Circular-Shift Linear Network Coding

We study a class of linear network coding (LNC) schemes, called circular-shift LNC, whose encoding operations consist of only circular-shifts and bit-wise additions. Formulated as a special vector linear code over GF(2), an <inline-formula> <tex-math notation="LaTeX">L </tex...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 65; no. 1; pp. 65 - 80
Main Authors Tang, Hanqi, Sun, Qifu Tyler, Li, Zongpeng, Yang, Xiaolong, Long, Keping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study a class of linear network coding (LNC) schemes, called circular-shift LNC, whose encoding operations consist of only circular-shifts and bit-wise additions. Formulated as a special vector linear code over GF(2), an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear code of degree <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula> restricts its local encoding kernels to be the summation of at most <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula> cyclic permutation matrices of size <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. We show that on a general network, for a certain block length <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, every scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{L-1} </tex-math></inline-formula>) can induce an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution with 1-bit redundancy per-edge transmission. Consequently, specific to a multicast network, such a circular-shift linear solution of an arbitrary degree <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula> can be efficiently constructed, which has an interesting complexity tradeoff between encoding and decoding with different choices of <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>. By further proving that circular-shift LNC is insufficient to achieve the exact capacity of certain multicast networks, we show the optimality of the efficiently constructed circular-shift linear solution in the sense that its 1-bit redundancy is inevitable. Finally, both theoretical and numerical analysis imply that with increasing <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, a randomly constructed circular-shift linear code has linear solvability behavior comparable to a randomly constructed permutation-based linear code, but has shorter overheads.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2018.2832624