Measuring Uncertainty During Respiratory Rate Estimation Using Pressure-Sensitive Mats

We develop and evaluate a respiratory rate (RR) estimation algorithm that utilizes data from the pressure-sensitive mat (PSM) technology for continuous patient monitoring in neonatal intensive care units. An analysis of the random effect of drift and systematic effect of creep in the PSM data is pre...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 67; no. 7; pp. 1535 - 1542
Main Authors Nizami, Shermeen, Bekele, Amente, Hozayen, Mohamed, Greenwood, Kimberley J., Harrold, JoAnn, Green, James R.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop and evaluate a respiratory rate (RR) estimation algorithm that utilizes data from the pressure-sensitive mat (PSM) technology for continuous patient monitoring in neonatal intensive care units. An analysis of the random effect of drift and systematic effect of creep in the PSM data is presented, showing that these are essentially dependent on the applied load and contact surface. Uncertainty measurements are pivotal when estimating physiologic parameters. The standard uncertainty in the PSM data is here represented by the percent drift. Next, we evaluate the applicability of the PSM technology to estimate RR in neonatal patient simulator trials under five mixed effects including internally and externally induced motion, mattress type, grunting, laying position, and different breathing rates. We analyze the limits of agreement on the mixed effects model to derive the uncertainty in the estimated RR obtained through two estimation techniques. In comparison with the gold standard RR values, we achieved a mean bias of 0.56 breaths per minute (bpm) with an error bounded by a 95% confidence interval of [−2.26, 3.37] bpm. These results meet the clinical accuracy requirements of RR within ±5 bpm.
AbstractList We develop and evaluate a respiratory rate (RR) estimation algorithm that utilizes data from the pressure-sensitive mat (PSM) technology for continuous patient monitoring in neonatal intensive care units. An analysis of the random effect of drift and systematic effect of creep in the PSM data is presented, showing that these are essentially dependent on the applied load and contact surface. Uncertainty measurements are pivotal when estimating physiologic parameters. The standard uncertainty in the PSM data is here represented by the percent drift. Next, we evaluate the applicability of the PSM technology to estimate RR in neonatal patient simulator trials under five mixed effects including internally and externally induced motion, mattress type, grunting, laying position, and different breathing rates. We analyze the limits of agreement on the mixed effects model to derive the uncertainty in the estimated RR obtained through two estimation techniques. In comparison with the gold standard RR values, we achieved a mean bias of 0.56 breaths per minute (bpm) with an error bounded by a 95% confidence interval of [-2.26, 3.37] bpm. These results meet the clinical accuracy requirements of RR within ±5 bpm.
We develop and evaluate a respiratory rate (RR) estimation algorithm that utilizes data from the pressure-sensitive mat (PSM) technology for continuous patient monitoring in neonatal intensive care units. An analysis of the random effect of drift and systematic effect of creep in the PSM data is presented, showing that these are essentially dependent on the applied load and contact surface. Uncertainty measurements are pivotal when estimating physiologic parameters. The standard uncertainty in the PSM data is here represented by the percent drift. Next, we evaluate the applicability of the PSM technology to estimate RR in neonatal patient simulator trials under five mixed effects including internally and externally induced motion, mattress type, grunting, laying position, and different breathing rates. We analyze the limits of agreement on the mixed effects model to derive the uncertainty in the estimated RR obtained through two estimation techniques. In comparison with the gold standard RR values, we achieved a mean bias of 0.56 breaths per minute (bpm) with an error bounded by a 95% confidence interval of [−2.26, 3.37] bpm. These results meet the clinical accuracy requirements of RR within ±5 bpm.
Author Green, James R.
Hozayen, Mohamed
Greenwood, Kimberley J.
Harrold, JoAnn
Bekele, Amente
Nizami, Shermeen
Author_xml – sequence: 1
  givenname: Shermeen
  orcidid: 0000-0002-8002-4162
  surname: Nizami
  fullname: Nizami, Shermeen
  email: shermeen@sce.carleton.ca
  organization: Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
– sequence: 2
  givenname: Amente
  surname: Bekele
  fullname: Bekele, Amente
  organization: Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
– sequence: 3
  givenname: Mohamed
  surname: Hozayen
  fullname: Hozayen, Mohamed
  organization: Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
– sequence: 4
  givenname: Kimberley J.
  surname: Greenwood
  fullname: Greenwood, Kimberley J.
  email: kgreenwood@cheo.on.ca
  organization: Clinical Engineering, Children's Hospital of Eastern Ontario, Ottawa, Canada
– sequence: 5
  givenname: JoAnn
  orcidid: 0000-0002-3218-6570
  surname: Harrold
  fullname: Harrold, JoAnn
  email: jharrold@cheo.on.ca
  organization: Neonatology, Children's Hospital of Eastern Ontario, Ottawa, Canada
– sequence: 6
  givenname: James R.
  orcidid: 0000-0002-6039-2355
  surname: Green
  fullname: Green, James R.
  email: jrgreen@sce.carleton.ca
  organization: Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
BookMark eNo9kE1LAzEQhoNUsK3eBS8LnrfmY_N1lFq10KLU1mtIdyeSotmapEL_vVtWPA3MPO8M84zQILQBELomeEII1nfr-XJCMVETqjAnvDpDQ8K5LLUQdICGuBuVuuLiAo1S2mGMpajkEL0vwaZD9OGj2IQaYrY-5GPx0LdWkPY-2tzGY7GyGYpZyv7LZt-GYpNOxGuE1OWhfIOQfPY_UCxtTpfo3NnPBFd_dYw2j7P19LlcvDzNp_eLsqaa5JISENw12llGrbWcSL6tMIBisnHK2UrbupG1wJiphm0FWKa4c1vsCNPAJBuj237vPrbfB0jZ7NpDDN1JQykljCvJVUfhnqpjm1IEZ_axeyMeDcHmZM909szJnvmz10Vu-ogHgH9cMSwIY-wXL7puWw
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_MIM_2021_9400964
crossref_primary_10_1109_TIM_2022_3232615
crossref_primary_10_1109_ACCESS_2023_3292164
crossref_primary_10_1109_ACCESS_2022_3144355
crossref_primary_10_1109_TIM_2019_2947931
crossref_primary_10_1109_ACCESS_2023_3234597
crossref_primary_10_1109_JBHI_2020_3047602
crossref_primary_10_1109_JSEN_2023_3324363
crossref_primary_10_1109_TIM_2023_3244220
crossref_primary_10_1016_j_infrared_2020_103504
crossref_primary_10_1088_1361_6579_ab1595
crossref_primary_10_1109_TIM_2018_2885604
crossref_primary_10_1145_3550329
crossref_primary_10_3390_s22218386
Cites_doi 10.1016/S0003-6870(97)00069-0
10.1203/PDR.0b013e318193f117
10.1109/BHI.2014.6864415
10.1299/transjsme.14-00642
10.1109/TIM.2014.2366976
10.1136/archdischild-2014-307401
10.1109/EMBC.2013.6610461
10.1109/MeMeA.2017.7985893
10.11604/pamj.2016.24.152.7066
10.1371/journal.pone.0144626
10.1542/peds.2013-3924
10.1109/MeMeA.2017.7985882
10.5694/j.1326-5377.2008.tb01825.x
10.3389/fped.2017.00110
10.1109/SAS.2017.7894054
10.1109/MIM.2002.1005654
10.1007/BF02348078
10.1016/j.jtv.2015.09.001
10.1109/TIM.2011.2123250
10.1117/1.3528008
10.1109/EMBC.2014.6943530
10.1038/jp.2015.173
10.1109/IEMBS.2011.6090123
10.1002/ppul.21416
10.1542/peds.2015-3757
10.1109/TBME.2005.857637
10.1109/RIISS.2011.5945781
10.1109/IEMBS.2007.4353894
10.1109/JBHI.2014.2344679
10.1002/jhm.1963
10.3945/ajcn.114.106419
10.1016/j.jcgg.2014.06.001
10.1046/j.1365-2869.1996.t01-1-00003.x
10.1016/S0197-4572(03)00212-X
10.1371/journal.pone.0168321
10.1016/j.pcl.2014.11.008
10.1109/TIM.2012.2192342
10.1109/ICSMC.2012.6377959
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2018.2805154
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1542
ExternalDocumentID 10_1109_TIM_2018_2805154
8306133
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council
  funderid: 10.13039/501100000038
– fundername: IBM Canada Lab, Centre for Advanced Studies
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-21e65fd9fa32aaa5175b40ee837df8fa49acd7c60038d3b6ea385ffb0f139e373
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Thu Oct 10 16:11:57 EDT 2024
Fri Aug 23 02:16:37 EDT 2024
Wed Jun 26 19:28:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-21e65fd9fa32aaa5175b40ee837df8fa49acd7c60038d3b6ea385ffb0f139e373
ORCID 0000-0002-6039-2355
0000-0002-8002-4162
0000-0002-3218-6570
PQID 2221358758
PQPubID 85462
PageCount 8
ParticipantIDs proquest_journals_2221358758
crossref_primary_10_1109_TIM_2018_2805154
ieee_primary_8306133
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
gilakjani (ref31) 2017
bossuyt (ref28) 2015; 351
ref24
ref23
winter (ref44) 2013
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref27
gil (ref39) 2014; 2
ref8
ref7
ref9
ref4
cretikos (ref3) 2008; 188
ref6
ref5
ref40
van kuiken (ref29) 2013; 39
(ref26) 2008
References_xml – ident: ref35
  doi: 10.1016/S0003-6870(97)00069-0
– ident: ref40
  doi: 10.1203/PDR.0b013e318193f117
– ident: ref43
  doi: 10.1109/BHI.2014.6864415
– ident: ref18
  doi: 10.1299/transjsme.14-00642
– ident: ref9
  doi: 10.1109/TIM.2014.2366976
– ident: ref30
  doi: 10.1136/archdischild-2014-307401
– ident: ref10
  doi: 10.1109/EMBC.2013.6610461
– ident: ref21
  doi: 10.1109/MeMeA.2017.7985893
– ident: ref37
  doi: 10.11604/pamj.2016.24.152.7066
– ident: ref8
  doi: 10.1371/journal.pone.0144626
– ident: ref38
  doi: 10.1542/peds.2013-3924
– year: 2008
  ident: ref26
  publication-title: Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement
– ident: ref22
  doi: 10.1109/MeMeA.2017.7985882
– volume: 188
  start-page: 657
  year: 2008
  ident: ref3
  article-title: Respiratory rate: The neglected vital sign
  publication-title: Med J Aus
  doi: 10.5694/j.1326-5377.2008.tb01825.x
  contributor:
    fullname: cretikos
– ident: ref6
  doi: 10.3389/fped.2017.00110
– ident: ref24
  doi: 10.1109/SAS.2017.7894054
– ident: ref23
  doi: 10.1109/MIM.2002.1005654
– year: 2013
  ident: ref44
  publication-title: Linear models and linear mixed effects models in R with linguistic applications
  contributor:
    fullname: winter
– ident: ref1
  doi: 10.1007/BF02348078
– ident: ref34
  doi: 10.1016/j.jtv.2015.09.001
– ident: ref12
  doi: 10.1109/TIM.2011.2123250
– ident: ref13
  doi: 10.1117/1.3528008
– ident: ref17
  doi: 10.1109/EMBC.2014.6943530
– volume: 2
  start-page: 1048
  year: 2014
  ident: ref39
  article-title: Neonatal appendicitis-An uncommon diagnosis, not to be forgotten
  publication-title: JSM Clinical Case Reports
  contributor:
    fullname: gil
– ident: ref4
  doi: 10.1038/jp.2015.173
– ident: ref32
  doi: 10.1109/IEMBS.2011.6090123
– ident: ref7
  doi: 10.1002/ppul.21416
– ident: ref5
  doi: 10.1542/peds.2015-3757
– ident: ref15
  doi: 10.1109/TBME.2005.857637
– ident: ref16
  doi: 10.1109/RIISS.2011.5945781
– volume: 39
  start-page: 216
  year: 2013
  ident: ref29
  article-title: What is 'Normal?' Evaluating vital signs
  publication-title: Neph Nurs J
  contributor:
    fullname: van kuiken
– ident: ref19
  doi: 10.1109/IEMBS.2007.4353894
– ident: ref2
  doi: 10.1109/JBHI.2014.2344679
– volume: 351
  start-page: 5527h
  year: 2015
  ident: ref28
  article-title: STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies
  publication-title: Res Methods Rep
  contributor:
    fullname: bossuyt
– ident: ref20
  doi: 10.1002/jhm.1963
– ident: ref42
  doi: 10.3945/ajcn.114.106419
– start-page: 355
  year: 2017
  ident: ref31
  article-title: Movement detection with adaptive window length for unobtrusive bed-based pressure-sensor array
  publication-title: Proc IEEE Int Workshop Med Meas Appl (MeMeA)
  contributor:
    fullname: gilakjani
– ident: ref14
  doi: 10.1016/j.jcgg.2014.06.001
– ident: ref41
  doi: 10.1046/j.1365-2869.1996.t01-1-00003.x
– ident: ref25
  doi: 10.1016/S0197-4572(03)00212-X
– ident: ref27
  doi: 10.1371/journal.pone.0168321
– ident: ref36
  doi: 10.1016/j.pcl.2014.11.008
– ident: ref11
  doi: 10.1109/TIM.2012.2192342
– ident: ref33
  doi: 10.1109/ICSMC.2012.6377959
SSID ssj0007647
Score 2.3864164
Snippet We develop and evaluate a respiratory rate (RR) estimation algorithm that utilizes data from the pressure-sensitive mat (PSM) technology for continuous patient...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1535
SubjectTerms Algorithms
Breathing rate
Computer simulation
confidence interval
Confidence intervals
continuous patient monitoring
creep
data analytics
Drift
Estimation
frequency domain
Frequency-domain analysis
intensive care
limits of agreement (LoA)
Mats
Measurement uncertainty
mixed effects method
Monitoring
movement
neonatal
Parameter estimation
Parameter uncertainty
Pediatrics
pressure-sensitive mat (PSM)
Respiratory rate
respiratory rate (RR)
simulator
Systematics
Uncertainty
uncertainty measurements
Title Measuring Uncertainty During Respiratory Rate Estimation Using Pressure-Sensitive Mats
URI https://ieeexplore.ieee.org/document/8306133
https://www.proquest.com/docview/2221358758
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VSkgw8GhBFArywIJEShLHSTwioCpIYSgt6hbZzmVBKoimA_x6_EjKc2CLrCSyfOe773zfnQFOTWCMlIZeIKn0oqAIPaHiwEupEAmTmDBl6p2z-3g0je5mbNaC81UtDCJa8hkOzKPN5RfPammOyi5SarwPXYO1hHNXq7Wyukkcuf6Ygd7AGhU0KUmfX0xuM8PhSgdham40ib65IHunyi9DbL3LcBuyZl6OVPI0WFZyoN5_tGz878R3YKuGmeTS6cUutHDegc0vzQc7sG7Jn2rRhcfMHhTqUTLVOmA5AtUbuXZD489kPBlrZEputFVwBY_EEg6IKzF8Re_BsOGN_SSZqBZ7MB3eTK5GXn3fgqdCHlReGGDMyoKXgoZCCKaRhYx8RB3DFmVaiogLVSQqNtnEgsoYBU1ZWUq_1DASaUL3oT1_nuMBEKVdQBmHSvgMIyV9mdCYm2olhryQSHtw1oggf3FtNXIbjvg81-LKjbjyWlw96JoVXb1XL2YP-o3M8nrfLXKNdgLKdAyWHv791RFsmH87wm0f2tXrEo81rKjkidWnD5LyyxY
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xEAIG3ojy9MCCRNokjp1kRFBUHmEoLWKLbOeyILWoTQf49fiRlufAFlmJYvnOd9_5vjsDnJrAGCkNvUBS6UVBEXpC8cBLqBAxkxgzZeqdswfe6Ue3z-x5Ds5ntTCIaMln2DSPNpdfDNXEHJW1Emq8D52HRY2rE-6qtWZ2N-aR65AZ6C2sccE0Kemnrd5NZlhcSTNMzJ0m0TcnZG9V-WWKrX-5XodsOjNHK3lpTirZVO8_mjb-d-obsFYDTXLhNGMT5nCwBatf2g9uwZKlf6rxNjxl9qhQj5K-1gLLEqjeyJUb6n6m40lXY1PS1nbBlTwSSzkgrshwhN6j4cMbC0oyUY13oH_d7l12vPrGBU-FaVB5YYCclUVaChoKIZjGFjLyEXUUW5RJKaJUqCJW3OQTCyo5CpqwspR-qYEk0pjuwsJgOMA9IEo7gZKHSvgMIyV9GVOemnolhmkhkTbgbCqC_NU11shtQOKnuRZXbsSV1-JqwLZZ0dl79WI24HAqs7zeeeNc452AMh2FJft_f3UCy51edp_f3zzcHcCK-Y-j3x7CQjWa4JEGGZU8trr1AVoAzmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+Uncertainty+During+Respiratory+Rate+Estimation+Using+Pressure-Sensitive+Mats&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Nizami%2C+Shermeen&rft.au=Bekele%2C+Amente&rft.au=Hozayen%2C+Mohamed&rft.au=Greenwood%2C+Kimberley+J&rft.date=2018-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=67&rft.issue=7&rft.spage=1535&rft_id=info:doi/10.1109%2FTIM.2018.2805154&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon