Bayesian Networks in Fault Diagnosis

Fault diagnosis is useful in helping technicians detect, isolate, and identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This paper presents bibl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 13; no. 5; pp. 2227 - 2240
Main Authors Cai, Baoping, Huang, Lei, Xie, Min
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fault diagnosis is useful in helping technicians detect, isolate, and identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This paper presents bibliographical review on use of BNs in fault diagnosis in the last decades with focus on engineering systems. This work also presents general procedure of fault diagnosis modeling with BNs; processes include BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification. The paper provides series of classification schemes for BNs for fault diagnosis, BNs combined with other techniques, and domain of fault diagnosis with BN. This study finally explores current gaps and challenges and several directions for future research.
AbstractList Fault diagnosis is useful in helping technicians detect, isolate, and identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This paper presents bibliographical review on use of BNs in fault diagnosis in the last decades with focus on engineering systems. This work also presents general procedure of fault diagnosis modeling with BNs; processes include BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification. The paper provides series of classification schemes for BNs for fault diagnosis, BNs combined with other techniques, and domain of fault diagnosis with BN. This study finally explores current gaps and challenges and several directions for future research.
Author Min Xie
Baoping Cai
Lei Huang
Author_xml – sequence: 1
  givenname: Baoping
  surname: Cai
  fullname: Cai, Baoping
– sequence: 2
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
– sequence: 3
  givenname: Min
  surname: Xie
  fullname: Xie, Min
BookMark eNp9kEFLAzEQRoNUsK3eBS8Let06STab3aNWq4Wil3oO2WQqqTWpyS7Sf--WFg8ehIGZw_dmmDciAx88EnJJYUIp1LfL-XzCgMoJK2shKn5ChrQuaA4gYNDPQtCcM-BnZJTSGoBL4PWQ3NzrHSanffaC7XeIHylzPpvpbtNmD06_-5BcOienK71JeHHsY_I2e1xOn_PF69N8erfIDatpm7NSWopNIdGIktfaFBahgaahjDcSLWpglQVTSGbLynJqOF_xylorNJpS8zG5PuzdxvDVYWrVOnTR9ydV_4sU-xJ9Cg4pE0NKEVdqG92njjtFQe1dqN6F2rtQRxc9Uv5BjGt164Jvo3ab_8CrA-gQ8feOrKEoWcV_AE6PbI8
CODEN ITIICH
CitedBy_id crossref_primary_10_1016_j_ijepes_2020_105961
crossref_primary_10_1016_j_ress_2021_107902
crossref_primary_10_1016_j_buildenv_2021_107850
crossref_primary_10_1109_JSEN_2023_3331837
crossref_primary_10_1109_ACCESS_2017_2764518
crossref_primary_10_1109_TIE_2017_2786253
crossref_primary_10_3390_app14167191
crossref_primary_10_1016_j_psep_2023_05_025
crossref_primary_10_1051_e3sconf_202018202006
crossref_primary_10_1109_TNNLS_2019_2953177
crossref_primary_10_1016_j_conengprac_2020_104344
crossref_primary_10_1109_ACCESS_2019_2956264
crossref_primary_10_1109_TII_2020_2990168
crossref_primary_10_1016_j_comnet_2022_109485
crossref_primary_10_1016_j_eswa_2024_123297
crossref_primary_10_1049_rpg2_13107
crossref_primary_10_1007_s10462_022_10351_w
crossref_primary_10_1016_j_compeleceng_2020_106635
crossref_primary_10_1016_j_microrel_2021_114457
crossref_primary_10_1016_j_engappai_2023_106138
crossref_primary_10_1016_j_isatra_2018_10_044
crossref_primary_10_3390_e20090626
crossref_primary_10_1016_j_ymssp_2021_107967
crossref_primary_10_1016_j_engappai_2020_103920
crossref_primary_10_1016_j_jprocont_2020_06_011
crossref_primary_10_1016_j_psep_2020_11_026
crossref_primary_10_1016_j_conengprac_2022_105304
crossref_primary_10_1109_JSYST_2020_2965400
crossref_primary_10_1039_D3EW00619K
crossref_primary_10_1016_j_jlp_2020_104267
crossref_primary_10_1016_j_knosys_2022_109773
crossref_primary_10_3390_sym16040455
crossref_primary_10_1016_j_oceaneng_2018_08_052
crossref_primary_10_1007_s11280_019_00705_w
crossref_primary_10_3390_e25030442
crossref_primary_10_1016_j_ress_2023_109410
crossref_primary_10_1109_TII_2023_3264631
crossref_primary_10_1016_j_compchemeng_2022_107813
crossref_primary_10_1016_j_oceaneng_2024_116818
crossref_primary_10_3390_app12147032
crossref_primary_10_1177_1748006X18800630
crossref_primary_10_1109_ACCESS_2018_2810386
crossref_primary_10_2514_1_I010524
crossref_primary_10_1016_j_oceaneng_2022_112455
crossref_primary_10_1021_acs_iecr_9b05803
crossref_primary_10_1109_ACCESS_2019_2893267
crossref_primary_10_1016_j_jlp_2019_103947
crossref_primary_10_1186_s13635_023_00149_w
crossref_primary_10_3390_app9204248
crossref_primary_10_1080_00207543_2023_2271093
crossref_primary_10_1088_1361_6501_ab79c9
crossref_primary_10_1016_j_ress_2021_107805
crossref_primary_10_1016_j_asoc_2024_111594
crossref_primary_10_1016_j_nucengdes_2024_113370
crossref_primary_10_14778_3551793_3551810
crossref_primary_10_3233_JIFS_236850
crossref_primary_10_1016_j_engappai_2019_103346
crossref_primary_10_1109_JIOT_2021_3096637
crossref_primary_10_1088_1361_6501_ac97b4
crossref_primary_10_1109_TII_2018_2868364
crossref_primary_10_1016_j_jmsy_2021_05_016
crossref_primary_10_1109_ACCESS_2018_2813418
crossref_primary_10_1016_j_ces_2019_01_060
crossref_primary_10_1016_j_energy_2021_120549
crossref_primary_10_1016_j_jmsy_2023_08_005
crossref_primary_10_1016_j_anucene_2023_109932
crossref_primary_10_1109_JSEN_2022_3153654
crossref_primary_10_17531_ein_2020_1_8
crossref_primary_10_1109_TCYB_2020_3025800
crossref_primary_10_1016_j_ifacol_2020_12_859
crossref_primary_10_1002_cjce_23642
crossref_primary_10_1002_int_22659
crossref_primary_10_1016_j_oceaneng_2024_119309
crossref_primary_10_3390_s19020376
crossref_primary_10_1109_ACCESS_2019_2927039
crossref_primary_10_1002_cjce_24470
crossref_primary_10_1016_j_chemolab_2019_103827
crossref_primary_10_1016_j_renene_2020_07_062
crossref_primary_10_1016_j_petrol_2022_111124
crossref_primary_10_1016_j_ress_2020_106855
crossref_primary_10_17531_ein_2022_1_3
crossref_primary_10_3390_s19010026
crossref_primary_10_1016_j_epsr_2025_111572
crossref_primary_10_1016_j_softx_2019_100309
crossref_primary_10_1109_TII_2024_3438240
crossref_primary_10_1109_ACCESS_2019_2952143
crossref_primary_10_1016_j_ress_2023_109206
crossref_primary_10_3390_a13030064
crossref_primary_10_1016_j_apor_2020_102192
crossref_primary_10_1155_2021_2744264
crossref_primary_10_1007_s10845_024_02376_5
crossref_primary_10_1115_1_4043922
crossref_primary_10_1002_qre_3706
crossref_primary_10_1016_j_ress_2021_107438
crossref_primary_10_1109_JSEN_2022_3141932
crossref_primary_10_1016_j_oceaneng_2017_08_035
crossref_primary_10_1109_JSEN_2018_2885377
crossref_primary_10_1016_j_ymssp_2023_110813
crossref_primary_10_1109_ACCESS_2018_2833851
crossref_primary_10_1016_j_ress_2020_106963
crossref_primary_10_1002_qre_3271
crossref_primary_10_3390_machines9110298
crossref_primary_10_1016_j_cie_2023_109421
crossref_primary_10_1016_j_conengprac_2019_07_017
crossref_primary_10_1109_TMECH_2020_2977857
crossref_primary_10_1002_qre_3232
crossref_primary_10_1007_s10845_018_1412_0
crossref_primary_10_1016_j_compind_2021_103401
crossref_primary_10_1109_TII_2020_2967556
crossref_primary_10_1002_qre_2947
crossref_primary_10_1016_j_engappai_2020_103631
crossref_primary_10_1016_j_measurement_2020_108122
crossref_primary_10_1007_s12053_020_09914_z
crossref_primary_10_1109_ACCESS_2018_2816165
crossref_primary_10_1109_ACCESS_2017_2764538
crossref_primary_10_1109_ACCESS_2018_2851374
crossref_primary_10_1016_j_aei_2021_101480
crossref_primary_10_1016_j_ress_2017_12_021
crossref_primary_10_1109_TPWRS_2021_3056314
crossref_primary_10_3390_en10121961
crossref_primary_10_1007_s00202_024_02472_y
crossref_primary_10_3390_su15097382
crossref_primary_10_1177_1748006X221088158
crossref_primary_10_1016_j_ijepes_2021_107317
crossref_primary_10_1016_j_engappai_2023_106673
crossref_primary_10_1016_j_cie_2017_12_027
crossref_primary_10_1016_j_engappai_2019_06_001
crossref_primary_10_1177_1748006X231171449
crossref_primary_10_1109_TMECH_2023_3300359
crossref_primary_10_1016_j_jii_2023_100469
crossref_primary_10_1016_j_ress_2020_107035
crossref_primary_10_1016_j_jmsy_2024_06_001
crossref_primary_10_1016_j_eswa_2023_120536
crossref_primary_10_1088_1361_6501_ad24b5
crossref_primary_10_1051_jnwpu_20224040732
crossref_primary_10_3390_fi16110396
crossref_primary_10_1016_j_engfailanal_2020_104917
crossref_primary_10_1016_j_ress_2019_106546
crossref_primary_10_1007_s10845_024_02556_3
crossref_primary_10_1007_s12559_021_09891_0
crossref_primary_10_1016_j_iot_2023_100901
crossref_primary_10_3390_pr10050909
crossref_primary_10_1016_j_ress_2020_107393
crossref_primary_10_1080_17445302_2021_2012015
crossref_primary_10_1016_j_engappai_2023_106768
crossref_primary_10_1109_TMECH_2019_2917749
crossref_primary_10_1108_IMDS_07_2021_0419
crossref_primary_10_1016_j_comnet_2021_108037
crossref_primary_10_1007_s00521_021_05692_6
crossref_primary_10_1109_TII_2019_2915559
crossref_primary_10_1016_j_engfailanal_2021_105225
crossref_primary_10_11648_j_ijmea_20241203_11
crossref_primary_10_1051_jnwpu_20213920375
crossref_primary_10_1155_2018_2746871
crossref_primary_10_1016_j_ress_2022_108433
crossref_primary_10_59782_aai_v1i2_287
crossref_primary_10_1109_ACCESS_2019_2924273
crossref_primary_10_1109_TII_2022_3180389
crossref_primary_10_1016_j_jmsy_2023_07_006
crossref_primary_10_1177_0959651819884747
crossref_primary_10_1016_j_psep_2021_03_031
crossref_primary_10_1080_02533839_2024_2308257
crossref_primary_10_3390_s20143952
crossref_primary_10_1007_s11069_024_07005_1
crossref_primary_10_1016_j_ijrefrig_2024_02_019
crossref_primary_10_1016_j_jprocont_2020_12_007
crossref_primary_10_1109_ACCESS_2020_2966582
crossref_primary_10_1109_TASE_2019_2915286
crossref_primary_10_1016_j_ijepes_2018_05_029
crossref_primary_10_1109_ACCESS_2019_2898213
crossref_primary_10_3390_app10030770
crossref_primary_10_1080_21642583_2021_2024915
crossref_primary_10_1109_TCST_2018_2867996
crossref_primary_10_1142_S1793962323410313
crossref_primary_10_1016_j_measurement_2019_06_021
crossref_primary_10_1109_TIM_2021_3080402
crossref_primary_10_1016_j_jmsy_2021_03_012
crossref_primary_10_1016_j_geoen_2024_212734
crossref_primary_10_1109_TASE_2023_3325565
crossref_primary_10_1016_j_est_2021_102740
crossref_primary_10_3139_104_112034
crossref_primary_10_1016_j_enbuild_2020_110492
crossref_primary_10_1088_1757_899X_274_1_012120
crossref_primary_10_1109_ACCESS_2024_3481331
crossref_primary_10_1002_dac_4026
crossref_primary_10_1109_ACCESS_2024_3394046
crossref_primary_10_1016_j_anucene_2020_107767
crossref_primary_10_1515_auto_2020_0064
crossref_primary_10_1016_j_compind_2024_104131
crossref_primary_10_1007_s10846_020_01293_y
crossref_primary_10_1016_j_measurement_2018_05_084
crossref_primary_10_1002_sys_21609
crossref_primary_10_3389_fenrg_2021_696785
crossref_primary_10_1016_j_conengprac_2020_104637
crossref_primary_10_1016_j_conengprac_2020_104522
crossref_primary_10_1016_j_ress_2020_107243
crossref_primary_10_1097_SIH_0000000000000510
crossref_primary_10_1080_0951192X_2022_2025623
crossref_primary_10_1016_j_jprocont_2019_04_001
crossref_primary_10_1016_j_ress_2025_110949
crossref_primary_10_1109_TII_2020_3025314
crossref_primary_10_1016_j_cor_2024_106598
crossref_primary_10_1109_TII_2022_3146940
crossref_primary_10_1103_PhysRevApplied_16_044057
crossref_primary_10_1088_1757_899X_1043_3_032062
crossref_primary_10_18698_0236_3933_2021_3_100_112
crossref_primary_10_1186_s40537_019_0173_8
crossref_primary_10_3390_jsan13050057
crossref_primary_10_1109_TASE_2020_3017755
crossref_primary_10_1016_j_anucene_2019_107181
crossref_primary_10_1109_TII_2020_3012024
crossref_primary_10_3390_electronics11233870
crossref_primary_10_1109_TII_2018_2858281
crossref_primary_10_1109_TSMC_2022_3152784
crossref_primary_10_1155_2019_3264969
crossref_primary_10_1016_j_conengprac_2020_104628
crossref_primary_10_1109_TSMC_2022_3204777
crossref_primary_10_1016_j_jlp_2024_105530
crossref_primary_10_1016_j_oceaneng_2024_116681
crossref_primary_10_1016_j_ress_2024_110192
crossref_primary_10_1016_j_psep_2019_09_003
crossref_primary_10_1061_JCEMD4_COENG_15123
crossref_primary_10_17531_ein_2021_3_9
crossref_primary_10_1016_j_jii_2024_100725
crossref_primary_10_12677_CSA_2020_103052
crossref_primary_10_1109_TMECH_2021_3065981
crossref_primary_10_1007_s12273_021_0849_9
crossref_primary_10_1109_ACCESS_2018_2799853
crossref_primary_10_3390_e21040404
crossref_primary_10_1016_j_measurement_2019_04_062
crossref_primary_10_1021_acs_iecr_2c02320
crossref_primary_10_3390_machines11090874
crossref_primary_10_1016_j_psep_2018_12_006
crossref_primary_10_1051_ijmqe_2023009
crossref_primary_10_1016_j_artint_2023_103998
crossref_primary_10_1016_j_simpat_2019_101981
crossref_primary_10_3390_su11020306
crossref_primary_10_1109_JSEN_2024_3354415
crossref_primary_10_1088_1742_6596_2242_1_012032
crossref_primary_10_1109_TII_2020_3021688
crossref_primary_10_47836_pjst_30_2_26
crossref_primary_10_1080_10589759_2024_2440818
crossref_primary_10_1016_j_ress_2023_109602
crossref_primary_10_3390_ijerph16030492
crossref_primary_10_2174_2210298102666220318100051
crossref_primary_10_1109_TR_2018_2822479
crossref_primary_10_1016_j_jlp_2020_104108
crossref_primary_10_1021_acsomega_3c09122
crossref_primary_10_1016_j_ress_2021_107837
crossref_primary_10_1109_TMECH_2020_2970231
crossref_primary_10_1016_j_jlp_2018_01_014
crossref_primary_10_1109_TASE_2020_2974130
crossref_primary_10_1016_j_asoc_2020_107060
crossref_primary_10_1016_j_ress_2019_106727
crossref_primary_10_1016_j_asoc_2024_111955
crossref_primary_10_1109_OJSE_2022_3222731
crossref_primary_10_1109_TNNLS_2022_3173337
crossref_primary_10_1016_j_psep_2018_06_012
crossref_primary_10_1021_acs_iecr_0c00624
crossref_primary_10_1038_s41467_020_17419_7
crossref_primary_10_1016_j_jprocont_2021_05_003
crossref_primary_10_1007_s10845_020_01680_0
crossref_primary_10_1109_TII_2023_3264111
crossref_primary_10_1007_s40435_018_0412_4
crossref_primary_10_1515_revce_2020_0054
crossref_primary_10_1109_TII_2023_3306355
crossref_primary_10_1016_j_engappai_2023_107357
crossref_primary_10_1016_j_ress_2020_107329
crossref_primary_10_3233_JIFS_192039
crossref_primary_10_3390_s21227633
crossref_primary_10_1016_j_ssci_2017_12_033
crossref_primary_10_1016_j_apenergy_2022_120050
crossref_primary_10_3390_pr10020335
crossref_primary_10_1109_TR_2022_3170063
crossref_primary_10_1177_09544097231195656
crossref_primary_10_3390_pr13010048
crossref_primary_10_1109_ACCESS_2023_3337029
crossref_primary_10_3390_math9233097
crossref_primary_10_3390_e23050527
crossref_primary_10_1016_j_ins_2022_03_013
crossref_primary_10_1016_j_psep_2023_01_021
crossref_primary_10_1016_j_eswa_2020_113755
crossref_primary_10_1016_j_engappai_2024_108995
crossref_primary_10_1109_TII_2017_2768998
crossref_primary_10_1016_j_jlp_2019_103996
crossref_primary_10_3390_s18124359
crossref_primary_10_1016_j_ress_2022_108447
crossref_primary_10_1016_j_ifacol_2022_07_143
crossref_primary_10_1109_ACCESS_2017_2751619
crossref_primary_10_1016_j_jngse_2018_05_006
crossref_primary_10_3390_ijerph192416934
Cites_doi 10.1109/TSMCC.2013.2257752
10.1080/00207543.2011.611543
10.1016/S0957-4174(99)00054-8
10.1016/j.ymssp.2012.09.015
10.1007/s00170-016-8795-x
10.1111/j.1539-6924.2012.01918.x
10.1016/j.energy.2015.10.068
10.1016/j.chemolab.2014.07.009
10.1016/S0957-4174(98)00038-4
10.1109/TCST.2009.2026285
10.1016/j.ymssp.2011.03.006
10.1016/j.engappai.2011.02.018
10.1016/j.cie.2005.06.002
10.1021/ie503530v
10.1002/aic.14013
10.1016/j.engappai.2010.05.002
10.1109/TPWRD.2002.1022804
10.1016/j.ymssp.2015.12.020
10.1016/j.ress.2005.11.035
10.1109/TASE.2013.2287101
10.1007/978-3-642-04492-2_7
10.1109/TII.2012.2214394
10.1016/j.engappai.2010.06.002
10.1016/j.ress.2009.10.007
10.1016/j.oceaneng.2015.10.048
10.1016/S0098-1354(02)00161-8
10.1016/j.eswa.2011.02.171
10.1016/j.jprocont.2010.06.001
10.1109/TIE.2015.2417501
10.1109/TASE.2014.2321011
10.1016/j.jsv.2014.02.038
10.1016/j.knosys.2011.12.011
10.1016/j.applthermaleng.2015.09.121
10.1016/j.asoc.2010.02.019
10.1109/TPWRD.2005.858774
10.1109/TPEL.2016.2608842
10.1016/j.knosys.2014.10.012
10.1016/j.eswa.2014.06.029
10.1016/j.prevetmed.2009.02.009
10.1016/j.ijar.2014.02.005
10.1016/j.isatra.2015.06.011
10.1016/j.apenergy.2012.02.049
10.1109/TIE.2013.2261033
10.1016/j.nucengdes.2015.05.010
10.1016/j.eswa.2013.07.064
10.1007/s10845-008-0083-7
10.1016/j.engappai.2012.08.008
10.1016/j.compchemeng.2005.05.005
10.1080/0951192X.2013.812803
10.1007/s11668-016-0140-z
10.1016/j.ress.2014.10.021
10.1016/j.renene.2015.10.061
10.1109/TDEI.2014.004478
10.1016/j.ijmachtools.2004.06.018
10.1109/TSMCA.2010.2052037
10.3390/s16010076
10.1016/j.parco.2006.11.005
10.1016/0959-1524(96)00031-5
10.1016/j.rser.2016.04.030
10.1016/j.eswa.2006.08.011
10.1177/1077546314547533
10.1016/j.jprocont.2008.06.006
10.1016/j.ymssp.2011.10.018
10.1080/15732471003588387
10.1016/j.ress.2015.06.013
10.1613/jair.3232
10.1109/TII.2009.2033181
10.1016/j.ress.2006.09.012
10.1145/2818302
10.1016/j.engappai.2015.06.010
10.1002/9780470994559
10.1007/s10489-005-3413-x
10.1017/CBO9780511811357
10.1016/j.autcon.2013.10.019
10.1016/j.energy.2015.04.090
10.1109/TVT.2007.912610
10.1007/s00170-014-5918-0
10.1007/s00170-012-4252-7
10.1109/TSMCC.2012.2187188
10.1002/9780470117842
10.1016/j.ress.2012.07.006
10.1109/TFUZZ.2016.2587325
10.1109/TSMCC.2010.2049994
10.1016/j.ces.2011.07.025
10.1016/j.eswa.2007.09.030
10.1016/j.aap.2016.04.020
10.1016/j.apenergy.2013.09.043
10.1016/j.jprocont.2013.08.011
10.1016/j.comcom.2010.07.021
10.1016/S0167-8655(99)00090-2
10.1115/1.4032399
10.1016/j.measurement.2013.05.015
10.1016/j.jprocont.2015.06.004
10.1002/qre.978
10.1016/j.applthermaleng.2015.07.001
10.1016/j.trc.2008.04.001
10.1016/j.enbuild.2012.11.007
10.1016/j.ymssp.2013.02.016
10.1016/S0951-8320(00)00077-6
10.1016/j.asoc.2014.04.007
10.1016/j.ymssp.2011.10.001
10.1016/j.ress.2015.02.007
10.1016/j.ress.2005.11.037
10.1016/j.jmsy.2013.03.001
10.1016/j.jnca.2012.11.004
10.1016/j.jpowsour.2007.09.010
10.1111/risa.12112
10.1109/TIE.2014.2301773
10.1016/j.ymssp.2016.04.019
10.1109/TCST.2009.2020863
10.1016/j.applthermaleng.2016.06.153
10.1016/j.automatica.2011.02.015
10.1016/S0098-1354(02)00162-X
10.1016/j.cie.2016.01.007
10.1057/palgrave.jors.2602388
10.1016/j.sigpro.2013.04.015
10.1007/978-0-387-74101-7
10.1016/j.eswa.2014.10.020
10.19026/rjaset.6.3696
10.1016/j.jngse.2016.06.054
10.1109/TASE.2016.2574875
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2017.2695583
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 2240
ExternalDocumentID 10_1109_TII_2017_2695583
7904628
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51309240
  funderid: 10.13039/501100001809
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education
  grantid: 20130133120007
– fundername: Open Fund of Key Laboratory of Oil & Gas Equipment, Ministry of Education (Southwest Petroleum University)
  grantid: OGE201403-24
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 17CX05022; 14CX02197A
– fundername: Program for Changjiang Scholars and Innovative Research Team in University
  grantid: IRT_14R58
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-267d1eb47ec5639ac4de0b0bb123b7edea028d0c472d68d31c33f38ddd5aec6a3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:18:08 EDT 2025
Tue Jul 01 03:06:08 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Tue Aug 26 17:08:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-267d1eb47ec5639ac4de0b0bb123b7edea028d0c472d68d31c33f38ddd5aec6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1947547545
PQPubID 85507
PageCount 14
ParticipantIDs proquest_journals_1947547545
crossref_primary_10_1109_TII_2017_2695583
crossref_citationtrail_10_1109_TII_2017_2695583
ieee_primary_7904628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref53
ref52
liu (ref59) 2012; 30
ref55
ref54
zhou (ref103) 2011
mcafee (ref126) 2012; 90
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref26
ref25
ref20
ref22
ref21
pourret (ref134) 2008
(ref132) 2012
ref28
ref27
ref29
ref13
ref12
ref128
ref15
ref129
ref14
ref127
ref124
ref99
ref11
ref125
ref98
ref10
ref17
ref16
ref19
ref18
ref133
ref93
ref92
ref131
ref95
ref94
ref130
ref91
ref90
ref89
lerner (ref86) 0
ref85
ref135
ref88
ref87
chiremsel (ref102) 2016; 16
pearl (ref23) 0
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref76
chiremsel (ref58) 2016; 16
nielsen (ref96) 2009
ref2
ref1
li (ref50) 2011; 40
ref71
ref111
ref70
ref112
ref72
ref110
ref68
ref119
kraaijeveld (ref51) 0
ref67
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
koller (ref97) 0
ref114
wang (ref117) 2013; 6
pearl (ref73) 2014
bartram (ref48) 2013
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – start-page: 329
  year: 0
  ident: ref23
  article-title: Bayesian networks: A model of self-activated memory for evidential reasoning
  publication-title: Proc 7th Annu Conf Cogn Sci Soc
– ident: ref4
  doi: 10.1109/TSMCC.2013.2257752
– ident: ref46
  doi: 10.1080/00207543.2011.611543
– ident: ref84
  doi: 10.1016/S0957-4174(99)00054-8
– ident: ref3
  doi: 10.1016/j.ymssp.2012.09.015
– ident: ref72
  doi: 10.1007/s00170-016-8795-x
– ident: ref31
  doi: 10.1111/j.1539-6924.2012.01918.x
– ident: ref27
  doi: 10.1016/j.energy.2015.10.068
– ident: ref93
  doi: 10.1016/j.chemolab.2014.07.009
– ident: ref83
  doi: 10.1016/S0957-4174(98)00038-4
– ident: ref2
  doi: 10.1109/TCST.2009.2026285
– ident: ref15
  doi: 10.1016/j.ymssp.2011.03.006
– ident: ref62
  doi: 10.1016/j.engappai.2011.02.018
– ident: ref87
  doi: 10.1016/j.cie.2005.06.002
– ident: ref70
  doi: 10.1021/ie503530v
– ident: ref92
  doi: 10.1002/aic.14013
– ident: ref63
  doi: 10.1016/j.chemolab.2014.07.009
– ident: ref66
  doi: 10.1016/j.engappai.2010.05.002
– ident: ref79
  doi: 10.1109/TPWRD.2002.1022804
– ident: ref18
  doi: 10.1016/j.ymssp.2015.12.020
– ident: ref130
  doi: 10.1016/j.ress.2005.11.035
– ident: ref112
  doi: 10.1109/TASE.2013.2287101
– ident: ref125
  doi: 10.1007/978-3-642-04492-2_7
– ident: ref14
  doi: 10.1109/TII.2012.2214394
– ident: ref25
  doi: 10.1016/j.engappai.2010.06.002
– ident: ref129
  doi: 10.1016/j.ress.2009.10.007
– ident: ref35
  doi: 10.1016/j.oceaneng.2015.10.048
– ident: ref1
  doi: 10.1016/S0098-1354(02)00161-8
– ident: ref40
  doi: 10.1016/j.eswa.2011.02.171
– ident: ref114
  doi: 10.1016/j.jprocont.2010.06.001
– ident: ref9
  doi: 10.1109/TIE.2015.2417501
– ident: ref60
  doi: 10.1109/TASE.2014.2321011
– ident: ref16
  doi: 10.1016/j.jsv.2014.02.038
– volume: 30
  start-page: 95
  year: 2012
  ident: ref59
  article-title: A search problem in complex diagnostic Bayesian networks
  publication-title: Knowl -Based Syst
  doi: 10.1016/j.knosys.2011.12.011
– ident: ref53
  doi: 10.1016/j.applthermaleng.2015.09.121
– ident: ref45
  doi: 10.1016/j.asoc.2010.02.019
– ident: ref71
  doi: 10.1109/TPWRD.2005.858774
– ident: ref131
  doi: 10.1109/TPEL.2016.2608842
– ident: ref104
  doi: 10.1016/j.knosys.2014.10.012
– ident: ref32
  doi: 10.1016/j.eswa.2014.06.029
– start-page: 175
  year: 0
  ident: ref51
  article-title: Genierate: An interactive generator of diagnostic Bayesian network models
  publication-title: Proc 16th Int Workshop Principles Diagnosis
– ident: ref99
  doi: 10.1016/j.prevetmed.2009.02.009
– ident: ref127
  doi: 10.1016/j.ijar.2014.02.005
– ident: ref28
  doi: 10.1016/j.isatra.2015.06.011
– volume: 90
  start-page: 60
  year: 2012
  ident: ref126
  article-title: Big data: The management revolution
  publication-title: Harvard Bus Rev
– ident: ref116
  doi: 10.1016/j.apenergy.2012.02.049
– ident: ref20
  doi: 10.1109/TIE.2013.2261033
– ident: ref94
  doi: 10.1016/j.nucengdes.2015.05.010
– ident: ref82
  doi: 10.1016/j.eswa.2013.07.064
– ident: ref65
  doi: 10.1007/s10845-008-0083-7
– ident: ref91
  doi: 10.1016/j.engappai.2012.08.008
– ident: ref98
  doi: 10.1016/j.compchemeng.2005.05.005
– ident: ref123
  doi: 10.1080/0951192X.2013.812803
– volume: 16
  start-page: 747
  year: 2016
  ident: ref102
  article-title: Probabilistic fault diagnosis of safety instrumented systems based on fault tree analysis and Bayesian network
  publication-title: Journal of Failure Analysis and Prevention
  doi: 10.1007/s11668-016-0140-z
– ident: ref95
  doi: 10.1016/j.ress.2014.10.021
– ident: ref118
  doi: 10.1016/j.renene.2015.10.061
– ident: ref22
  doi: 10.1109/TDEI.2014.004478
– ident: ref39
  doi: 10.1016/j.ijmachtools.2004.06.018
– ident: ref121
  doi: 10.1109/TSMCA.2010.2052037
– ident: ref108
  doi: 10.3390/s16010076
– ident: ref107
  doi: 10.1016/j.parco.2006.11.005
– ident: ref113
  doi: 10.1016/0959-1524(96)00031-5
– ident: ref115
  doi: 10.1016/j.rser.2016.04.030
– ident: ref21
  doi: 10.1016/j.eswa.2006.08.011
– year: 2013
  ident: ref48
  article-title: System health diagnosis and prognosis using dynamic Bayesian networks
– ident: ref12
  doi: 10.1177/1077546314547533
– ident: ref81
  doi: 10.1016/j.jprocont.2008.06.006
– ident: ref90
  doi: 10.1016/j.ymssp.2011.10.018
– ident: ref122
  doi: 10.1080/15732471003588387
– ident: ref29
  doi: 10.1016/j.ress.2015.06.013
– volume: 40
  start-page: 729
  year: 2011
  ident: ref50
  article-title: Exploiting structure in weighted model counting approaches to probabilistic inference
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.3232
– ident: ref13
  doi: 10.1109/TII.2009.2033181
– ident: ref88
  doi: 10.1016/j.ress.2006.09.012
– ident: ref105
  doi: 10.1145/2818302
– ident: ref76
  doi: 10.1016/j.engappai.2015.06.010
– year: 2008
  ident: ref134
  publication-title: Bayesian Networks A Practical Guide to Applications
  doi: 10.1002/9780470994559
– ident: ref85
  doi: 10.1007/s10489-005-3413-x
– start-page: 531
  year: 0
  ident: ref86
  article-title: Bayesian fault detection and diagnosis in dynamic systems
  publication-title: Proc AAAI/IAAI
– ident: ref38
  doi: 10.1017/CBO9780511811357
– ident: ref52
  doi: 10.1016/j.autcon.2013.10.019
– ident: ref119
  doi: 10.1016/j.energy.2015.04.090
– ident: ref56
  doi: 10.1109/TVT.2007.912610
– ident: ref69
  doi: 10.1007/s00170-014-5918-0
– ident: ref111
  doi: 10.1007/s00170-012-4252-7
– ident: ref74
  doi: 10.1109/TSMCC.2012.2187188
– ident: ref135
  doi: 10.1002/9780470117842
– ident: ref26
  doi: 10.1016/j.ress.2012.07.006
– ident: ref109
  doi: 10.1109/TFUZZ.2016.2587325
– ident: ref57
  doi: 10.1109/TSMCC.2010.2049994
– ident: ref89
  doi: 10.1016/j.ces.2011.07.025
– ident: ref100
  doi: 10.1016/j.eswa.2007.09.030
– ident: ref33
  doi: 10.1016/j.aap.2016.04.020
– start-page: 691
  year: 2011
  ident: ref103
  article-title: Application of Bayesian network in failure diagnosis of hydro-electrical simulation system
  publication-title: Advances in Intelligent Decision Technologies
– year: 2009
  ident: ref96
  publication-title: Bayesian Networks and Decision Graphs
– ident: ref133
  doi: 10.1017/CBO9780511811357
– ident: ref42
  doi: 10.1016/j.apenergy.2013.09.043
– year: 2014
  ident: ref73
  publication-title: Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference
– ident: ref8
  doi: 10.1016/j.jprocont.2013.08.011
– ident: ref47
  doi: 10.1016/j.comcom.2010.07.021
– ident: ref61
  doi: 10.1016/S0167-8655(99)00090-2
– ident: ref34
  doi: 10.1115/1.4032399
– ident: ref17
  doi: 10.1016/j.measurement.2013.05.015
– ident: ref11
  doi: 10.1016/j.jprocont.2015.06.004
– ident: ref44
  doi: 10.1002/qre.978
– ident: ref78
  doi: 10.1016/j.applthermaleng.2015.07.001
– ident: ref54
  doi: 10.1016/j.trc.2008.04.001
– ident: ref41
  doi: 10.1016/j.enbuild.2012.11.007
– ident: ref19
  doi: 10.1016/j.ymssp.2013.02.016
– ident: ref37
  doi: 10.1016/S0951-8320(00)00077-6
– ident: ref110
  doi: 10.1016/j.asoc.2014.04.007
– start-page: 302
  year: 0
  ident: ref97
  article-title: Object-oriented Bayesian networks
  publication-title: Proc 13th Conf Uncertainty Artif Intell
– ident: ref80
  doi: 10.1016/j.ymssp.2011.10.001
– ident: ref30
  doi: 10.1016/j.ress.2015.02.007
– ident: ref24
  doi: 10.1016/j.ress.2005.11.037
– ident: ref101
  doi: 10.1016/j.jmsy.2013.03.001
– ident: ref124
  doi: 10.1016/j.jnca.2012.11.004
– year: 2012
  ident: ref132
  publication-title: Assessing the Reliability of Complex Models Mathematical and Statistical Foundations of Verification Validation and Uncertainty Quantification
– volume: 16
  start-page: 747
  year: 2016
  ident: ref58
  article-title: Probabilistic fault diagnosis of safety instrumented systems based on fault tree analysis and Bayesian network
  publication-title: Journal of Failure Analysis and Prevention
  doi: 10.1007/s11668-016-0140-z
– ident: ref10
  doi: 10.1109/TIE.2015.2417501
– ident: ref120
  doi: 10.1016/j.jpowsour.2007.09.010
– ident: ref77
  doi: 10.1111/risa.12112
– ident: ref7
  doi: 10.1109/TIE.2014.2301773
– ident: ref49
  doi: 10.1016/j.ymssp.2016.04.019
– ident: ref106
  doi: 10.1109/TCST.2009.2020863
– ident: ref128
  doi: 10.1016/j.applthermaleng.2016.06.153
– ident: ref68
  doi: 10.1016/j.automatica.2011.02.015
– ident: ref6
  doi: 10.1016/S0098-1354(02)00162-X
– ident: ref36
  doi: 10.1016/j.cie.2016.01.007
– ident: ref67
  doi: 10.1057/palgrave.jors.2602388
– ident: ref5
  doi: 10.1016/j.sigpro.2013.04.015
– ident: ref75
  doi: 10.1007/978-0-387-74101-7
– ident: ref43
  doi: 10.1016/j.eswa.2014.10.020
– volume: 6
  start-page: 3065
  year: 2013
  ident: ref117
  article-title: Research on wind turbine generator dynamic reliability test system based on feature recognition
  publication-title: Res J Appl Sci Eng Technol
  doi: 10.19026/rjaset.6.3696
– ident: ref64
  doi: 10.1016/j.jngse.2016.06.054
– ident: ref55
  doi: 10.1109/TASE.2016.2574875
SSID ssj0037039
Score 2.613955
Snippet Fault diagnosis is useful in helping technicians detect, isolate, and identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2227
SubjectTerms Analytical models
Bayesian analysis
Bayesian networks (BNs)
Fault detection
Fault diagnosis
Inference algorithms
Learning systems
Maintenance
Mathematical model
Modelling
Probability
Title Bayesian Networks in Fault Diagnosis
URI https://ieeexplore.ieee.org/document/7904628
https://www.proquest.com/docview/1947547545
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwED6STO3QV1qaNi0eshTqxLYsKxr7CkmhmRLIZvQ4Q2hISuMM7a-vJNuhL0rBgzGSEZ9OujvpuzuAjspYpBMRGeGNjYPCdezLzCw8TlmGWmhG0bEtxslwGj_O6KwG19tYGER05DPs2ld3l69XamOPynqMu1DKOtSN41bEalW7LjGSy11uVBr6JApIdSUZ8N5kNLIcLtaNEk5pn3xRQa6myo-N2GmXwT48VeMqSCXP3U0uu-r9W8rG_w78APZKM9O7KeTiEGq4PILdT8kHm9C5FW9oQyi9cUEFX3vzpTcQm0Xu3RcEvPn6GKaDh8nd0C9rJvgq4mHuRwnTIcqYoaLG-BAq1hjIQEqjoSRDjcIYFDpQsZ2iviahIiQjfa01FagSQU6gsVwt8RS8IAvtZ8KQRrGURAhtXGnajwSTkmZhC3oVjKkqE4rbuhaL1DkWAU8N8KkFPi2Bb8HVtsdLkUzjj7ZNi-O2XQlhC9rVTKXlalunIY8ZtQ89-73XOezYfxckvDY08tcNXhhjIpeXToo-AC8FxP4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGICBN6JQIAMLEmkTO47rkVfV8uhUJLbIj4uEQAXRdIBfj-0kFS8hpAxRZCvW57Pvzv7uDuBI55yYVBIrvIl1UIRJQpXbhScYz9FIwxl6tsUw7d8lV_fsvgEns1gYRPTkM2y7V3-Xb5711B2VdbjwoZRzsGD1PiNltFa971Iru8JnR2VxSElE60vJSHRGg4FjcfE2SQVjXfpFCfmqKj-2Yq9feqtwW4-spJU8tqeFauv3b0kb_zv0NVipDM3gtJSMdWjgeAOWP6Uf3ISjM_mGLogyGJZk8EnwMA56cvpUBBclBe9hsgV3vcvReT-sqiaEmoi4CEnKTYwq4aiZNT-kTgxGKlLK6ijF0aC0JoWJdOImqWtorCnNadcYwyTqVNJtmB8_j3EHgiiP3WfKkZFEKSqlsc406xLJlWJ53IRODWOmq5TirrLFU-Zdi0hkFvjMAZ9VwDfheNbjpUyn8UfbTYfjrF0FYRNa9Uxl1XqbZLFIOHMP2_291yEs9ke3N9nNYHi9B0vuPyUlrwXzxesU961pUagDL1Efp7zISA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Networks+in+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Cai%2C+Baoping&rft.au=Huang%2C+Lei&rft.au=Xie%2C+Min&rft.date=2017-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=13&rft.issue=5&rft.spage=2227&rft_id=info:doi/10.1109%2FTII.2017.2695583&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon