GA-Nav: Efficient Terrain Segmentation for Robot Navigation in Unstructured Outdoor Environments

We propose GA-Nav, a novel group-wise attention mechanism to identify safe and navigable regions in unstructured environments from RGB images. Our group-wise attention method extracts multi-scale features from each type of terrain independently and classifies terrains based on their navigability lev...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 7; no. 3; pp. 1 - 8
Main Authors Guan, Tianrui, Kothandaraman, Divya, Chandra, Rohan, Sathyamoorthy, Adarsh Jagan, Weerakoon, Kasun, Manocha, Dinesh
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2022.3187278

Cover

Loading…
Abstract We propose GA-Nav, a novel group-wise attention mechanism to identify safe and navigable regions in unstructured environments from RGB images. Our group-wise attention method extracts multi-scale features from each type of terrain independently and classifies terrains based on their navigability levels using coarse-grained semantic segmentation. Our novel loss can be embedded within any backbone network to explicitly focus on the different groups' features, at a low spatial resolution. Our design leads to efficient inference while maintaining a high level of accuracy compared to existing SOTA methods. Our extensive evaluations on the RUGD and RELLIS-3D datasets shows that GA-Nav achieves the state-of-the-art performance on RUGD and RELLIS-3D datasets. We interface GA-Nav with a deep reinforcement learning-based navigation algorithm and highlight its benefits in terms of navigation in real-world unstructured terrains. We integrate our GA-Nav-based navigation algorithm with ClearPath Jackal and Husky robots, and observe an improvement in terms of navigation success rate and better trajectory selections. Code, videos, and a full technical report are available at https://gamma.umd.edu/offroad/ .
AbstractList We propose GA-Nav, a novel group-wise attention mechanism to identify safe and navigable regions in unstructured environments from RGB images. Our group-wise attention method extracts multi-scale features from each type of terrain independently and classifies terrains based on their navigability levels using coarse-grained semantic segmentation. Our novel loss can be embedded within any backbone network to explicitly focus on the different groups' features, at a low spatial resolution. Our design leads to efficient inference while maintaining a high level of accuracy compared to existing SOTA methods. Our extensive evaluations on the RUGD and RELLIS-3D datasets shows that GA-Nav achieves the state-of-the-art performance on RUGD and RELLIS-3D datasets. We interface GA-Nav with a deep reinforcement learning-based navigation algorithm and highlight its benefits in terms of navigation in real-world unstructured terrains. We integrate our GA-Nav-based navigation algorithm with ClearPath Jackal and Husky robots, and observe an improvement in terms of navigation success rate and better trajectory selections. Code, videos, and a full technical report are available at https://gamma.umd.edu/offroad/ .
We propose GA-Nav, a novel group-wise attention mechanism to identify safe and navigable regions in unstructured environments from RGB images. Our group-wise attention method extracts multi-scale features from each type of terrain independently and classifies terrains based on their navigability levels using coarse-grained semantic segmentation. Our novel loss can be embedded within any backbone network to explicitly focus on the different groups’ features, at a low spatial resolution. Our design leads to efficient inference while maintaining a high level of accuracy compared to existing SOTA methods. Our extensive evaluations on the RUGD and RELLIS-3D datasets shows that GA-Nav achieves the state-of-the-art performance on RUGD and RELLIS-3D datasets. We interface GA-Nav with a deep reinforcement learning-based navigation algorithm and highlight its benefits in terms of navigation in real-world unstructured terrains. We integrate our GA-Nav-based navigation algorithm with ClearPath Jackal and Husky robots, and observe an improvement in terms of navigation success rate and better trajectory selections.
Author Chandra, Rohan
Guan, Tianrui
Kothandaraman, Divya
Manocha, Dinesh
Weerakoon, Kasun
Sathyamoorthy, Adarsh Jagan
Author_xml – sequence: 1
  givenname: Tianrui
  orcidid: 0000-0002-6892-9778
  surname: Guan
  fullname: Guan, Tianrui
  organization: Department of Computer Science
– sequence: 2
  givenname: Divya
  surname: Kothandaraman
  fullname: Kothandaraman, Divya
  organization: Department of Computer Science
– sequence: 3
  givenname: Rohan
  orcidid: 0000-0003-4843-6375
  surname: Chandra
  fullname: Chandra, Rohan
  organization: Department of Computer Science
– sequence: 4
  givenname: Adarsh Jagan
  orcidid: 0000-0002-9678-4748
  surname: Sathyamoorthy
  fullname: Sathyamoorthy, Adarsh Jagan
  organization: Department of Electrical and Computer Engineering
– sequence: 5
  givenname: Kasun
  surname: Weerakoon
  fullname: Weerakoon, Kasun
  organization: Department of Electrical and Computer Engineering
– sequence: 6
  givenname: Dinesh
  orcidid: 0000-0001-7047-9801
  surname: Manocha
  fullname: Manocha, Dinesh
  organization: Department of Computer Science
BookMark eNp9kEtLAzEYRYNUsNbuBTcDrqfmMZOHuyK1CsVCbddjmklKSpvUTKbgvzdliogLV3lwTr7cew16zjsNwC2CI4SgeJgtxiMMMR4RxBlm_AL0MWEsJ4zS3q_9FRg2zRZCiErMiCj74GM6zt_k8TGbGGOV1S5mSx2CtC5715t9OstovcuMD9nCr33MEm033WWCVq6JoVWxDbrO5m2sfQIn7miDdye7uQGXRu4aPTyvA7B6niyfXvLZfPr6NJ7lCgsUc1wQTgq1LozChquiTn9UWnFTMGKkhrDgQiBWClITTCVUUkAGS1SWmql1CjMA9927h-A_W93Eauvb4NLIClNOCaSUw0TRjlLBN03QplK2SxhT5l2FYHUqtEqFVqdCq3OhSYR_xEOwexm-_lPuOsVqrX9wwRFEApNv_5CCJw
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_LRA_2024_3354629
crossref_primary_10_1109_LRA_2023_3320013
crossref_primary_10_1109_TITS_2024_3508839
crossref_primary_10_1007_s00138_024_01533_3
crossref_primary_10_1109_LRA_2023_3291949
crossref_primary_10_1109_LRA_2024_3474548
crossref_primary_10_1016_j_eswa_2023_122919
crossref_primary_10_1016_j_jterra_2024_101028
crossref_primary_10_1109_LRA_2023_3284356
crossref_primary_10_1109_JSEN_2023_3266802
crossref_primary_10_1016_j_compag_2023_108581
crossref_primary_10_3390_s23136008
crossref_primary_10_1109_LRA_2024_3524912
crossref_primary_10_3390_app14177682
crossref_primary_10_1007_s11370_025_00591_4
crossref_primary_10_1016_j_compag_2024_108623
crossref_primary_10_1109_LRA_2024_3371910
crossref_primary_10_1109_LRA_2022_3229907
crossref_primary_10_1016_j_eswa_2024_125465
crossref_primary_10_1016_j_dsp_2024_104579
crossref_primary_10_1109_TRO_2024_3431828
crossref_primary_10_1016_j_eswa_2024_125964
crossref_primary_10_1109_LRA_2024_3376148
crossref_primary_10_1109_TAES_2023_3312627
crossref_primary_10_1007_s10514_023_10113_9
crossref_primary_10_1109_LRA_2024_3418270
crossref_primary_10_3390_math13050810
crossref_primary_10_1016_j_displa_2024_102688
crossref_primary_10_1016_j_engappai_2024_109016
crossref_primary_10_3390_drones8090496
crossref_primary_10_1002_rob_22461
crossref_primary_10_1155_2023_7147168
Cites_doi 10.1007/s11263-018-1070-x
10.1109/ICRA46639.2022.9812238
10.1109/ICRA48506.2021.9561251
10.1007/978-3-319-10602-1_48
10.1109/LRA.2021.3057023
10.11159/jacr.2014.002
10.1109/CVPR.2017.660
10.1109/CVPR46437.2021.00681
10.1109/IROS40897.2019.8968283
10.1109/IROS.2015.7353480
10.7551/mitpress/9407.001.0001
10.25165/j.ijabe.20181104.4278
10.1109/ICIT.2015.7125155
10.1109/ICCV48922.2021.00717
10.1109/CVPR46437.2021.01139
10.1007/s11263-009-0275-4
10.1109/TIP.2020.3042065
10.1007/s11263-021-01515-2
10.1109/TPAMI.2016.2572683
10.1023/B:AURO.0000047286.62481.1d
10.1109/WACV51458.2022.00235
10.48550/arXiv.1909.11065
10.1007/s10514-007-9077-0
10.1007/s10846-017-0760-x
10.1016/j.neucom.2019.11.118
10.1109/ICCV48922.2021.01196
10.1109/CVPR46437.2021.01625
10.1109/100.580977
10.1109/CVPR.2016.350
10.1109/CVPR.2016.90
10.1109/CVPR.2017.544
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2022.3187278
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 8
ExternalDocumentID 10_1109_LRA_2022_3187278
9810192
Genre orig-research
GrantInformation_xml – fundername: ARO
  grantid: W911NF2110026
– fundername: Army Cooperative
  grantid: W911NF2120076
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-243834cb4fc2f8c4d001cec8f473fae00489917593d326a0ca90705155e7cb273
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Sun Jun 29 16:55:44 EDT 2025
Tue Jul 01 03:54:14 EDT 2025
Thu Apr 24 22:52:47 EDT 2025
Wed Aug 27 02:23:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-243834cb4fc2f8c4d001cec8f473fae00489917593d326a0ca90705155e7cb273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6892-9778
0000-0002-9678-4748
0000-0003-4843-6375
0000-0001-7047-9801
0000-0002-6276-4968
PQID 2686306680
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2022_3187278
crossref_citationtrail_10_1109_LRA_2022_3187278
proquest_journals_2686306680
ieee_primary_9810192
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref15
Poudel (ref36) 2019
ref37
ref14
ref30
ref11
ref33
ref10
ref2
ref1
Lee (ref32) 2015
ref17
ref16
ref38
ref19
ref18
Cheng (ref12) 2021; 34
Xie (ref7) 2021; 34
ref24
ref23
ref26
Dosovitskiy (ref29) 2021
ref25
ref20
ref22
ref21
ref28
ref27
ref8
Contributors (ref34) 2020
ref9
ref4
Vaswani (ref31) 2017; 30
ref3
ref6
ref5
References_xml – volume: 30
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref31
  article-title: Attention is all you need
– ident: ref2
  doi: 10.1007/s11263-018-1070-x
– ident: ref13
  doi: 10.1109/ICRA46639.2022.9812238
– ident: ref25
  doi: 10.1109/ICRA48506.2021.9561251
– ident: ref22
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref16
  doi: 10.1109/LRA.2021.3057023
– ident: ref20
  doi: 10.11159/jacr.2014.002
– ident: ref5
  doi: 10.1109/CVPR.2017.660
– ident: ref15
  doi: 10.1109/CVPR46437.2021.00681
– volume-title: Proc. 9th Int. Conf. Learn. Representations
  year: 2021
  ident: ref29
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– volume: 34
  start-page: 12077
  volume-title: Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref7
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
– ident: ref24
  doi: 10.1109/IROS40897.2019.8968283
– ident: ref18
  doi: 10.1109/IROS.2015.7353480
– ident: ref3
  doi: 10.7551/mitpress/9407.001.0001
– start-page: 289
  volume-title: Proc. 30th Brit. Mach. Vis. Conf.
  year: 2019
  ident: ref36
  article-title: Fast-SCNN: Fast semantic segmentation network
– ident: ref4
  doi: 10.25165/j.ijabe.20181104.4278
– ident: ref17
  doi: 10.1109/ICIT.2015.7125155
– ident: ref8
  doi: 10.1109/ICCV48922.2021.00717
– ident: ref26
  doi: 10.1109/CVPR46437.2021.01139
– ident: ref21
  doi: 10.1007/s11263-009-0275-4
– ident: ref35
  doi: 10.1109/TIP.2020.3042065
– ident: ref37
  doi: 10.1007/s11263-021-01515-2
– ident: ref33
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref10
  doi: 10.1023/B:AURO.0000047286.62481.1d
– ident: ref28
  doi: 10.1109/WACV51458.2022.00235
– ident: ref6
  doi: 10.48550/arXiv.1909.11065
– ident: ref19
  doi: 10.1007/s10514-007-9077-0
– start-page: 562
  volume-title: Proc. 18th Int. Conf. Artif. Intell. Statist.
  year: 2015
  ident: ref32
  article-title: Deeply-supervised nets
– ident: ref9
  doi: 10.1007/s10846-017-0760-x
– volume: 34
  start-page: 17864
  volume-title: Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref12
  article-title: Per-pixel classification is not all you need for semantic segmentation
– ident: ref14
  doi: 10.1016/j.neucom.2019.11.118
– year: 2020
  ident: ref34
  article-title: Mmsegmentation, an open source semantic segmentation toolbox
– ident: ref11
  doi: 10.1109/ICCV48922.2021.01196
– ident: ref27
  doi: 10.1109/CVPR46437.2021.01625
– ident: ref38
  doi: 10.1109/100.580977
– ident: ref1
  doi: 10.1109/CVPR.2016.350
– ident: ref30
  doi: 10.1109/CVPR.2016.90
– ident: ref23
  doi: 10.1109/CVPR.2017.544
SSID ssj0001527395
Score 2.478657
Snippet We propose GA-Nav, a novel group-wise attention mechanism to identify safe and navigable regions in unstructured environments from RGB images. Our group-wise...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms AI-Based Methods
AI-Enabled Robotics
Algorithms
Color imagery
Computer architecture
Computer networks
Datasets
Deep Learning for Visual Perception
Deep Learning Methods
Feature extraction
Image segmentation
Machine learning
Navigation
Robots
Semantics
Spatial resolution
Terrain
Transformers
Vision-Based Navigation
Title GA-Nav: Efficient Terrain Segmentation for Robot Navigation in Unstructured Outdoor Environments
URI https://ieeexplore.ieee.org/document/9810192
https://www.proquest.com/docview/2686306680
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTnrwC40okh68mDgYZWyrN2KGxAgmCAm3uXatB3UzODx48G_3tRv4GeNtWV6bra8fv1_b93sAxx5iaIXQ25LU71oOkgqLRYxZTkwVVXaMhYza58gdTJ3LWXdWgtNVLIyU0lw-k039aM7y41Qs9FZZi2k1KoYTbhmJWx6r9bGfopXEWHd5Emmz1tW4h_yPUqSlPq7S_peVx6RS-TH_mkWlvwnD5efkd0num4uMN8XrN6XG_37vFmwU6JL08u6wDSWZ7MD6J83BKtxe9KxR9HJGAiMegRWQiZzrRBHkRt49FqFICUEwS8YpTzOC1kaHA1-i0bSQnF3MZUyuF1mcomHwKVxuF6b9YHI-sIo0C5agrJ1ZVKuVOoI7SlDlCyfGxhRS-MrxOiqSeowjiPS6rBMj1otsESGhNqlhpCc4tvoeVJI0kftAdGSrxwX3ENg5-PfMi12lM-dyJCJtxWvQWrogFIUGuU6F8RAaLmKzEJ0WaqeFhdNqcLIq8ZTrb_xhW9U-WNkVzV-D-tLLYTFAn0Pq-i6yJde3D34vdQhruu78Zm4dKti08gjxR8YbUB6-BQ3T_d4Bn6DYKA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMAADr4IoTw8sSKRNjZvEbBUqFChFKq3ULcSOzQA0CBIGfj1nJylPIbYoOudxZ_u-s33fAez7iKE1Qm9H0aDlMAwqHB5x7rCYaqrdGBtZts--1x2xi3FrXIHDaS6MUsoePlN1c2n38uNEZmaprMENGxXHCXcW_T7jebbWx4qK4RLjrXIv0uWN3qCNESClGJgG6KeDL77HFlP5MQNbt3K6BFflB-WnSe7rWSrq8u0bV-N_v3gZFgt8Sdp5h1iBipqswsIn1sEq3J61nX70ekw6lj4CH0CG6tmUiiA36u6xSEaaEISzZJCIJCUobZk48CYKjQrS2exZxeQ6S-MEBTufEubWYHTaGZ50naLQgiMpb6YONXylTAqmJdWBZDEqUyoZaOYf6UiZUY4w0m_xoxjRXuTKCENqWxxG-VKg1tdhZpJM1AYQk9vqCyl8hHYM_577sadN7VyBoUhTixo0ShOEsmAhN8UwHkIbjbg8RKOFxmhhYbQaHExbPOUMHH_IVo0NpnKF-muwXVo5LIboS0i9wMN4yQvczd9b7cFcd3jVC3vn_cstmDfvyc_pbsMMqlntIBpJxa7thO8DLdpH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GA-Nav%3A+Efficient+Terrain+Segmentation+for+Robot+Navigation+in+Unstructured+Outdoor+Environments&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Guan%2C+Tianrui&rft.au=Kothandaraman%2C+Divya&rft.au=Chandra%2C+Rohan&rft.au=Sathyamoorthy%2C+Adarsh+Jagan&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=7&rft.issue=3&rft.spage=8138&rft_id=info:doi/10.1109%2FLRA.2022.3187278&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon