Sensor Selection for Estimation with Correlated Measurement Noise
In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by formulating an optimization problem, in which the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix...
Saved in:
Published in | IEEE transactions on signal processing Vol. 64; no. 13; pp. 3509 - 3522 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/TSP.2016.2550005 |
Cover
Loading…
Abstract | In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by formulating an optimization problem, in which the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix, is minimized subject to energy constraints. Fisher information has been widely used as an effective sensor selection criterion. However, existing information-based sensor selection methods are limited to the case of uncorrelated noise or weakly correlated noise due to the use of approximate metrics. By contrast, here we derive the closed form of the Fisher information matrix with respect to sensor selection variables that is valid for any arbitrary noise correlation regime and develop both a convex relaxation approach and a greedy algorithm to find near-optimal solutions. We further extend our framework of sensor selection to solve the problem of sensor scheduling, where a greedy algorithm is proposed to determine non-myopic (multi-time step ahead) sensor schedules. Lastly, numerical results are provided to illustrate the effectiveness of our approach, and to reveal the effect of noise correlation on estimation performance. |
---|---|
AbstractList | In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by formulating an optimization problem, in which the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix, is minimized subject to energy constraints. Fisher information has been widely used as an effective sensor selection criterion. However, existing information-based sensor selection methods are limited to the case of uncorrelated noise or weakly correlated noise due to the use of approximate metrics. By contrast, here we derive the closed form of the Fisher information matrix with respect to sensor selection variables that is valid for any arbitrary noise correlation regime and develop both a convex relaxation approach and a greedy algorithm to find near-optimal solutions. We further extend our framework of sensor selection to solve the problem of sensor scheduling, where a greedy algorithm is proposed to determine non-myopic (multi-time step ahead) sensor schedules. Lastly, numerical results are provided to illustrate the effectiveness of our approach, and to reveal the effect of noise correlation on estimation performance. |
Author | Masazade, Engin Varshney, Pramod K. Chepuri, Sundeep Prabhakar Fardad, Makan Sijia Liu Leus, Geert |
Author_xml | – sequence: 1 surname: Sijia Liu fullname: Sijia Liu email: sliu17@syr.edu organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA – sequence: 2 givenname: Sundeep Prabhakar surname: Chepuri fullname: Chepuri, Sundeep Prabhakar email: s.p.chepuri@tudelft.nl organization: Fac. of Electr. Eng., Delft Univ. of Technol., Delft, Netherlands – sequence: 3 givenname: Makan surname: Fardad fullname: Fardad, Makan email: makan@syr.edu organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA – sequence: 4 givenname: Engin surname: Masazade fullname: Masazade, Engin email: engin.masazade@yeditepe.edu.tr organization: Dept. of Electr. & Electron. Eng., Yeditepe Univ., Istanbul, Turkey – sequence: 5 givenname: Geert surname: Leus fullname: Leus, Geert email: g.j.t.leus@tudelft.nl organization: Fac. of Electr. Eng., Delft Univ. of Technol., Delft, Netherlands – sequence: 6 givenname: Pramod K. surname: Varshney fullname: Varshney, Pramod K. email: varshney@syr.edu organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA |
BookMark | eNp9kEtLAzEUhYNUsK3uBTcDrqfmNclkWUqtQn1AK7gL0-QGp0wnNUkR_73TBy5cuLr3wDn3cr4B6rW-BYSuCR4RgtXdcvE6opiIES0KjHFxhvpEcZJjLkWv23HB8qKU7xdoEOMaY8K5En00XkAbfcgW0IBJtW8z16lpTPWmOsivOn1kEx8CNFUCmz1BFXcBNtCm7NnXES7RuauaCFenOURv99Pl5CGfv8weJ-N5bqgiKSfgjGEr5youLCXKSMuqFQZFwRbUESWLVWktpcYqJY1xilnqDMdCGsxKw4bo9nh3G_znDmLSa78LbfdSE6mo4KIseefCR5cJPsYATm9DVyV8a4L1HpTuQOk9KH0C1UXEn4ip06F8ClXd_Be8OQZrAPj9IzkXjCv2A_GAeC0 |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1016_j_ast_2024_109079 crossref_primary_10_1109_LCOMM_2021_3057085 crossref_primary_10_1016_j_sigpro_2023_109037 crossref_primary_10_1016_j_applthermaleng_2024_124476 crossref_primary_10_1109_TSIPN_2019_2928093 crossref_primary_10_1155_2022_2779760 crossref_primary_10_1109_TAES_2024_3384176 crossref_primary_10_1109_LSP_2018_2823271 crossref_primary_10_3390_en17133355 crossref_primary_10_1109_JIOT_2020_2977910 crossref_primary_10_1109_TSP_2019_2903017 crossref_primary_10_12677_CSA_2017_712135 crossref_primary_10_1109_TVT_2020_3011118 crossref_primary_10_1016_j_sigpro_2019_107404 crossref_primary_10_3390_jmse10020245 crossref_primary_10_1109_TSP_2018_2881656 crossref_primary_10_1109_TWC_2022_3185713 crossref_primary_10_1016_j_sctalk_2024_100327 crossref_primary_10_1109_MAES_2023_3266179 crossref_primary_10_1515_jiip_2024_0017 crossref_primary_10_1109_TVT_2018_2798360 crossref_primary_10_1016_j_engappai_2023_106624 crossref_primary_10_1016_j_ifacol_2023_10_035 crossref_primary_10_1016_j_ymssp_2021_107619 crossref_primary_10_1109_JSEN_2024_3388849 crossref_primary_10_1109_TSIPN_2020_3022819 crossref_primary_10_1109_TVT_2019_2936110 crossref_primary_10_1016_j_chemolab_2023_104796 crossref_primary_10_1109_TSP_2022_3212150 crossref_primary_10_1177_15501477211023022 crossref_primary_10_1109_TPDS_2022_3168873 crossref_primary_10_1109_TAP_2021_3137194 crossref_primary_10_3233_JIFS_211436 crossref_primary_10_1109_LSP_2021_3050708 crossref_primary_10_1007_s00034_023_02338_x crossref_primary_10_1109_TWC_2023_3289970 crossref_primary_10_1109_JSAC_2016_2611859 crossref_primary_10_1587_transfun_2022EAL2053 crossref_primary_10_1109_TIE_2017_2756594 crossref_primary_10_1016_j_ifacol_2018_06_246 crossref_primary_10_1109_TCST_2019_2955042 crossref_primary_10_1109_TSP_2022_3224643 crossref_primary_10_1109_TSP_2016_2631463 crossref_primary_10_1016_j_sigpro_2018_03_011 crossref_primary_10_1109_TSP_2022_3156012 crossref_primary_10_1109_ACCESS_2023_3291415 crossref_primary_10_1109_TIFS_2020_3016835 crossref_primary_10_1109_TAC_2019_2948268 crossref_primary_10_1016_j_sigpro_2022_108679 crossref_primary_10_1016_j_measurement_2020_107873 crossref_primary_10_1016_j_sigpro_2023_109261 crossref_primary_10_3390_s19184002 crossref_primary_10_1109_TWC_2018_2833464 crossref_primary_10_1109_JSEN_2023_3258223 crossref_primary_10_1109_TSP_2017_2773429 crossref_primary_10_3390_s23135961 crossref_primary_10_1002_rnc_6124 crossref_primary_10_1093_gji_ggad165 crossref_primary_10_1109_TAC_2021_3082502 crossref_primary_10_1109_JSEN_2021_3073978 crossref_primary_10_2514_1_G008324 crossref_primary_10_1109_TVT_2024_3472112 crossref_primary_10_1109_TASLP_2021_3064399 crossref_primary_10_1109_TAC_2020_2980924 crossref_primary_10_1109_TCNS_2020_3006271 crossref_primary_10_4018_IJSWIS_308812 crossref_primary_10_52396_JUSTC_2022_0121 crossref_primary_10_1364_JOSAA_388136 crossref_primary_10_1016_j_inffus_2018_01_008 crossref_primary_10_1109_JSEN_2025_3537702 crossref_primary_10_1093_gji_ggac443 crossref_primary_10_1155_2017_3173196 crossref_primary_10_1016_j_ifacol_2021_04_225 crossref_primary_10_1186_s13634_024_01127_1 crossref_primary_10_1186_s13636_024_00364_4 crossref_primary_10_1002_adfm_202401600 crossref_primary_10_1109_TMC_2022_3168076 crossref_primary_10_3390_s23052738 crossref_primary_10_1109_JSEN_2023_3301492 crossref_primary_10_1109_TIM_2021_3078537 crossref_primary_10_1109_TRO_2020_3001718 crossref_primary_10_1088_1361_6420_ad602e crossref_primary_10_1109_TVT_2018_2875314 crossref_primary_10_1109_TSP_2021_3114982 crossref_primary_10_1587_transinf_2024EDL8024 crossref_primary_10_1109_TCNS_2019_2908341 crossref_primary_10_1016_j_jfranklin_2017_06_009 crossref_primary_10_1109_TAC_2020_2973774 crossref_primary_10_1016_j_expthermflusci_2024_111210 crossref_primary_10_1109_TSP_2020_2971203 crossref_primary_10_1109_TASLP_2017_2786544 crossref_primary_10_1109_TVT_2019_2949235 crossref_primary_10_1109_JSEN_2019_2909555 crossref_primary_10_1109_LSP_2021_3128378 crossref_primary_10_1016_j_icte_2023_01_004 crossref_primary_10_1002_dac_4459 crossref_primary_10_1108_SR_04_2021_0112 crossref_primary_10_1137_21M1418666 crossref_primary_10_1016_j_dsp_2018_03_014 crossref_primary_10_3390_electronics9020283 crossref_primary_10_3390_s20226547 crossref_primary_10_3390_e24020200 crossref_primary_10_1109_TAES_2023_3313992 crossref_primary_10_1016_j_adhoc_2022_103036 crossref_primary_10_1016_j_comnet_2017_05_024 crossref_primary_10_1109_ACCESS_2022_3194250 crossref_primary_10_1109_TSP_2018_2846220 crossref_primary_10_3390_s18061778 crossref_primary_10_1109_TETCI_2022_3146330 crossref_primary_10_3390_electronics11142170 crossref_primary_10_1109_TWC_2017_2767581 crossref_primary_10_1109_TAES_2021_3061826 |
Cites_doi | 10.1109/ICASSP.2014.6854570 10.1109/TSP.2009.2015110 10.1145/1218556.1218558 10.1109/TSP.2012.2204257 10.1109/TSP.2014.2320455 10.1214/ss/1177009939 10.1109/LSP.2014.2342198 10.1109/TSP.2013.2289881 10.1109/TSP.2009.2020033 10.1109/TSP.2015.2413381 10.1109/CISS.2012.6310849 10.1061/(ASCE)0733-9399(1994)120:2(368) 10.1198/016214501753382282 10.1109/9780470544198 10.1109/ACSSC.2013.6810368 10.1109/MSP.2010.936019 10.1109/79.985685 10.1109/TSP.2012.2210888 10.1109/TSP.2008.917038 10.1017/CBO9780511804441 10.1109/TSP.2008.2007095 10.1109/ICASSP.2015.7178728 10.1109/TSP.2006.882082 10.1109/ICASSP.2015.7178400 10.1109/ICASSP.2014.6854342 10.1016/0898-1221(91)90163-X 10.1109/TAES.2011.5751263 10.1109/78.668800 10.1007/BF01580380 10.4304/jcm.6.2.143-151 10.1016/j.automatica.2011.02.001 10.1145/972627.972631 10.1109/TAC.2014.2314223 10.1109/TSP.2014.2379662 10.1145/2213977.2214056 10.1109/LSP.2012.2220350 10.1109/CDC.2010.5717225 10.1109/TAES.2014.130455 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TSP.2016.2550005 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0476 |
EndPage | 3522 |
ExternalDocumentID | 4073283871 10_1109_TSP_2016_2550005 7446349 |
Genre | orig-research |
GrantInformation_xml | – fundername: NWO-STW grantid: 10382 funderid: 10.13039/501100003246 – fundername: Scientific and Technological Research Council of Turkey (TUBITAK) grantid: 113E220 funderid: 10.13039/501100004410 – fundername: U.S. Air Force Office of Scientific Research (AFOSR) grantid: FA9550-10-1-0458 funderid: 10.13039/100000181 – fundername: National Science Foundation (NSF) grantid: EAGER ECCS-1545270; CNS-1329885 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-1efcc3bffa46d219c7d3ab0e92ed52f1975b8dd22cd997ccf93d2fc4067c038c3 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Mon Jun 30 10:14:50 EDT 2025 Tue Jul 01 02:53:11 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Tue Aug 26 16:43:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | sensor scheduling parameter estimation correlated noise convex relaxation Sensor selection |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-1efcc3bffa46d219c7d3ab0e92ed52f1975b8dd22cd997ccf93d2fc4067c038c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2817-6991 |
PQID | 1792646884 |
PQPubID | 85478 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TSP_2016_2550005 proquest_journals_1792646884 ieee_primary_7446349 crossref_citationtrail_10_1109_TSP_2016_2550005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 yu (ref45) 2004 ref39 ref17 ref38 ref16 jamali-rad (ref19) 0 kay (ref24) 1993 he (ref3) 0 ref46 ref23 ref26 ref25 ref20 ref41 ref22 ref44 rigtorp (ref18) 2010 ref21 ref43 nemirovski (ref28) 2012 ref27 ref29 ref8 ref7 ref9 ref4 d'aspremont (ref42) 2003 ref6 ref5 ref40 |
References_xml | – ident: ref40 doi: 10.1109/ICASSP.2014.6854570 – ident: ref6 doi: 10.1109/TSP.2009.2015110 – year: 2012 ident: ref28 article-title: Interior point polynomial time methods in convex programming – ident: ref17 doi: 10.1145/1218556.1218558 – ident: ref5 doi: 10.1109/TSP.2012.2204257 – ident: ref8 doi: 10.1109/TSP.2014.2320455 – ident: ref11 doi: 10.1214/ss/1177009939 – ident: ref7 doi: 10.1109/LSP.2014.2342198 – ident: ref20 doi: 10.1109/TSP.2013.2289881 – ident: ref35 doi: 10.1109/TSP.2009.2020033 – ident: ref10 doi: 10.1109/TSP.2015.2413381 – ident: ref15 doi: 10.1109/CISS.2012.6310849 – year: 2010 ident: ref18 article-title: Sensor selection with correlated noise – ident: ref32 doi: 10.1061/(ASCE)0733-9399(1994)120:2(368) – ident: ref23 doi: 10.1198/016214501753382282 – ident: ref16 doi: 10.1109/9780470544198 – ident: ref43 doi: 10.1109/ACSSC.2013.6810368 – ident: ref27 doi: 10.1109/MSP.2010.936019 – year: 2003 ident: ref42 article-title: Relaxations and randomized methods for nonconvex QCQPs – ident: ref4 doi: 10.1109/79.985685 – start-page: 37 year: 0 ident: ref3 article-title: Achieving real-time target tracking using wireless sensor networks publication-title: Proc IEEE Real Time Technol Appl Symp – ident: ref37 doi: 10.1109/TSP.2012.2204257 – ident: ref29 doi: 10.1109/TSP.2012.2210888 – ident: ref9 doi: 10.1109/TSP.2008.917038 – ident: ref26 doi: 10.1017/CBO9780511804441 – ident: ref13 doi: 10.1109/TSP.2008.2007095 – ident: ref22 doi: 10.1109/ICASSP.2015.7178728 – ident: ref44 doi: 10.1109/TSP.2006.882082 – ident: ref25 doi: 10.1109/ICASSP.2015.7178400 – year: 1993 ident: ref24 publication-title: Fundamentals of Statistical Signal Processing Estimation Theory – ident: ref41 doi: 10.1109/ICASSP.2014.6854342 – ident: ref36 doi: 10.1016/0898-1221(91)90163-X – ident: ref34 doi: 10.1109/TAES.2011.5751263 – ident: ref39 doi: 10.1109/78.668800 – ident: ref46 doi: 10.1007/BF01580380 – ident: ref1 doi: 10.4304/jcm.6.2.143-151 – year: 2004 ident: ref45 article-title: Derivation of extended Kalman filtering and smoothing equations – ident: ref21 doi: 10.1016/j.automatica.2011.02.001 – ident: ref2 doi: 10.1145/972627.972631 – ident: ref12 doi: 10.1109/TAC.2014.2314223 – start-page: 1 year: 0 ident: ref19 article-title: Sparsity-aware sensor selection for correlated noise publication-title: Proc 17th Int Conf Inf Fusion (FUSION) – ident: ref14 doi: 10.1109/TSP.2014.2379662 – ident: ref31 doi: 10.1145/2213977.2214056 – ident: ref38 doi: 10.1109/LSP.2012.2220350 – ident: ref30 doi: 10.1109/CDC.2010.5717225 – ident: ref33 doi: 10.1109/TAES.2014.130455 |
SSID | ssj0014496 |
Score | 2.5915387 |
Snippet | In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3509 |
SubjectTerms | convex relaxation correlated noise Correlation Covariance matrices Estimation error Greedy algorithms Noise Noise measurement Parameter estimation sensor scheduling Sensor selection Sensors |
Title | Sensor Selection for Estimation with Correlated Measurement Noise |
URI | https://ieeexplore.ieee.org/document/7446349 https://www.proquest.com/docview/1792646884 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1Sg5eBHe7j2w2OUppKUKL0BZ6W3bzALF0pd1e_PVOsg-fiLc9JEuYmcx8M5kHQrdMgdFl1ITeNHWILyMnBclxeAr2h0QqSj1T4DyZ0vGCPC6jZQvdN7UwSimbfKZc82nf8mUudiZU1o_BdwkJ30N74LiVtVrNiwEhdhYXwIXQiVi8rJ8kPd6fz55MDhd1AT4bjPLFBNmZKj8UsbUuoyM0qc9VJpW8uLsic8Xbt5aN_z34MTqsYCZ-KOXiBLXU-hQdfGo-2AGFCh5svsEzOwkH2IMBv-IhXPmymhGbEC0emOkdKwCkEk8-wol4mj9v1RlajIbzwdipBio4IuB-4fhKCxFmWqeESlBVIpZhmnmKB0pGgfZ5HGVMyiAQkvNYCM1DGWgBNj8WXshEeI7a63ytLhCmHEQwlloSblqd69TnTAqSciWY8GnaRf2axomouo2boRerxHodHk-AK4nhSlJxpYvumh2vZaeNP9Z2DJGbdRV9u6hXszGpruI2AY0DoI8yRi5_33WF9s2_yxzcHmoXm526BqRRZDdWxN4BfDXP9Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagHX1WsVt2DF8G0eWyS3aOUStWmCG2ht5DsA8TSSh8Xf72zedQn4i2HXbLMzM58MzsPgCum0OiywITedGBRR_pWgpJj8QTtD_WVn9imwDnqB90RfRj74wrcrGthlFJZ8plqms_sLV_OxMqEyloh-i4e5RuwiXbfd_JqrfWbAaXZNC4EDJ7ls3BcPkravDUcPJksrqCJANqglC9GKJuq8kMVZ_blbg-i8mR5WslLc7VMm-LtW9PG_x59H3YLoEluc8k4gIqaHsLOp_aDNVSp6MPO5mSQzcJBBhFEsKSDlz6vZyQmSEvaZn7HBCGpJNFHQJH0Z88LdQSju86w3bWKkQqWcLmztBylhfBSrRMaSFRWIpRektqKu0r6rnZ46KdMStcVkvNQCM096WqBVj8UtseEdwzV6WyqToAEHIUwlFpSbpqd68ThTAqacCWYcIKkDq2SxrEo-o2bsReTOPM7bB4jV2LDlbjgSh2u1zte814bf6ytGSKv1xX0rUOjZGNcXMZFjDoHYV_AGD39fdclbHWHUS_u3fcfz2Db_CfPyG1AdTlfqXPEHcv0IhO3d37d0z4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor+Selection+for+Estimation+with+Correlated+Measurement+Noise&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Liu%2C+Sijia&rft.au=Chepuri%2C+Sundeep+Prabhakar&rft.au=Fardad%2C+Makan&rft.au=Masazade%2C+Engin&rft.date=2016-07-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=64&rft.issue=13&rft.spage=3509&rft.epage=3522&rft_id=info:doi/10.1109%2FTSP.2016.2550005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2016_2550005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |