerial vehicles Wireless communication |
Title | Fundamental Rate Limits of UAV-Enabled Multiple Access Channel With Trajectory Optimization |
URI | https://ieeexplore.ieee.org/document/8870206 https://www.proquest.com/docview/2339335742 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6oJz24i9UqOXgRnHYmySw5FrEUoQrSquBhmCyDS23FTg_6633JTAc3xDmEHBLI5OXlfXkrwJGIjKKhVp6hvvS4zpSXyTDxdMKskStnkVNl9y-i3pCf34a3C3BSx8IYY5zzmWnZrrPl64maWVVZGxkC0U20CIv4cCtjtWqLQRy5CqfIwLauTFybJH3RHtycWh8u0aKCW3zzRQS5mio_LmInXbpr0J-vq3QqeWrNCtlS799SNv534euwWsFM0inPxQYsmPEmrHxKPrgFd10bBFLm9idXCDmJC3aakklOhp1r78xFVWnSr1wOScfVViQ2HmFsRuTmobgnKOoend7_jVzi5fNcRXVuw7B7NjjteVWpBU9RERQeTQLFYxnkAQq0XDMqWR7EMlaIWIRQRnKmGfJqSGWCfxLnIVcSP4ST2BGK7cDSeDI2u0AyXwdGY-srzgXNMsQ4Mkgyo3Lf0DBvQHu--6mq8pDbchij1L1HfJEivVJLr7SiVwOO6xkvZQ6OP8Zu2e2vx1U734DmnMBpxaTTlDImGAtjTvd-n7UPy9Q-r53GpQlLxevMHCAGKeShO3wfP_rYDA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTxsxFH5iOUAPLaualsWHXioxyYztWXyMUKIACZWqhETiMBovI2hDgsrkUH49z57JCEqFmIPlgy15_Pz8Pr8V4JuIjKKhVp6hvvS4zpSXyTDxdMKskStnkVNlDy6j3oifT8LJCpzUsTDGGOd8Zpq262z5eq4WVlXWQoZAdBOtwjrK_TAoo7Vqm0EcuRqnyMK2skxcGyV90RqOT60Xl2hSwS3CeSGEXFWVV1exky_dTzBYrqx0K_ndXBSyqR7_Sdr43qVvwccKaJJ2eTK2YcXMduDDs_SDu3DdtWEgZXZ_8hNBJ3HhTg9knpNR-8rruLgqTQaV0yFpu-qKxEYkzMyUjG-LG4LC7pfT_P8lP_D6uaviOvdg1O0MT3teVWzBU1QEhUeTQPFYBnmAIi3XjEqWB7GMFWIWIZSRnGmG3BpSmeCfxHnIlcQPASV2hGL7sDabz8xnIJmvA6Ox9RXngmYZohwZJJlRuW9omDegtdz9VFWZyG1BjGnqXiS-SJFeqaVXWtGrAd_rGfdlFo43xu7a7a_HVTvfgIMlgdOKTR9SyphgLIw5_fL_Wcew0RsO-mn_7PLiK2xS-9h2-pcDWCv-LMwhIpJCHrmD-ASvnttV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+Rate+Limits+of+UAV-Enabled+Multiple+Access+Channel+With+Trajectory+Optimization&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Li%2C+Peiming&rft.au=Xu%2C+Jie&rft.date=2020-01-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=19&rft.issue=1&rft.spage=458&rft.epage=474&rft_id=info:doi/10.1109%2FTWC.2019.2946153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2019_2946153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |