Bayesian Networks in Fault Diagnosis
Fault diagnosis is useful in helping technicians detect, isolate, and identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This paper presents bibl...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 13; no. 5; pp. 2227 - 2240 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fault diagnosis is useful in helping technicians detect, isolate, and identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This paper presents bibliographical review on use of BNs in fault diagnosis in the last decades with focus on engineering systems. This work also presents general procedure of fault diagnosis modeling with BNs; processes include BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification. The paper provides series of classification schemes for BNs for fault diagnosis, BNs combined with other techniques, and domain of fault diagnosis with BN. This study finally explores current gaps and challenges and several directions for future research. |
---|---|
AbstractList | Fault diagnosis is useful in helping technicians detect, isolate, and identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This paper presents bibliographical review on use of BNs in fault diagnosis in the last decades with focus on engineering systems. This work also presents general procedure of fault diagnosis modeling with BNs; processes include BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification. The paper provides series of classification schemes for BNs for fault diagnosis, BNs combined with other techniques, and domain of fault diagnosis with BN. This study finally explores current gaps and challenges and several directions for future research. |
Author | Min Xie Baoping Cai Lei Huang |
Author_xml | – sequence: 1 givenname: Baoping surname: Cai fullname: Cai, Baoping – sequence: 2 givenname: Lei surname: Huang fullname: Huang, Lei – sequence: 3 givenname: Min surname: Xie fullname: Xie, Min |
BookMark | eNp9kEFLAzEQRoNUsK3eBS8Let06STab3aNWq4Wil3oO2WQqqTWpyS7Sf--WFg8ehIGZw_dmmDciAx88EnJJYUIp1LfL-XzCgMoJK2shKn5ChrQuaA4gYNDPQtCcM-BnZJTSGoBL4PWQ3NzrHSanffaC7XeIHylzPpvpbtNmD06_-5BcOienK71JeHHsY_I2e1xOn_PF69N8erfIDatpm7NSWopNIdGIktfaFBahgaahjDcSLWpglQVTSGbLynJqOF_xylorNJpS8zG5PuzdxvDVYWrVOnTR9ydV_4sU-xJ9Cg4pE0NKEVdqG92njjtFQe1dqN6F2rtQRxc9Uv5BjGt164Jvo3ab_8CrA-gQ8feOrKEoWcV_AE6PbI8 |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1016_j_ijepes_2020_105961 crossref_primary_10_1016_j_ress_2021_107902 crossref_primary_10_1016_j_buildenv_2021_107850 crossref_primary_10_1109_JSEN_2023_3331837 crossref_primary_10_1109_ACCESS_2017_2764518 crossref_primary_10_1109_TIE_2017_2786253 crossref_primary_10_3390_app14167191 crossref_primary_10_1016_j_psep_2023_05_025 crossref_primary_10_1051_e3sconf_202018202006 crossref_primary_10_1109_TNNLS_2019_2953177 crossref_primary_10_1016_j_conengprac_2020_104344 crossref_primary_10_1109_ACCESS_2019_2956264 crossref_primary_10_1109_TII_2020_2990168 crossref_primary_10_1016_j_comnet_2022_109485 crossref_primary_10_1016_j_eswa_2024_123297 crossref_primary_10_1049_rpg2_13107 crossref_primary_10_1007_s10462_022_10351_w crossref_primary_10_1016_j_compeleceng_2020_106635 crossref_primary_10_1016_j_microrel_2021_114457 crossref_primary_10_1016_j_engappai_2023_106138 crossref_primary_10_1016_j_isatra_2018_10_044 crossref_primary_10_3390_e20090626 crossref_primary_10_1016_j_ymssp_2021_107967 crossref_primary_10_1016_j_engappai_2020_103920 crossref_primary_10_1016_j_jprocont_2020_06_011 crossref_primary_10_1016_j_psep_2020_11_026 crossref_primary_10_1016_j_conengprac_2022_105304 crossref_primary_10_1109_JSYST_2020_2965400 crossref_primary_10_1039_D3EW00619K crossref_primary_10_1016_j_jlp_2020_104267 crossref_primary_10_1016_j_knosys_2022_109773 crossref_primary_10_3390_sym16040455 crossref_primary_10_1016_j_oceaneng_2018_08_052 crossref_primary_10_1007_s11280_019_00705_w crossref_primary_10_3390_e25030442 crossref_primary_10_1016_j_ress_2023_109410 crossref_primary_10_1109_TII_2023_3264631 crossref_primary_10_1016_j_compchemeng_2022_107813 crossref_primary_10_1016_j_oceaneng_2024_116818 crossref_primary_10_3390_app12147032 crossref_primary_10_1177_1748006X18800630 crossref_primary_10_1109_ACCESS_2018_2810386 crossref_primary_10_2514_1_I010524 crossref_primary_10_1016_j_oceaneng_2022_112455 crossref_primary_10_1021_acs_iecr_9b05803 crossref_primary_10_1109_ACCESS_2019_2893267 crossref_primary_10_1016_j_jlp_2019_103947 crossref_primary_10_1186_s13635_023_00149_w crossref_primary_10_3390_app9204248 crossref_primary_10_1080_00207543_2023_2271093 crossref_primary_10_1088_1361_6501_ab79c9 crossref_primary_10_1016_j_ress_2021_107805 crossref_primary_10_1016_j_asoc_2024_111594 crossref_primary_10_1016_j_nucengdes_2024_113370 crossref_primary_10_14778_3551793_3551810 crossref_primary_10_3233_JIFS_236850 crossref_primary_10_1016_j_engappai_2019_103346 crossref_primary_10_1109_JIOT_2021_3096637 crossref_primary_10_1088_1361_6501_ac97b4 crossref_primary_10_1109_TII_2018_2868364 crossref_primary_10_1016_j_jmsy_2021_05_016 crossref_primary_10_1109_ACCESS_2018_2813418 crossref_primary_10_1016_j_ces_2019_01_060 crossref_primary_10_1016_j_energy_2021_120549 crossref_primary_10_1016_j_jmsy_2023_08_005 crossref_primary_10_1016_j_anucene_2023_109932 crossref_primary_10_1109_JSEN_2022_3153654 crossref_primary_10_17531_ein_2020_1_8 crossref_primary_10_1109_TCYB_2020_3025800 crossref_primary_10_1016_j_ifacol_2020_12_859 crossref_primary_10_1002_cjce_23642 crossref_primary_10_1002_int_22659 crossref_primary_10_1016_j_oceaneng_2024_119309 crossref_primary_10_3390_s19020376 crossref_primary_10_1109_ACCESS_2019_2927039 crossref_primary_10_1002_cjce_24470 crossref_primary_10_1016_j_chemolab_2019_103827 crossref_primary_10_1016_j_renene_2020_07_062 crossref_primary_10_1016_j_petrol_2022_111124 crossref_primary_10_1016_j_ress_2020_106855 crossref_primary_10_17531_ein_2022_1_3 crossref_primary_10_3390_s19010026 crossref_primary_10_1016_j_epsr_2025_111572 crossref_primary_10_1016_j_softx_2019_100309 crossref_primary_10_1109_TII_2024_3438240 crossref_primary_10_1109_ACCESS_2019_2952143 crossref_primary_10_1016_j_ress_2023_109206 crossref_primary_10_3390_a13030064 crossref_primary_10_1016_j_apor_2020_102192 crossref_primary_10_1155_2021_2744264 crossref_primary_10_1007_s10845_024_02376_5 crossref_primary_10_1115_1_4043922 crossref_primary_10_1002_qre_3706 crossref_primary_10_1016_j_ress_2021_107438 crossref_primary_10_1109_JSEN_2022_3141932 crossref_primary_10_1016_j_oceaneng_2017_08_035 crossref_primary_10_1109_JSEN_2018_2885377 crossref_primary_10_1016_j_ymssp_2023_110813 crossref_primary_10_1109_ACCESS_2018_2833851 crossref_primary_10_1016_j_ress_2020_106963 crossref_primary_10_1002_qre_3271 crossref_primary_10_3390_machines9110298 crossref_primary_10_1016_j_cie_2023_109421 crossref_primary_10_1016_j_conengprac_2019_07_017 crossref_primary_10_1109_TMECH_2020_2977857 crossref_primary_10_1002_qre_3232 crossref_primary_10_1007_s10845_018_1412_0 crossref_primary_10_1016_j_compind_2021_103401 crossref_primary_10_1109_TII_2020_2967556 crossref_primary_10_1002_qre_2947 crossref_primary_10_1016_j_engappai_2020_103631 crossref_primary_10_1016_j_measurement_2020_108122 crossref_primary_10_1007_s12053_020_09914_z crossref_primary_10_1109_ACCESS_2018_2816165 crossref_primary_10_1109_ACCESS_2017_2764538 crossref_primary_10_1109_ACCESS_2018_2851374 crossref_primary_10_1016_j_aei_2021_101480 crossref_primary_10_1016_j_ress_2017_12_021 crossref_primary_10_1109_TPWRS_2021_3056314 crossref_primary_10_3390_en10121961 crossref_primary_10_1007_s00202_024_02472_y crossref_primary_10_3390_su15097382 crossref_primary_10_1177_1748006X221088158 crossref_primary_10_1016_j_ijepes_2021_107317 crossref_primary_10_1016_j_engappai_2023_106673 crossref_primary_10_1016_j_cie_2017_12_027 crossref_primary_10_1016_j_engappai_2019_06_001 crossref_primary_10_1177_1748006X231171449 crossref_primary_10_1109_TMECH_2023_3300359 crossref_primary_10_1016_j_jii_2023_100469 crossref_primary_10_1016_j_ress_2020_107035 crossref_primary_10_1016_j_jmsy_2024_06_001 crossref_primary_10_1016_j_eswa_2023_120536 crossref_primary_10_1088_1361_6501_ad24b5 crossref_primary_10_1051_jnwpu_20224040732 crossref_primary_10_3390_fi16110396 crossref_primary_10_1016_j_engfailanal_2020_104917 crossref_primary_10_1016_j_ress_2019_106546 crossref_primary_10_1007_s10845_024_02556_3 crossref_primary_10_1007_s12559_021_09891_0 crossref_primary_10_1016_j_iot_2023_100901 crossref_primary_10_3390_pr10050909 crossref_primary_10_1016_j_ress_2020_107393 crossref_primary_10_1080_17445302_2021_2012015 crossref_primary_10_1016_j_engappai_2023_106768 crossref_primary_10_1109_TMECH_2019_2917749 crossref_primary_10_1108_IMDS_07_2021_0419 crossref_primary_10_1016_j_comnet_2021_108037 crossref_primary_10_1007_s00521_021_05692_6 crossref_primary_10_1109_TII_2019_2915559 crossref_primary_10_1016_j_engfailanal_2021_105225 crossref_primary_10_11648_j_ijmea_20241203_11 crossref_primary_10_1051_jnwpu_20213920375 crossref_primary_10_1155_2018_2746871 crossref_primary_10_1016_j_ress_2022_108433 crossref_primary_10_59782_aai_v1i2_287 crossref_primary_10_1109_ACCESS_2019_2924273 crossref_primary_10_1109_TII_2022_3180389 crossref_primary_10_1016_j_jmsy_2023_07_006 crossref_primary_10_1177_0959651819884747 crossref_primary_10_1016_j_psep_2021_03_031 crossref_primary_10_1080_02533839_2024_2308257 crossref_primary_10_3390_s20143952 crossref_primary_10_1007_s11069_024_07005_1 crossref_primary_10_1016_j_ijrefrig_2024_02_019 crossref_primary_10_1016_j_jprocont_2020_12_007 crossref_primary_10_1109_ACCESS_2020_2966582 crossref_primary_10_1109_TASE_2019_2915286 crossref_primary_10_1016_j_ijepes_2018_05_029 crossref_primary_10_1109_ACCESS_2019_2898213 crossref_primary_10_3390_app10030770 crossref_primary_10_1080_21642583_2021_2024915 crossref_primary_10_1109_TCST_2018_2867996 crossref_primary_10_1142_S1793962323410313 crossref_primary_10_1016_j_measurement_2019_06_021 crossref_primary_10_1109_TIM_2021_3080402 crossref_primary_10_1016_j_jmsy_2021_03_012 crossref_primary_10_1016_j_geoen_2024_212734 crossref_primary_10_1109_TASE_2023_3325565 crossref_primary_10_1016_j_est_2021_102740 crossref_primary_10_3139_104_112034 crossref_primary_10_1016_j_enbuild_2020_110492 crossref_primary_10_1088_1757_899X_274_1_012120 crossref_primary_10_1109_ACCESS_2024_3481331 crossref_primary_10_1002_dac_4026 crossref_primary_10_1109_ACCESS_2024_3394046 crossref_primary_10_1016_j_anucene_2020_107767 crossref_primary_10_1515_auto_2020_0064 crossref_primary_10_1016_j_compind_2024_104131 crossref_primary_10_1007_s10846_020_01293_y crossref_primary_10_1016_j_measurement_2018_05_084 crossref_primary_10_1002_sys_21609 crossref_primary_10_3389_fenrg_2021_696785 crossref_primary_10_1016_j_conengprac_2020_104637 crossref_primary_10_1016_j_conengprac_2020_104522 crossref_primary_10_1016_j_ress_2020_107243 crossref_primary_10_1097_SIH_0000000000000510 crossref_primary_10_1080_0951192X_2022_2025623 crossref_primary_10_1016_j_jprocont_2019_04_001 crossref_primary_10_1016_j_ress_2025_110949 crossref_primary_10_1109_TII_2020_3025314 crossref_primary_10_1016_j_cor_2024_106598 crossref_primary_10_1109_TII_2022_3146940 crossref_primary_10_1103_PhysRevApplied_16_044057 crossref_primary_10_1088_1757_899X_1043_3_032062 crossref_primary_10_18698_0236_3933_2021_3_100_112 crossref_primary_10_1186_s40537_019_0173_8 crossref_primary_10_3390_jsan13050057 crossref_primary_10_1109_TASE_2020_3017755 crossref_primary_10_1016_j_anucene_2019_107181 crossref_primary_10_1109_TII_2020_3012024 crossref_primary_10_3390_electronics11233870 crossref_primary_10_1109_TII_2018_2858281 crossref_primary_10_1109_TSMC_2022_3152784 crossref_primary_10_1155_2019_3264969 crossref_primary_10_1016_j_conengprac_2020_104628 crossref_primary_10_1109_TSMC_2022_3204777 crossref_primary_10_1016_j_jlp_2024_105530 crossref_primary_10_1016_j_oceaneng_2024_116681 crossref_primary_10_1016_j_ress_2024_110192 crossref_primary_10_1016_j_psep_2019_09_003 crossref_primary_10_1061_JCEMD4_COENG_15123 crossref_primary_10_17531_ein_2021_3_9 crossref_primary_10_1016_j_jii_2024_100725 crossref_primary_10_12677_CSA_2020_103052 crossref_primary_10_1109_TMECH_2021_3065981 crossref_primary_10_1007_s12273_021_0849_9 crossref_primary_10_1109_ACCESS_2018_2799853 crossref_primary_10_3390_e21040404 crossref_primary_10_1016_j_measurement_2019_04_062 crossref_primary_10_1021_acs_iecr_2c02320 crossref_primary_10_3390_machines11090874 crossref_primary_10_1016_j_psep_2018_12_006 crossref_primary_10_1051_ijmqe_2023009 crossref_primary_10_1016_j_artint_2023_103998 crossref_primary_10_1016_j_simpat_2019_101981 crossref_primary_10_3390_su11020306 crossref_primary_10_1109_JSEN_2024_3354415 crossref_primary_10_1088_1742_6596_2242_1_012032 crossref_primary_10_1109_TII_2020_3021688 crossref_primary_10_47836_pjst_30_2_26 crossref_primary_10_1080_10589759_2024_2440818 crossref_primary_10_1016_j_ress_2023_109602 crossref_primary_10_3390_ijerph16030492 crossref_primary_10_2174_2210298102666220318100051 crossref_primary_10_1109_TR_2018_2822479 crossref_primary_10_1016_j_jlp_2020_104108 crossref_primary_10_1021_acsomega_3c09122 crossref_primary_10_1016_j_ress_2021_107837 crossref_primary_10_1109_TMECH_2020_2970231 crossref_primary_10_1016_j_jlp_2018_01_014 crossref_primary_10_1109_TASE_2020_2974130 crossref_primary_10_1016_j_asoc_2020_107060 crossref_primary_10_1016_j_ress_2019_106727 crossref_primary_10_1016_j_asoc_2024_111955 crossref_primary_10_1109_OJSE_2022_3222731 crossref_primary_10_1109_TNNLS_2022_3173337 crossref_primary_10_1016_j_psep_2018_06_012 crossref_primary_10_1021_acs_iecr_0c00624 crossref_primary_10_1038_s41467_020_17419_7 crossref_primary_10_1016_j_jprocont_2021_05_003 crossref_primary_10_1007_s10845_020_01680_0 crossref_primary_10_1109_TII_2023_3264111 crossref_primary_10_1007_s40435_018_0412_4 crossref_primary_10_1515_revce_2020_0054 crossref_primary_10_1109_TII_2023_3306355 crossref_primary_10_1016_j_engappai_2023_107357 crossref_primary_10_1016_j_ress_2020_107329 crossref_primary_10_3233_JIFS_192039 crossref_primary_10_3390_s21227633 crossref_primary_10_1016_j_ssci_2017_12_033 crossref_primary_10_1016_j_apenergy_2022_120050 crossref_primary_10_3390_pr10020335 crossref_primary_10_1109_TR_2022_3170063 crossref_primary_10_1177_09544097231195656 crossref_primary_10_3390_pr13010048 crossref_primary_10_1109_ACCESS_2023_3337029 crossref_primary_10_3390_math9233097 crossref_primary_10_3390_e23050527 crossref_primary_10_1016_j_ins_2022_03_013 crossref_primary_10_1016_j_psep_2023_01_021 crossref_primary_10_1016_j_eswa_2020_113755 crossref_primary_10_1016_j_engappai_2024_108995 crossref_primary_10_1109_TII_2017_2768998 crossref_primary_10_1016_j_jlp_2019_103996 crossref_primary_10_3390_s18124359 crossref_primary_10_1016_j_ress_2022_108447 crossref_primary_10_1016_j_ifacol_2022_07_143 crossref_primary_10_1109_ACCESS_2017_2751619 crossref_primary_10_1016_j_jngse_2018_05_006 crossref_primary_10_3390_ijerph192416934 |
Cites_doi | 10.1109/TSMCC.2013.2257752 10.1080/00207543.2011.611543 10.1016/S0957-4174(99)00054-8 10.1016/j.ymssp.2012.09.015 10.1007/s00170-016-8795-x 10.1111/j.1539-6924.2012.01918.x 10.1016/j.energy.2015.10.068 10.1016/j.chemolab.2014.07.009 10.1016/S0957-4174(98)00038-4 10.1109/TCST.2009.2026285 10.1016/j.ymssp.2011.03.006 10.1016/j.engappai.2011.02.018 10.1016/j.cie.2005.06.002 10.1021/ie503530v 10.1002/aic.14013 10.1016/j.engappai.2010.05.002 10.1109/TPWRD.2002.1022804 10.1016/j.ymssp.2015.12.020 10.1016/j.ress.2005.11.035 10.1109/TASE.2013.2287101 10.1007/978-3-642-04492-2_7 10.1109/TII.2012.2214394 10.1016/j.engappai.2010.06.002 10.1016/j.ress.2009.10.007 10.1016/j.oceaneng.2015.10.048 10.1016/S0098-1354(02)00161-8 10.1016/j.eswa.2011.02.171 10.1016/j.jprocont.2010.06.001 10.1109/TIE.2015.2417501 10.1109/TASE.2014.2321011 10.1016/j.jsv.2014.02.038 10.1016/j.knosys.2011.12.011 10.1016/j.applthermaleng.2015.09.121 10.1016/j.asoc.2010.02.019 10.1109/TPWRD.2005.858774 10.1109/TPEL.2016.2608842 10.1016/j.knosys.2014.10.012 10.1016/j.eswa.2014.06.029 10.1016/j.prevetmed.2009.02.009 10.1016/j.ijar.2014.02.005 10.1016/j.isatra.2015.06.011 10.1016/j.apenergy.2012.02.049 10.1109/TIE.2013.2261033 10.1016/j.nucengdes.2015.05.010 10.1016/j.eswa.2013.07.064 10.1007/s10845-008-0083-7 10.1016/j.engappai.2012.08.008 10.1016/j.compchemeng.2005.05.005 10.1080/0951192X.2013.812803 10.1007/s11668-016-0140-z 10.1016/j.ress.2014.10.021 10.1016/j.renene.2015.10.061 10.1109/TDEI.2014.004478 10.1016/j.ijmachtools.2004.06.018 10.1109/TSMCA.2010.2052037 10.3390/s16010076 10.1016/j.parco.2006.11.005 10.1016/0959-1524(96)00031-5 10.1016/j.rser.2016.04.030 10.1016/j.eswa.2006.08.011 10.1177/1077546314547533 10.1016/j.jprocont.2008.06.006 10.1016/j.ymssp.2011.10.018 10.1080/15732471003588387 10.1016/j.ress.2015.06.013 10.1613/jair.3232 10.1109/TII.2009.2033181 10.1016/j.ress.2006.09.012 10.1145/2818302 10.1016/j.engappai.2015.06.010 10.1002/9780470994559 10.1007/s10489-005-3413-x 10.1017/CBO9780511811357 10.1016/j.autcon.2013.10.019 10.1016/j.energy.2015.04.090 10.1109/TVT.2007.912610 10.1007/s00170-014-5918-0 10.1007/s00170-012-4252-7 10.1109/TSMCC.2012.2187188 10.1002/9780470117842 10.1016/j.ress.2012.07.006 10.1109/TFUZZ.2016.2587325 10.1109/TSMCC.2010.2049994 10.1016/j.ces.2011.07.025 10.1016/j.eswa.2007.09.030 10.1016/j.aap.2016.04.020 10.1016/j.apenergy.2013.09.043 10.1016/j.jprocont.2013.08.011 10.1016/j.comcom.2010.07.021 10.1016/S0167-8655(99)00090-2 10.1115/1.4032399 10.1016/j.measurement.2013.05.015 10.1016/j.jprocont.2015.06.004 10.1002/qre.978 10.1016/j.applthermaleng.2015.07.001 10.1016/j.trc.2008.04.001 10.1016/j.enbuild.2012.11.007 10.1016/j.ymssp.2013.02.016 10.1016/S0951-8320(00)00077-6 10.1016/j.asoc.2014.04.007 10.1016/j.ymssp.2011.10.001 10.1016/j.ress.2015.02.007 10.1016/j.ress.2005.11.037 10.1016/j.jmsy.2013.03.001 10.1016/j.jnca.2012.11.004 10.1016/j.jpowsour.2007.09.010 10.1111/risa.12112 10.1109/TIE.2014.2301773 10.1016/j.ymssp.2016.04.019 10.1109/TCST.2009.2020863 10.1016/j.applthermaleng.2016.06.153 10.1016/j.automatica.2011.02.015 10.1016/S0098-1354(02)00162-X 10.1016/j.cie.2016.01.007 10.1057/palgrave.jors.2602388 10.1016/j.sigpro.2013.04.015 10.1007/978-0-387-74101-7 10.1016/j.eswa.2014.10.020 10.19026/rjaset.6.3696 10.1016/j.jngse.2016.06.054 10.1109/TASE.2016.2574875 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2017.2695583 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 2240 |
ExternalDocumentID | 10_1109_TII_2017_2695583 7904628 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51309240 funderid: 10.13039/501100001809 – fundername: Specialized Research Fund for the Doctoral Program of Higher Education grantid: 20130133120007 – fundername: Open Fund of Key Laboratory of Oil & Gas Equipment, Ministry of Education (Southwest Petroleum University) grantid: OGE201403-24 – fundername: Fundamental Research Funds for the Central Universities grantid: 17CX05022; 14CX02197A – fundername: Program for Changjiang Scholars and Innovative Research Team in University grantid: IRT_14R58 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-267d1eb47ec5639ac4de0b0bb123b7edea028d0c472d68d31c33f38ddd5aec6a3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:18:08 EDT 2025 Tue Jul 01 03:06:08 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Tue Aug 26 17:08:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-267d1eb47ec5639ac4de0b0bb123b7edea028d0c472d68d31c33f38ddd5aec6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1947547545 |
PQPubID | 85507 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1947547545 crossref_primary_10_1109_TII_2017_2695583 crossref_citationtrail_10_1109_TII_2017_2695583 ieee_primary_7904628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref53 ref52 liu (ref59) 2012; 30 ref55 ref54 zhou (ref103) 2011 mcafee (ref126) 2012; 90 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref26 ref25 ref20 ref22 ref21 pourret (ref134) 2008 (ref132) 2012 ref28 ref27 ref29 ref13 ref12 ref128 ref15 ref129 ref14 ref127 ref124 ref99 ref11 ref125 ref98 ref10 ref17 ref16 ref19 ref18 ref133 ref93 ref92 ref131 ref95 ref94 ref130 ref91 ref90 ref89 lerner (ref86) 0 ref85 ref135 ref88 ref87 chiremsel (ref102) 2016; 16 pearl (ref23) 0 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref76 chiremsel (ref58) 2016; 16 nielsen (ref96) 2009 ref2 ref1 li (ref50) 2011; 40 ref71 ref111 ref70 ref112 ref72 ref110 ref68 ref119 kraaijeveld (ref51) 0 ref67 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 koller (ref97) 0 ref114 wang (ref117) 2013; 6 pearl (ref73) 2014 bartram (ref48) 2013 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – start-page: 329 year: 0 ident: ref23 article-title: Bayesian networks: A model of self-activated memory for evidential reasoning publication-title: Proc 7th Annu Conf Cogn Sci Soc – ident: ref4 doi: 10.1109/TSMCC.2013.2257752 – ident: ref46 doi: 10.1080/00207543.2011.611543 – ident: ref84 doi: 10.1016/S0957-4174(99)00054-8 – ident: ref3 doi: 10.1016/j.ymssp.2012.09.015 – ident: ref72 doi: 10.1007/s00170-016-8795-x – ident: ref31 doi: 10.1111/j.1539-6924.2012.01918.x – ident: ref27 doi: 10.1016/j.energy.2015.10.068 – ident: ref93 doi: 10.1016/j.chemolab.2014.07.009 – ident: ref83 doi: 10.1016/S0957-4174(98)00038-4 – ident: ref2 doi: 10.1109/TCST.2009.2026285 – ident: ref15 doi: 10.1016/j.ymssp.2011.03.006 – ident: ref62 doi: 10.1016/j.engappai.2011.02.018 – ident: ref87 doi: 10.1016/j.cie.2005.06.002 – ident: ref70 doi: 10.1021/ie503530v – ident: ref92 doi: 10.1002/aic.14013 – ident: ref63 doi: 10.1016/j.chemolab.2014.07.009 – ident: ref66 doi: 10.1016/j.engappai.2010.05.002 – ident: ref79 doi: 10.1109/TPWRD.2002.1022804 – ident: ref18 doi: 10.1016/j.ymssp.2015.12.020 – ident: ref130 doi: 10.1016/j.ress.2005.11.035 – ident: ref112 doi: 10.1109/TASE.2013.2287101 – ident: ref125 doi: 10.1007/978-3-642-04492-2_7 – ident: ref14 doi: 10.1109/TII.2012.2214394 – ident: ref25 doi: 10.1016/j.engappai.2010.06.002 – ident: ref129 doi: 10.1016/j.ress.2009.10.007 – ident: ref35 doi: 10.1016/j.oceaneng.2015.10.048 – ident: ref1 doi: 10.1016/S0098-1354(02)00161-8 – ident: ref40 doi: 10.1016/j.eswa.2011.02.171 – ident: ref114 doi: 10.1016/j.jprocont.2010.06.001 – ident: ref9 doi: 10.1109/TIE.2015.2417501 – ident: ref60 doi: 10.1109/TASE.2014.2321011 – ident: ref16 doi: 10.1016/j.jsv.2014.02.038 – volume: 30 start-page: 95 year: 2012 ident: ref59 article-title: A search problem in complex diagnostic Bayesian networks publication-title: Knowl -Based Syst doi: 10.1016/j.knosys.2011.12.011 – ident: ref53 doi: 10.1016/j.applthermaleng.2015.09.121 – ident: ref45 doi: 10.1016/j.asoc.2010.02.019 – ident: ref71 doi: 10.1109/TPWRD.2005.858774 – ident: ref131 doi: 10.1109/TPEL.2016.2608842 – ident: ref104 doi: 10.1016/j.knosys.2014.10.012 – ident: ref32 doi: 10.1016/j.eswa.2014.06.029 – start-page: 175 year: 0 ident: ref51 article-title: Genierate: An interactive generator of diagnostic Bayesian network models publication-title: Proc 16th Int Workshop Principles Diagnosis – ident: ref99 doi: 10.1016/j.prevetmed.2009.02.009 – ident: ref127 doi: 10.1016/j.ijar.2014.02.005 – ident: ref28 doi: 10.1016/j.isatra.2015.06.011 – volume: 90 start-page: 60 year: 2012 ident: ref126 article-title: Big data: The management revolution publication-title: Harvard Bus Rev – ident: ref116 doi: 10.1016/j.apenergy.2012.02.049 – ident: ref20 doi: 10.1109/TIE.2013.2261033 – ident: ref94 doi: 10.1016/j.nucengdes.2015.05.010 – ident: ref82 doi: 10.1016/j.eswa.2013.07.064 – ident: ref65 doi: 10.1007/s10845-008-0083-7 – ident: ref91 doi: 10.1016/j.engappai.2012.08.008 – ident: ref98 doi: 10.1016/j.compchemeng.2005.05.005 – ident: ref123 doi: 10.1080/0951192X.2013.812803 – volume: 16 start-page: 747 year: 2016 ident: ref102 article-title: Probabilistic fault diagnosis of safety instrumented systems based on fault tree analysis and Bayesian network publication-title: Journal of Failure Analysis and Prevention doi: 10.1007/s11668-016-0140-z – ident: ref95 doi: 10.1016/j.ress.2014.10.021 – ident: ref118 doi: 10.1016/j.renene.2015.10.061 – ident: ref22 doi: 10.1109/TDEI.2014.004478 – ident: ref39 doi: 10.1016/j.ijmachtools.2004.06.018 – ident: ref121 doi: 10.1109/TSMCA.2010.2052037 – ident: ref108 doi: 10.3390/s16010076 – ident: ref107 doi: 10.1016/j.parco.2006.11.005 – ident: ref113 doi: 10.1016/0959-1524(96)00031-5 – ident: ref115 doi: 10.1016/j.rser.2016.04.030 – ident: ref21 doi: 10.1016/j.eswa.2006.08.011 – year: 2013 ident: ref48 article-title: System health diagnosis and prognosis using dynamic Bayesian networks – ident: ref12 doi: 10.1177/1077546314547533 – ident: ref81 doi: 10.1016/j.jprocont.2008.06.006 – ident: ref90 doi: 10.1016/j.ymssp.2011.10.018 – ident: ref122 doi: 10.1080/15732471003588387 – ident: ref29 doi: 10.1016/j.ress.2015.06.013 – volume: 40 start-page: 729 year: 2011 ident: ref50 article-title: Exploiting structure in weighted model counting approaches to probabilistic inference publication-title: J Artif Intell Res doi: 10.1613/jair.3232 – ident: ref13 doi: 10.1109/TII.2009.2033181 – ident: ref88 doi: 10.1016/j.ress.2006.09.012 – ident: ref105 doi: 10.1145/2818302 – ident: ref76 doi: 10.1016/j.engappai.2015.06.010 – year: 2008 ident: ref134 publication-title: Bayesian Networks A Practical Guide to Applications doi: 10.1002/9780470994559 – ident: ref85 doi: 10.1007/s10489-005-3413-x – start-page: 531 year: 0 ident: ref86 article-title: Bayesian fault detection and diagnosis in dynamic systems publication-title: Proc AAAI/IAAI – ident: ref38 doi: 10.1017/CBO9780511811357 – ident: ref52 doi: 10.1016/j.autcon.2013.10.019 – ident: ref119 doi: 10.1016/j.energy.2015.04.090 – ident: ref56 doi: 10.1109/TVT.2007.912610 – ident: ref69 doi: 10.1007/s00170-014-5918-0 – ident: ref111 doi: 10.1007/s00170-012-4252-7 – ident: ref74 doi: 10.1109/TSMCC.2012.2187188 – ident: ref135 doi: 10.1002/9780470117842 – ident: ref26 doi: 10.1016/j.ress.2012.07.006 – ident: ref109 doi: 10.1109/TFUZZ.2016.2587325 – ident: ref57 doi: 10.1109/TSMCC.2010.2049994 – ident: ref89 doi: 10.1016/j.ces.2011.07.025 – ident: ref100 doi: 10.1016/j.eswa.2007.09.030 – ident: ref33 doi: 10.1016/j.aap.2016.04.020 – start-page: 691 year: 2011 ident: ref103 article-title: Application of Bayesian network in failure diagnosis of hydro-electrical simulation system publication-title: Advances in Intelligent Decision Technologies – year: 2009 ident: ref96 publication-title: Bayesian Networks and Decision Graphs – ident: ref133 doi: 10.1017/CBO9780511811357 – ident: ref42 doi: 10.1016/j.apenergy.2013.09.043 – year: 2014 ident: ref73 publication-title: Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference – ident: ref8 doi: 10.1016/j.jprocont.2013.08.011 – ident: ref47 doi: 10.1016/j.comcom.2010.07.021 – ident: ref61 doi: 10.1016/S0167-8655(99)00090-2 – ident: ref34 doi: 10.1115/1.4032399 – ident: ref17 doi: 10.1016/j.measurement.2013.05.015 – ident: ref11 doi: 10.1016/j.jprocont.2015.06.004 – ident: ref44 doi: 10.1002/qre.978 – ident: ref78 doi: 10.1016/j.applthermaleng.2015.07.001 – ident: ref54 doi: 10.1016/j.trc.2008.04.001 – ident: ref41 doi: 10.1016/j.enbuild.2012.11.007 – ident: ref19 doi: 10.1016/j.ymssp.2013.02.016 – ident: ref37 doi: 10.1016/S0951-8320(00)00077-6 – ident: ref110 doi: 10.1016/j.asoc.2014.04.007 – start-page: 302 year: 0 ident: ref97 article-title: Object-oriented Bayesian networks publication-title: Proc 13th Conf Uncertainty Artif Intell – ident: ref80 doi: 10.1016/j.ymssp.2011.10.001 – ident: ref30 doi: 10.1016/j.ress.2015.02.007 – ident: ref24 doi: 10.1016/j.ress.2005.11.037 – ident: ref101 doi: 10.1016/j.jmsy.2013.03.001 – ident: ref124 doi: 10.1016/j.jnca.2012.11.004 – year: 2012 ident: ref132 publication-title: Assessing the Reliability of Complex Models Mathematical and Statistical Foundations of Verification Validation and Uncertainty Quantification – volume: 16 start-page: 747 year: 2016 ident: ref58 article-title: Probabilistic fault diagnosis of safety instrumented systems based on fault tree analysis and Bayesian network publication-title: Journal of Failure Analysis and Prevention doi: 10.1007/s11668-016-0140-z – ident: ref10 doi: 10.1109/TIE.2015.2417501 – ident: ref120 doi: 10.1016/j.jpowsour.2007.09.010 – ident: ref77 doi: 10.1111/risa.12112 – ident: ref7 doi: 10.1109/TIE.2014.2301773 – ident: ref49 doi: 10.1016/j.ymssp.2016.04.019 – ident: ref106 doi: 10.1109/TCST.2009.2020863 – ident: ref128 doi: 10.1016/j.applthermaleng.2016.06.153 – ident: ref68 doi: 10.1016/j.automatica.2011.02.015 – ident: ref6 doi: 10.1016/S0098-1354(02)00162-X – ident: ref36 doi: 10.1016/j.cie.2016.01.007 – ident: ref67 doi: 10.1057/palgrave.jors.2602388 – ident: ref5 doi: 10.1016/j.sigpro.2013.04.015 – ident: ref75 doi: 10.1007/978-0-387-74101-7 – ident: ref43 doi: 10.1016/j.eswa.2014.10.020 – volume: 6 start-page: 3065 year: 2013 ident: ref117 article-title: Research on wind turbine generator dynamic reliability test system based on feature recognition publication-title: Res J Appl Sci Eng Technol doi: 10.19026/rjaset.6.3696 – ident: ref64 doi: 10.1016/j.jngse.2016.06.054 – ident: ref55 doi: 10.1109/TASE.2016.2574875 |
SSID | ssj0037039 |
Score | 2.613955 |
Snippet | Fault diagnosis is useful in helping technicians detect, isolate, and identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2227 |
SubjectTerms | Analytical models Bayesian analysis Bayesian networks (BNs) Fault detection Fault diagnosis Inference algorithms Learning systems Maintenance Mathematical model Modelling Probability |
Title | Bayesian Networks in Fault Diagnosis |
URI | https://ieeexplore.ieee.org/document/7904628 https://www.proquest.com/docview/1947547545 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwED6STO3QV1qaNi0eshTqxLYsKxr7CkmhmRLIZvQ4Q2hISuMM7a-vJNuhL0rBgzGSEZ9OujvpuzuAjspYpBMRGeGNjYPCdezLzCw8TlmGWmhG0bEtxslwGj_O6KwG19tYGER05DPs2ld3l69XamOPynqMu1DKOtSN41bEalW7LjGSy11uVBr6JApIdSUZ8N5kNLIcLtaNEk5pn3xRQa6myo-N2GmXwT48VeMqSCXP3U0uu-r9W8rG_w78APZKM9O7KeTiEGq4PILdT8kHm9C5FW9oQyi9cUEFX3vzpTcQm0Xu3RcEvPn6GKaDh8nd0C9rJvgq4mHuRwnTIcqYoaLG-BAq1hjIQEqjoSRDjcIYFDpQsZ2iviahIiQjfa01FagSQU6gsVwt8RS8IAvtZ8KQRrGURAhtXGnajwSTkmZhC3oVjKkqE4rbuhaL1DkWAU8N8KkFPi2Bb8HVtsdLkUzjj7ZNi-O2XQlhC9rVTKXlalunIY8ZtQ89-73XOezYfxckvDY08tcNXhhjIpeXToo-AC8FxP4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGICBN6JQIAMLEmkTO47rkVfV8uhUJLbIj4uEQAXRdIBfj-0kFS8hpAxRZCvW57Pvzv7uDuBI55yYVBIrvIl1UIRJQpXbhScYz9FIwxl6tsUw7d8lV_fsvgEns1gYRPTkM2y7V3-Xb5711B2VdbjwoZRzsGD1PiNltFa971Iru8JnR2VxSElE60vJSHRGg4FjcfE2SQVjXfpFCfmqKj-2Yq9feqtwW4-spJU8tqeFauv3b0kb_zv0NVipDM3gtJSMdWjgeAOWP6Uf3ISjM_mGLogyGJZk8EnwMA56cvpUBBclBe9hsgV3vcvReT-sqiaEmoi4CEnKTYwq4aiZNT-kTgxGKlLK6ijF0aC0JoWJdOImqWtorCnNadcYwyTqVNJtmB8_j3EHgiiP3WfKkZFEKSqlsc406xLJlWJ53IRODWOmq5TirrLFU-Zdi0hkFvjMAZ9VwDfheNbjpUyn8UfbTYfjrF0FYRNa9Uxl1XqbZLFIOHMP2_291yEs9ke3N9nNYHi9B0vuPyUlrwXzxesU961pUagDL1Efp7zISA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Networks+in+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Cai%2C+Baoping&rft.au=Huang%2C+Lei&rft.au=Xie%2C+Min&rft.date=2017-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=13&rft.issue=5&rft.spage=2227&rft_id=info:doi/10.1109%2FTII.2017.2695583&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |