Fundamental Rate Limits of UAV-Enabled Multiple Access Channel With Trajectory Optimization

This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a mobile UAV in the sky. We consider a linear topology scenario, where these users locate in a straight line and the UAV flies at a fixed altitude...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 19; no. 1; pp. 458 - 474
Main Authors Li, Peiming, Xu, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a mobile UAV in the sky. We consider a linear topology scenario, where these users locate in a straight line and the UAV flies at a fixed altitude above the line connecting them. Under this setup, we jointly optimize the one-dimensional (1D) UAV trajectory and wireless resource allocation to reveal the fundamental rate limits of the UAV-enabled MAC, under the users' individual maximum power constraints and the UAV's maximum flight speed constraints. First, we consider the capacity-achieving non-orthogonal multiple access (NOMA) transmission with successive interference cancellation (SIC) at the UAV receiver. In this case, we characterize the capacity region by maximizing the average sum-rate of all users subject to a set of rate profile constraints. To optimally solve this highly non-convex problem with infinitely many UAV location variables over time, we show that any speed-constrained UAV trajectory is equivalent to the combination of a maximum-speed flying trajectory and a speed-free trajectory, and accordingly transform the original speed-constrained trajectory optimization problem into a speed-free problem that is optimally solvable via the Lagrange dual decomposition. It is rigorously proved that the optimal 1D trajectory solution follows the successive hover-and-fly (SHF) structure, i.e., the UAV successively hovers above a number of optimized locations, and flies unidirectionally among them at the maximum speed. Next, we consider two orthogonal multiple access (OMA) transmission schemes, i.e., frequency-division multiple access (FDMA) and time-division multiple access (TDMA). We maximize the achievable rate regions in the two cases by jointly optimizing the 1D trajectory design and wireless resource (frequency/time) allocation. It is shown that the optimal trajectory solutions still follow the SHF structure but with different hovering locations for each scheme. Finally, numerical results show that the proposed optimal trajectory designs achieve considerable rate gains over other benchmark schemes, and the capacity region achieved by NOMA significantly outperforms the rate regions by FDMA and TDMA.
AbstractList This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a mobile UAV in the sky. We consider a linear topology scenario, where these users locate in a straight line and the UAV flies at a fixed altitude above the line connecting them. Under this setup, we jointly optimize the one-dimensional (1D) UAV trajectory and wireless resource allocation to reveal the fundamental rate limits of the UAV-enabled MAC, under the users' individual maximum power constraints and the UAV's maximum flight speed constraints. First, we consider the capacity-achieving non-orthogonal multiple access (NOMA) transmission with successive interference cancellation (SIC) at the UAV receiver. In this case, we characterize the capacity region by maximizing the average sum-rate of all users subject to a set of rate profile constraints. To optimally solve this highly non-convex problem with infinitely many UAV location variables over time, we show that any speed-constrained UAV trajectory is equivalent to the combination of a maximum-speed flying trajectory and a speed-free trajectory, and accordingly transform the original speed-constrained trajectory optimization problem into a speed-free problem that is optimally solvable via the Lagrange dual decomposition. It is rigorously proved that the optimal 1D trajectory solution follows the successive hover-and-fly (SHF) structure, i.e., the UAV successively hovers above a number of optimized locations, and flies unidirectionally among them at the maximum speed. Next, we consider two orthogonal multiple access (OMA) transmission schemes, i.e., frequency-division multiple access (FDMA) and time-division multiple access (TDMA). We maximize the achievable rate regions in the two cases by jointly optimizing the 1D trajectory design and wireless resource (frequency/time) allocation. It is shown that the optimal trajectory solutions still follow the SHF structure but with different hovering locations for each scheme. Finally, numerical results show that the proposed optimal trajectory designs achieve considerable rate gains over other benchmark schemes, and the capacity region achieved by NOMA significantly outperforms the rate regions by FDMA and TDMA.
Author Xu, Jie
Li, Peiming
Author_xml – sequence: 1
  givenname: Peiming
  orcidid: 0000-0001-9495-1752
  surname: Li
  fullname: Li, Peiming
  email: peiminglee@outlook.com
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-4854-8839
  surname: Xu
  fullname: Xu, Jie
  email: jiexu.ustc@gmail.com
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
BookMark eNp9kDtPwzAUhS1UJNrCjsRiiTnFj9iJxyoqD6moEmrpwBA5jqO6Sp1gu0P59bi0YmDgLvcM57v36IzAwHZWA3CL0QRjJB6W62JCEBYTIlKOGb0AQ8xYnhCS5oOjpjzBJONXYOT9FiGcccaG4ONxb2u50zbIFr7JoOHc7EzwsGvgavqezKysWl3D130bTN9qOFVKew-LjbRWt3BtwgYundxqFTp3gIs-RP5LBtPZa3DZyNbrm_Meg9XjbFk8J_PF00sxnSeKCBwSkmOVZhVuMOWkqSmpaIOzKlOIp0IoXaW0poJTRqocEZQ1LFVVHMxQFELRMbg_3e1d97nXPpTbbu9sfFkSSgWlLEtJdPGTS7nOe6ebUpnwkzM4adoSo_JYZBmLLI9FluciI4j-gL0zO-kO_yF3J8RorX_teZ7F_Jx-A3I2f3c
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3328214
crossref_primary_10_1109_JSAC_2022_3196108
crossref_primary_10_1002_adc2_202
crossref_primary_10_1109_TGCN_2023_3243394
crossref_primary_10_1109_TVT_2022_3160746
crossref_primary_10_3390_app12042226
crossref_primary_10_3390_electronics12132817
crossref_primary_10_1109_TGCN_2023_3330481
crossref_primary_10_1016_j_phycom_2024_102306
crossref_primary_10_1109_TIT_2022_3149827
crossref_primary_10_1109_TAES_2024_3378203
crossref_primary_10_1109_TWC_2022_3211533
crossref_primary_10_1109_ACCESS_2020_3020821
crossref_primary_10_1109_TCOMM_2022_3218651
crossref_primary_10_1109_TWC_2021_3073570
crossref_primary_10_1109_JIOT_2021_3094651
crossref_primary_10_1109_TITS_2023_3300777
crossref_primary_10_1109_TNSM_2024_3443644
crossref_primary_10_1109_TCOMM_2022_3220903
crossref_primary_10_1109_TR_2022_3158279
crossref_primary_10_1109_LWC_2020_3030768
crossref_primary_10_1109_JIOT_2022_3150747
crossref_primary_10_1016_j_dcan_2023_07_006
crossref_primary_10_1109_JSAC_2021_3088623
crossref_primary_10_1109_JSAC_2021_3088667
crossref_primary_10_1109_TWC_2021_3103739
crossref_primary_10_1109_TVT_2024_3387752
crossref_primary_10_1109_TWC_2022_3222067
crossref_primary_10_1109_JSAC_2021_3088720
crossref_primary_10_1109_TVT_2023_3333054
crossref_primary_10_1155_2022_9778188
crossref_primary_10_3390_s24196496
crossref_primary_10_1109_JSAC_2021_3088682
crossref_primary_10_1016_j_phycom_2024_102555
crossref_primary_10_1109_JIOT_2022_3230786
crossref_primary_10_1109_TGCN_2021_3073916
crossref_primary_10_1109_MNET_013_2000385
crossref_primary_10_3390_photonics10111210
crossref_primary_10_1016_j_sigpro_2024_109844
crossref_primary_10_1016_j_comcom_2023_05_013
crossref_primary_10_1109_TVT_2023_3275758
crossref_primary_10_1109_TVT_2023_3332851
crossref_primary_10_1109_TWC_2020_3030773
crossref_primary_10_1109_JIOT_2021_3126290
crossref_primary_10_1109_JSAC_2021_3088627
crossref_primary_10_1016_j_cja_2021_10_039
crossref_primary_10_1016_j_aeue_2023_154619
Cites_doi 10.1109/TWC.2018.2838134
10.1109/MWC.2018.1800221
10.1109/MCOM.2016.7470933
10.1017/CBO9780511804441
10.1109/JSAC.2018.2864426
10.1109/TWC.2019.2902559
10.1109/TWC.2017.2751045
10.1109/MCOM.2017.1500657CM
10.1109/TWC.2017.2688328
10.1109/TVT.2017.2706308
10.1109/TWC.2016.2531652
10.1109/LWC.2014.2342736
10.1109/TCOMM.2019.2931322
10.1109/TCOMM.2006.877962
10.1007/BF02124750
10.1109/MWC.2018.1800196
10.1109/TIT.2004.826646
10.1109/ICC.2017.7996921
10.1109/TWC.2017.2789293
10.1109/ICCChina.2019.8855837
10.1109/TCOMM.2016.2611512
10.1109/SPAWC.2018.8445768
10.1007/s41650-018-0040-3
10.1007/s41650-018-0034-1
10.1109/18.737513
10.1109/JSAC.2018.2864421
10.1109/LWC.2017.2752161
10.1109/LCOMM.2018.2800737
10.1109/LWC.2017.2776922
10.23919/JCIN.2019.8916643
10.1109/JIOT.2018.2875446
10.1109/TCOMM.2018.2865922
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2019.2946153
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 474
ExternalDocumentID 10_1109_TWC_2019_2946153
8870206
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871137
  funderid: 10.13039/501100001809
– fundername: Open Research Fund of National Mobile Communications Research Laboratory
– fundername: Guangdong Province Key Area Research Development Program
  grantid: 2018B030338001
– fundername: Guangdong Province Basic Research Program (Natural Science)
  grantid: 2018KZDXM028
– fundername: National Key Program of China
  grantid: 2018YFB1800800
– fundername: Southeast University
  grantid: 2019D08
  funderid: 10.13039/501100008081
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-281c47b1f1362fd32b3f17b7c06499ceb43d396352b80207f54cbbbb1504cb9c3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:27:39 EDT 2025
Tue Jul 01 04:13:25 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Wed Aug 27 02:40:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-281c47b1f1362fd32b3f17b7c06499ceb43d396352b80207f54cbbbb1504cb9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4854-8839
0000-0001-9495-1752
PQID 2339335742
PQPubID 105736
PageCount 17
ParticipantIDs ieee_primary_8870206
crossref_citationtrail_10_1109_TWC_2019_2946153
proquest_journals_2339335742
crossref_primary_10_1109_TWC_2019_2946153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
(ref5) 2019
ref30
ref33
ref11
(ref7) 2019
ref32
ref10
ref2
ref1
ref17
ref19
ref18
zeng (ref23) 0
liu (ref29) 2019; 4
zhang (ref16) 2017; 35
(ref4) 2019
ref24
(ref6) 2019
ref26
ref25
ref20
ref42
ref41
ref22
ref21
you (ref39) 0
ref28
ref27
ref8
grant (ref37) 2018
(ref3) 2019
ref9
boyd (ref38) 2019
ref40
References_xml – year: 2019
  ident: ref38
  publication-title: Convex Optimization II
– ident: ref19
  doi: 10.1109/TWC.2018.2838134
– ident: ref26
  doi: 10.1109/MWC.2018.1800221
– ident: ref2
  doi: 10.1109/MCOM.2016.7470933
– ident: ref36
  doi: 10.1017/CBO9780511804441
– ident: ref22
  doi: 10.1109/JSAC.2018.2864426
– ident: ref42
  doi: 10.1109/TWC.2019.2902559
– ident: ref11
  doi: 10.1109/TWC.2017.2751045
– ident: ref30
  doi: 10.1109/MCOM.2017.1500657CM
– ident: ref41
  doi: 10.1109/TWC.2017.2688328
– ident: ref21
  doi: 10.1109/TVT.2017.2706308
– volume: 35
  start-page: 136
  year: 2017
  ident: ref16
  article-title: Spectrum sharing for drone networks
  publication-title: IEEE J Sel Areas Commun
– year: 2018
  ident: ref37
  publication-title: CVX MATLAB Software for Disciplined Convex Programming
– ident: ref15
  doi: 10.1109/TWC.2016.2531652
– ident: ref12
  doi: 10.1109/LWC.2014.2342736
– ident: ref17
  doi: 10.1109/TCOMM.2019.2931322
– year: 0
  ident: ref23
  article-title: Access from the sky: A tutorial on UAV communications for 5G and beyond
  publication-title: Proc IEEE
– ident: ref35
  doi: 10.1109/TCOMM.2006.877962
– ident: ref40
  doi: 10.1007/BF02124750
– ident: ref34
  doi: 10.1109/MWC.2018.1800196
– ident: ref31
  doi: 10.1109/TIT.2004.826646
– ident: ref9
  doi: 10.1109/ICC.2017.7996921
– ident: ref28
  doi: 10.1109/TWC.2017.2789293
– year: 2019
  ident: ref3
  publication-title: Google's Project Loon Internet Balloons to Circle Earth
– ident: ref1
  doi: 10.1109/ICCChina.2019.8855837
– year: 2019
  ident: ref5
  publication-title: Nokia Enters the Drone Industry
– ident: ref8
  doi: 10.1109/TCOMM.2016.2611512
– ident: ref24
  doi: 10.1109/SPAWC.2018.8445768
– ident: ref13
  doi: 10.1007/s41650-018-0040-3
– ident: ref18
  doi: 10.1007/s41650-018-0034-1
– ident: ref32
  doi: 10.1109/18.737513
– ident: ref33
  doi: 10.1109/JSAC.2018.2864421
– year: 0
  ident: ref39
  article-title: Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channel
  publication-title: IEEE Trans Wireless Commun
– ident: ref14
  doi: 10.1109/LWC.2017.2752161
– ident: ref10
  doi: 10.1109/LCOMM.2018.2800737
– year: 2019
  ident: ref6
  publication-title: China Mobile Spent 21 Million Calling for Bids for UAV Base Stations For Emergency Communication
– year: 2019
  ident: ref7
  publication-title: Alibaba Cloud Speeds Up IoT Strategy at the Computing Conference
– ident: ref27
  doi: 10.1109/LWC.2017.2776922
– year: 2019
  ident: ref4
  publication-title: Facebook takes flight
– volume: 4
  start-page: 24
  year: 2019
  ident: ref29
  article-title: Optimized trajectory design in UAV based cellular networks for 3D users: A double Q-learning approach
  publication-title: J Commun Inf Netw
  doi: 10.23919/JCIN.2019.8916643
– ident: ref20
  doi: 10.1109/JIOT.2018.2875446
– ident: ref25
  doi: 10.1109/TCOMM.2018.2865922
SSID ssj0017655
Score 2.5179186
Snippet This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 458
SubjectTerms Airspeed
capacity region
Constraints
Design optimization
Frequency division multiaccess
Frequency division multiple access
Hovering
Maximum power
multiple access channel (MAC)
NOMA
non-orthogonal multiple access (NOMA)
Resource allocation
Resource management
Superhigh frequencies
Time Division Multiple Access
Topology
Trajectory
trajectory design
Trajectory optimization
Unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Wireless communication
Title Fundamental Rate Limits of UAV-Enabled Multiple Access Channel With Trajectory Optimization
URI https://ieeexplore.ieee.org/document/8870206
https://www.proquest.com/docview/2339335742
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6oJz24i9UqOXgRnHYmySw5FrEUoQrSquBhmCyDS23FTg_6633JTAc3xDmEHBLI5OXlfXkrwJGIjKKhVp6hvvS4zpSXyTDxdMKskStnkVNl9y-i3pCf34a3C3BSx8IYY5zzmWnZrrPl64maWVVZGxkC0U20CIv4cCtjtWqLQRy5CqfIwLauTFybJH3RHtycWh8u0aKCW3zzRQS5mio_LmInXbpr0J-vq3QqeWrNCtlS799SNv534euwWsFM0inPxQYsmPEmrHxKPrgFd10bBFLm9idXCDmJC3aakklOhp1r78xFVWnSr1wOScfVViQ2HmFsRuTmobgnKOoend7_jVzi5fNcRXVuw7B7NjjteVWpBU9RERQeTQLFYxnkAQq0XDMqWR7EMlaIWIRQRnKmGfJqSGWCfxLnIVcSP4ST2BGK7cDSeDI2u0AyXwdGY-srzgXNMsQ4Mkgyo3Lf0DBvQHu--6mq8pDbchij1L1HfJEivVJLr7SiVwOO6xkvZQ6OP8Zu2e2vx1U734DmnMBpxaTTlDImGAtjTvd-n7UPy9Q-r53GpQlLxevMHCAGKeShO3wfP_rYDA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTxsxFH5iOUAPLaualsWHXioxyYztWXyMUKIACZWqhETiMBovI2hDgsrkUH49z57JCEqFmIPlgy15_Pz8Pr8V4JuIjKKhVp6hvvS4zpSXyTDxdMKskStnkVNlDy6j3oifT8LJCpzUsTDGGOd8Zpq262z5eq4WVlXWQoZAdBOtwjrK_TAoo7Vqm0EcuRqnyMK2skxcGyV90RqOT60Xl2hSwS3CeSGEXFWVV1exky_dTzBYrqx0K_ndXBSyqR7_Sdr43qVvwccKaJJ2eTK2YcXMduDDs_SDu3DdtWEgZXZ_8hNBJ3HhTg9knpNR-8rruLgqTQaV0yFpu-qKxEYkzMyUjG-LG4LC7pfT_P8lP_D6uaviOvdg1O0MT3teVWzBU1QEhUeTQPFYBnmAIi3XjEqWB7GMFWIWIZSRnGmG3BpSmeCfxHnIlcQPASV2hGL7sDabz8xnIJmvA6Ox9RXngmYZohwZJJlRuW9omDegtdz9VFWZyG1BjGnqXiS-SJFeqaVXWtGrAd_rGfdlFo43xu7a7a_HVTvfgIMlgdOKTR9SyphgLIw5_fL_Wcew0RsO-mn_7PLiK2xS-9h2-pcDWCv-LMwhIpJCHrmD-ASvnttV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+Rate+Limits+of+UAV-Enabled+Multiple+Access+Channel+With+Trajectory+Optimization&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Li%2C+Peiming&rft.au=Xu%2C+Jie&rft.date=2020-01-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=19&rft.issue=1&rft.spage=458&rft.epage=474&rft_id=info:doi/10.1109%2FTWC.2019.2946153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2019_2946153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon