Sensor Selection for Estimation with Correlated Measurement Noise

In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by formulating an optimization problem, in which the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 64; no. 13; pp. 3509 - 3522
Main Authors Sijia Liu, Chepuri, Sundeep Prabhakar, Fardad, Makan, Masazade, Engin, Leus, Geert, Varshney, Pramod K.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2016.2550005

Cover

Loading…
Abstract In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by formulating an optimization problem, in which the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix, is minimized subject to energy constraints. Fisher information has been widely used as an effective sensor selection criterion. However, existing information-based sensor selection methods are limited to the case of uncorrelated noise or weakly correlated noise due to the use of approximate metrics. By contrast, here we derive the closed form of the Fisher information matrix with respect to sensor selection variables that is valid for any arbitrary noise correlation regime and develop both a convex relaxation approach and a greedy algorithm to find near-optimal solutions. We further extend our framework of sensor selection to solve the problem of sensor scheduling, where a greedy algorithm is proposed to determine non-myopic (multi-time step ahead) sensor schedules. Lastly, numerical results are provided to illustrate the effectiveness of our approach, and to reveal the effect of noise correlation on estimation performance.
AbstractList In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by formulating an optimization problem, in which the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix, is minimized subject to energy constraints. Fisher information has been widely used as an effective sensor selection criterion. However, existing information-based sensor selection methods are limited to the case of uncorrelated noise or weakly correlated noise due to the use of approximate metrics. By contrast, here we derive the closed form of the Fisher information matrix with respect to sensor selection variables that is valid for any arbitrary noise correlation regime and develop both a convex relaxation approach and a greedy algorithm to find near-optimal solutions. We further extend our framework of sensor selection to solve the problem of sensor scheduling, where a greedy algorithm is proposed to determine non-myopic (multi-time step ahead) sensor schedules. Lastly, numerical results are provided to illustrate the effectiveness of our approach, and to reveal the effect of noise correlation on estimation performance.
Author Masazade, Engin
Varshney, Pramod K.
Chepuri, Sundeep Prabhakar
Fardad, Makan
Sijia Liu
Leus, Geert
Author_xml – sequence: 1
  surname: Sijia Liu
  fullname: Sijia Liu
  email: sliu17@syr.edu
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
– sequence: 2
  givenname: Sundeep Prabhakar
  surname: Chepuri
  fullname: Chepuri, Sundeep Prabhakar
  email: s.p.chepuri@tudelft.nl
  organization: Fac. of Electr. Eng., Delft Univ. of Technol., Delft, Netherlands
– sequence: 3
  givenname: Makan
  surname: Fardad
  fullname: Fardad, Makan
  email: makan@syr.edu
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
– sequence: 4
  givenname: Engin
  surname: Masazade
  fullname: Masazade, Engin
  email: engin.masazade@yeditepe.edu.tr
  organization: Dept. of Electr. & Electron. Eng., Yeditepe Univ., Istanbul, Turkey
– sequence: 5
  givenname: Geert
  surname: Leus
  fullname: Leus, Geert
  email: g.j.t.leus@tudelft.nl
  organization: Fac. of Electr. Eng., Delft Univ. of Technol., Delft, Netherlands
– sequence: 6
  givenname: Pramod K.
  surname: Varshney
  fullname: Varshney, Pramod K.
  email: varshney@syr.edu
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
BookMark eNp9kEtLAzEUhYNUsK3uBTcDrqfmNclkWUqtQn1AK7gL0-QGp0wnNUkR_73TBy5cuLr3wDn3cr4B6rW-BYSuCR4RgtXdcvE6opiIES0KjHFxhvpEcZJjLkWv23HB8qKU7xdoEOMaY8K5En00XkAbfcgW0IBJtW8z16lpTPWmOsivOn1kEx8CNFUCmz1BFXcBNtCm7NnXES7RuauaCFenOURv99Pl5CGfv8weJ-N5bqgiKSfgjGEr5youLCXKSMuqFQZFwRbUESWLVWktpcYqJY1xilnqDMdCGsxKw4bo9nh3G_znDmLSa78LbfdSE6mo4KIseefCR5cJPsYATm9DVyV8a4L1HpTuQOk9KH0C1UXEn4ip06F8ClXd_Be8OQZrAPj9IzkXjCv2A_GAeC0
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_ast_2024_109079
crossref_primary_10_1109_LCOMM_2021_3057085
crossref_primary_10_1016_j_sigpro_2023_109037
crossref_primary_10_1016_j_applthermaleng_2024_124476
crossref_primary_10_1109_TSIPN_2019_2928093
crossref_primary_10_1155_2022_2779760
crossref_primary_10_1109_TAES_2024_3384176
crossref_primary_10_1109_LSP_2018_2823271
crossref_primary_10_3390_en17133355
crossref_primary_10_1109_JIOT_2020_2977910
crossref_primary_10_1109_TSP_2019_2903017
crossref_primary_10_12677_CSA_2017_712135
crossref_primary_10_1109_TVT_2020_3011118
crossref_primary_10_1016_j_sigpro_2019_107404
crossref_primary_10_3390_jmse10020245
crossref_primary_10_1109_TSP_2018_2881656
crossref_primary_10_1109_TWC_2022_3185713
crossref_primary_10_1016_j_sctalk_2024_100327
crossref_primary_10_1109_MAES_2023_3266179
crossref_primary_10_1515_jiip_2024_0017
crossref_primary_10_1109_TVT_2018_2798360
crossref_primary_10_1016_j_engappai_2023_106624
crossref_primary_10_1016_j_ifacol_2023_10_035
crossref_primary_10_1016_j_ymssp_2021_107619
crossref_primary_10_1109_JSEN_2024_3388849
crossref_primary_10_1109_TSIPN_2020_3022819
crossref_primary_10_1109_TVT_2019_2936110
crossref_primary_10_1016_j_chemolab_2023_104796
crossref_primary_10_1109_TSP_2022_3212150
crossref_primary_10_1177_15501477211023022
crossref_primary_10_1109_TPDS_2022_3168873
crossref_primary_10_1109_TAP_2021_3137194
crossref_primary_10_3233_JIFS_211436
crossref_primary_10_1109_LSP_2021_3050708
crossref_primary_10_1007_s00034_023_02338_x
crossref_primary_10_1109_TWC_2023_3289970
crossref_primary_10_1109_JSAC_2016_2611859
crossref_primary_10_1587_transfun_2022EAL2053
crossref_primary_10_1109_TIE_2017_2756594
crossref_primary_10_1016_j_ifacol_2018_06_246
crossref_primary_10_1109_TCST_2019_2955042
crossref_primary_10_1109_TSP_2022_3224643
crossref_primary_10_1109_TSP_2016_2631463
crossref_primary_10_1016_j_sigpro_2018_03_011
crossref_primary_10_1109_TSP_2022_3156012
crossref_primary_10_1109_ACCESS_2023_3291415
crossref_primary_10_1109_TIFS_2020_3016835
crossref_primary_10_1109_TAC_2019_2948268
crossref_primary_10_1016_j_sigpro_2022_108679
crossref_primary_10_1016_j_measurement_2020_107873
crossref_primary_10_1016_j_sigpro_2023_109261
crossref_primary_10_3390_s19184002
crossref_primary_10_1109_TWC_2018_2833464
crossref_primary_10_1109_JSEN_2023_3258223
crossref_primary_10_1109_TSP_2017_2773429
crossref_primary_10_3390_s23135961
crossref_primary_10_1002_rnc_6124
crossref_primary_10_1093_gji_ggad165
crossref_primary_10_1109_TAC_2021_3082502
crossref_primary_10_1109_JSEN_2021_3073978
crossref_primary_10_2514_1_G008324
crossref_primary_10_1109_TVT_2024_3472112
crossref_primary_10_1109_TASLP_2021_3064399
crossref_primary_10_1109_TAC_2020_2980924
crossref_primary_10_1109_TCNS_2020_3006271
crossref_primary_10_4018_IJSWIS_308812
crossref_primary_10_52396_JUSTC_2022_0121
crossref_primary_10_1364_JOSAA_388136
crossref_primary_10_1016_j_inffus_2018_01_008
crossref_primary_10_1109_JSEN_2025_3537702
crossref_primary_10_1093_gji_ggac443
crossref_primary_10_1155_2017_3173196
crossref_primary_10_1016_j_ifacol_2021_04_225
crossref_primary_10_1186_s13634_024_01127_1
crossref_primary_10_1186_s13636_024_00364_4
crossref_primary_10_1002_adfm_202401600
crossref_primary_10_1109_TMC_2022_3168076
crossref_primary_10_3390_s23052738
crossref_primary_10_1109_JSEN_2023_3301492
crossref_primary_10_1109_TIM_2021_3078537
crossref_primary_10_1109_TRO_2020_3001718
crossref_primary_10_1088_1361_6420_ad602e
crossref_primary_10_1109_TVT_2018_2875314
crossref_primary_10_1109_TSP_2021_3114982
crossref_primary_10_1587_transinf_2024EDL8024
crossref_primary_10_1109_TCNS_2019_2908341
crossref_primary_10_1016_j_jfranklin_2017_06_009
crossref_primary_10_1109_TAC_2020_2973774
crossref_primary_10_1016_j_expthermflusci_2024_111210
crossref_primary_10_1109_TSP_2020_2971203
crossref_primary_10_1109_TASLP_2017_2786544
crossref_primary_10_1109_TVT_2019_2949235
crossref_primary_10_1109_JSEN_2019_2909555
crossref_primary_10_1109_LSP_2021_3128378
crossref_primary_10_1016_j_icte_2023_01_004
crossref_primary_10_1002_dac_4459
crossref_primary_10_1108_SR_04_2021_0112
crossref_primary_10_1137_21M1418666
crossref_primary_10_1016_j_dsp_2018_03_014
crossref_primary_10_3390_electronics9020283
crossref_primary_10_3390_s20226547
crossref_primary_10_3390_e24020200
crossref_primary_10_1109_TAES_2023_3313992
crossref_primary_10_1016_j_adhoc_2022_103036
crossref_primary_10_1016_j_comnet_2017_05_024
crossref_primary_10_1109_ACCESS_2022_3194250
crossref_primary_10_1109_TSP_2018_2846220
crossref_primary_10_3390_s18061778
crossref_primary_10_1109_TETCI_2022_3146330
crossref_primary_10_3390_electronics11142170
crossref_primary_10_1109_TWC_2017_2767581
crossref_primary_10_1109_TAES_2021_3061826
Cites_doi 10.1109/ICASSP.2014.6854570
10.1109/TSP.2009.2015110
10.1145/1218556.1218558
10.1109/TSP.2012.2204257
10.1109/TSP.2014.2320455
10.1214/ss/1177009939
10.1109/LSP.2014.2342198
10.1109/TSP.2013.2289881
10.1109/TSP.2009.2020033
10.1109/TSP.2015.2413381
10.1109/CISS.2012.6310849
10.1061/(ASCE)0733-9399(1994)120:2(368)
10.1198/016214501753382282
10.1109/9780470544198
10.1109/ACSSC.2013.6810368
10.1109/MSP.2010.936019
10.1109/79.985685
10.1109/TSP.2012.2210888
10.1109/TSP.2008.917038
10.1017/CBO9780511804441
10.1109/TSP.2008.2007095
10.1109/ICASSP.2015.7178728
10.1109/TSP.2006.882082
10.1109/ICASSP.2015.7178400
10.1109/ICASSP.2014.6854342
10.1016/0898-1221(91)90163-X
10.1109/TAES.2011.5751263
10.1109/78.668800
10.1007/BF01580380
10.4304/jcm.6.2.143-151
10.1016/j.automatica.2011.02.001
10.1145/972627.972631
10.1109/TAC.2014.2314223
10.1109/TSP.2014.2379662
10.1145/2213977.2214056
10.1109/LSP.2012.2220350
10.1109/CDC.2010.5717225
10.1109/TAES.2014.130455
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2016.2550005
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 3522
ExternalDocumentID 4073283871
10_1109_TSP_2016_2550005
7446349
Genre orig-research
GrantInformation_xml – fundername: NWO-STW
  grantid: 10382
  funderid: 10.13039/501100003246
– fundername: Scientific and Technological Research Council of Turkey (TUBITAK)
  grantid: 113E220
  funderid: 10.13039/501100004410
– fundername: U.S. Air Force Office of Scientific Research (AFOSR)
  grantid: FA9550-10-1-0458
  funderid: 10.13039/100000181
– fundername: National Science Foundation (NSF)
  grantid: EAGER ECCS-1545270; CNS-1329885
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-1efcc3bffa46d219c7d3ab0e92ed52f1975b8dd22cd997ccf93d2fc4067c038c3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Mon Jun 30 10:14:50 EDT 2025
Tue Jul 01 02:53:11 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Tue Aug 26 16:43:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords sensor scheduling
parameter estimation
correlated noise
convex relaxation
Sensor selection
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1efcc3bffa46d219c7d3ab0e92ed52f1975b8dd22cd997ccf93d2fc4067c038c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2817-6991
PQID 1792646884
PQPubID 85478
PageCount 14
ParticipantIDs crossref_primary_10_1109_TSP_2016_2550005
proquest_journals_1792646884
ieee_primary_7446349
crossref_citationtrail_10_1109_TSP_2016_2550005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
yu (ref45) 2004
ref39
ref17
ref38
ref16
jamali-rad (ref19) 0
kay (ref24) 1993
he (ref3) 0
ref46
ref23
ref26
ref25
ref20
ref41
ref22
ref44
rigtorp (ref18) 2010
ref21
ref43
nemirovski (ref28) 2012
ref27
ref29
ref8
ref7
ref9
ref4
d'aspremont (ref42) 2003
ref6
ref5
ref40
References_xml – ident: ref40
  doi: 10.1109/ICASSP.2014.6854570
– ident: ref6
  doi: 10.1109/TSP.2009.2015110
– year: 2012
  ident: ref28
  article-title: Interior point polynomial time methods in convex programming
– ident: ref17
  doi: 10.1145/1218556.1218558
– ident: ref5
  doi: 10.1109/TSP.2012.2204257
– ident: ref8
  doi: 10.1109/TSP.2014.2320455
– ident: ref11
  doi: 10.1214/ss/1177009939
– ident: ref7
  doi: 10.1109/LSP.2014.2342198
– ident: ref20
  doi: 10.1109/TSP.2013.2289881
– ident: ref35
  doi: 10.1109/TSP.2009.2020033
– ident: ref10
  doi: 10.1109/TSP.2015.2413381
– ident: ref15
  doi: 10.1109/CISS.2012.6310849
– year: 2010
  ident: ref18
  article-title: Sensor selection with correlated noise
– ident: ref32
  doi: 10.1061/(ASCE)0733-9399(1994)120:2(368)
– ident: ref23
  doi: 10.1198/016214501753382282
– ident: ref16
  doi: 10.1109/9780470544198
– ident: ref43
  doi: 10.1109/ACSSC.2013.6810368
– ident: ref27
  doi: 10.1109/MSP.2010.936019
– year: 2003
  ident: ref42
  article-title: Relaxations and randomized methods for nonconvex QCQPs
– ident: ref4
  doi: 10.1109/79.985685
– start-page: 37
  year: 0
  ident: ref3
  article-title: Achieving real-time target tracking using wireless sensor networks
  publication-title: Proc IEEE Real Time Technol Appl Symp
– ident: ref37
  doi: 10.1109/TSP.2012.2204257
– ident: ref29
  doi: 10.1109/TSP.2012.2210888
– ident: ref9
  doi: 10.1109/TSP.2008.917038
– ident: ref26
  doi: 10.1017/CBO9780511804441
– ident: ref13
  doi: 10.1109/TSP.2008.2007095
– ident: ref22
  doi: 10.1109/ICASSP.2015.7178728
– ident: ref44
  doi: 10.1109/TSP.2006.882082
– ident: ref25
  doi: 10.1109/ICASSP.2015.7178400
– year: 1993
  ident: ref24
  publication-title: Fundamentals of Statistical Signal Processing Estimation Theory
– ident: ref41
  doi: 10.1109/ICASSP.2014.6854342
– ident: ref36
  doi: 10.1016/0898-1221(91)90163-X
– ident: ref34
  doi: 10.1109/TAES.2011.5751263
– ident: ref39
  doi: 10.1109/78.668800
– ident: ref46
  doi: 10.1007/BF01580380
– ident: ref1
  doi: 10.4304/jcm.6.2.143-151
– year: 2004
  ident: ref45
  article-title: Derivation of extended Kalman filtering and smoothing equations
– ident: ref21
  doi: 10.1016/j.automatica.2011.02.001
– ident: ref2
  doi: 10.1145/972627.972631
– ident: ref12
  doi: 10.1109/TAC.2014.2314223
– start-page: 1
  year: 0
  ident: ref19
  article-title: Sparsity-aware sensor selection for correlated noise
  publication-title: Proc 17th Int Conf Inf Fusion (FUSION)
– ident: ref14
  doi: 10.1109/TSP.2014.2379662
– ident: ref31
  doi: 10.1145/2213977.2214056
– ident: ref38
  doi: 10.1109/LSP.2012.2220350
– ident: ref30
  doi: 10.1109/CDC.2010.5717225
– ident: ref33
  doi: 10.1109/TAES.2014.130455
SSID ssj0014496
Score 2.5915387
Snippet In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3509
SubjectTerms convex relaxation
correlated noise
Correlation
Covariance matrices
Estimation error
Greedy algorithms
Noise
Noise measurement
Parameter estimation
sensor scheduling
Sensor selection
Sensors
Title Sensor Selection for Estimation with Correlated Measurement Noise
URI https://ieeexplore.ieee.org/document/7446349
https://www.proquest.com/docview/1792646884
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1Sg5eBHe7j2w2OUppKUKL0BZ6W3bzALF0pd1e_PVOsg-fiLc9JEuYmcx8M5kHQrdMgdFl1ITeNHWILyMnBclxeAr2h0QqSj1T4DyZ0vGCPC6jZQvdN7UwSimbfKZc82nf8mUudiZU1o_BdwkJ30N74LiVtVrNiwEhdhYXwIXQiVi8rJ8kPd6fz55MDhd1AT4bjPLFBNmZKj8UsbUuoyM0qc9VJpW8uLsic8Xbt5aN_z34MTqsYCZ-KOXiBLXU-hQdfGo-2AGFCh5svsEzOwkH2IMBv-IhXPmymhGbEC0emOkdKwCkEk8-wol4mj9v1RlajIbzwdipBio4IuB-4fhKCxFmWqeESlBVIpZhmnmKB0pGgfZ5HGVMyiAQkvNYCM1DGWgBNj8WXshEeI7a63ytLhCmHEQwlloSblqd69TnTAqSciWY8GnaRf2axomouo2boRerxHodHk-AK4nhSlJxpYvumh2vZaeNP9Z2DJGbdRV9u6hXszGpruI2AY0DoI8yRi5_33WF9s2_yxzcHmoXm526BqRRZDdWxN4BfDXP9Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagHX1WsVt2DF8G0eWyS3aOUStWmCG2ht5DsA8TSSh8Xf72zedQn4i2HXbLMzM58MzsPgCum0OiywITedGBRR_pWgpJj8QTtD_WVn9imwDnqB90RfRj74wrcrGthlFJZ8plqms_sLV_OxMqEyloh-i4e5RuwiXbfd_JqrfWbAaXZNC4EDJ7ls3BcPkravDUcPJksrqCJANqglC9GKJuq8kMVZ_blbg-i8mR5WslLc7VMm-LtW9PG_x59H3YLoEluc8k4gIqaHsLOp_aDNVSp6MPO5mSQzcJBBhFEsKSDlz6vZyQmSEvaZn7HBCGpJNFHQJH0Z88LdQSju86w3bWKkQqWcLmztBylhfBSrRMaSFRWIpRektqKu0r6rnZ46KdMStcVkvNQCM096WqBVj8UtseEdwzV6WyqToAEHIUwlFpSbpqd68ThTAqacCWYcIKkDq2SxrEo-o2bsReTOPM7bB4jV2LDlbjgSh2u1zte814bf6ytGSKv1xX0rUOjZGNcXMZFjDoHYV_AGD39fdclbHWHUS_u3fcfz2Db_CfPyG1AdTlfqXPEHcv0IhO3d37d0z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor+Selection+for+Estimation+with+Correlated+Measurement+Noise&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Liu%2C+Sijia&rft.au=Chepuri%2C+Sundeep+Prabhakar&rft.au=Fardad%2C+Makan&rft.au=Masazade%2C+Engin&rft.date=2016-07-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=64&rft.issue=13&rft.spage=3509&rft.epage=3522&rft_id=info:doi/10.1109%2FTSP.2016.2550005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2016_2550005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon