EEG-Based Emotion Recognition of Deaf Subjects by Integrated Genetic Firefly Algorithm
In recent years, many researchers have explored different methods to obtain discriminative features for electroencephalogram-based (EEG-based) emotion recognition, but a few studies have been investigated on deaf subjects. In this study, we have established a deaf EEG emotion dataset, which contains...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, many researchers have explored different methods to obtain discriminative features for electroencephalogram-based (EEG-based) emotion recognition, but a few studies have been investigated on deaf subjects. In this study, we have established a deaf EEG emotion dataset, which contains three kinds of emotion (positive, neutral, and negative) with 15 subjects. Ten kinds of time-frequency domain features and eleven kinds of nonlinear dynamic system features were extracted from the EEG signals. To obtain the optimal feature combination and optimal classifier, an integrated genetic firefly algorithm (IGFA) was proposed. The multi-objective function with variable weight was utilized to balance the classification accuracy and the feature reduction ratio that are contradictory goals to find brighter fireflies in each generation. To retain the historical optimal solution and reduce the feature dimension, an optimal population protection scheme and subgroups generation scheme was carried out. The experimental results show that the averaged feature reduction rate of the proposed method is 0.959, and the averaged classification accuracy is 0.961. By investigating important brain regions, deaf subjects have common areas in the frontal and temporal lobes for EEG emotion recognition, while individual areas occur in the occipital and parietal lobes. |
---|---|
AbstractList | In recent years, many researchers have explored different methods to obtain discriminative features for electroencephalogram-based (EEG-based) emotion recognition, but a few studies have been investigated on deaf subjects. In this study, we have established a deaf EEG emotion dataset, which contains three kinds of emotion (positive, neutral, and negative) with 15 subjects. Ten kinds of time-frequency domain features and eleven kinds of nonlinear dynamic system features were extracted from the EEG signals. To obtain the optimal feature combination and optimal classifier, an integrated genetic firefly algorithm (IGFA) was proposed. The multi-objective function with variable weight was utilized to balance the classification accuracy and the feature reduction ratio that are contradictory goals to find brighter fireflies in each generation. To retain the historical optimal solution and reduce the feature dimension, an optimal population protection scheme and subgroups generation scheme was carried out. The experimental results show that the averaged feature reduction rate of the proposed method is 0.959, and the averaged classification accuracy is 0.961. By investigating important brain regions, deaf subjects have common areas in the frontal and temporal lobes for EEG emotion recognition, while individual areas occur in the occipital and parietal lobes. |
Author | Tian, Zekun Li, Dahua Gao, Qiang Kang, Qiaoju Song, Yu Yang, Yi |
Author_xml | – sequence: 1 givenname: Zekun orcidid: 0000-0003-4277-1535 surname: Tian fullname: Tian, Zekun email: t.zk@foxmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 2 givenname: Dahua orcidid: 0000-0002-1710-3036 surname: Li fullname: Li, Dahua email: lidah2005@163.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 3 givenname: Yu orcidid: 0000-0002-9295-7795 surname: Song fullname: Song, Yu email: jasonsongrain@hotmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 4 givenname: Qiang orcidid: 0000-0001-9357-4967 surname: Gao fullname: Gao, Qiang email: gaoqiang@tjut.edu.cn organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, Maritime College, Tianjin University of Technology, Tianjin, China – sequence: 5 givenname: Qiaoju orcidid: 0000-0001-5846-9889 surname: Kang fullname: Kang, Qiaoju email: qiaojuKang@hotmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 6 givenname: Yi orcidid: 0000-0001-8679-9359 surname: Yang fullname: Yang, Yi email: yyfly ing@yeah.net organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China |
BookMark | eNp9kM9PwjAUgBuDiYDeTbws8Tx87ba2OyIOJMGYKPG6dOUNS2DFthz4792EePDg6b2XvO_9-Aak19gGCbmlMKIU8ofl_GXEgNFRQhlNRXJB-jTLRJxzznqkD0BlnKcZvyID7zcAIHgq-uSjKGbxo_K4ioqdDcY20Rtqu27MT27r6AlVHb0fqg3q4KPqGM2bgGunQovMsMFgdDQ1DuvtMRpv19aZ8Lm7Jpe12nq8OcchWU6L5eQ5XrzO5pPxItYspyGmmKZKUiklFay9FGUFIkGgWlZ5W2ndPSMlVBVwFFqqWtMVr_JEr5BBMiT3p7F7Z78O6EO5sQfXtBtLluWZYIwnadsFpy7trPftpeXemZ1yx5JC2ckrW3llJ688y2sR_gfRJqhOSXDKbP8D706gQcTfPXkmQXJIvgEfX3yv |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3297647 crossref_primary_10_1109_JBHI_2022_3212475 crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_2139_ssrn_4066353 crossref_primary_10_1109_ACCESS_2023_3270977 crossref_primary_10_1109_JSEN_2024_3440340 crossref_primary_10_1109_TCE_2023_3320661 crossref_primary_10_1109_TIM_2022_3165280 crossref_primary_10_1109_JSEN_2023_3239507 crossref_primary_10_1109_TIM_2023_3240230 crossref_primary_10_1016_j_bspc_2023_105013 crossref_primary_10_1109_TNSRE_2022_3225948 crossref_primary_10_3390_s23125461 crossref_primary_10_1109_TIM_2022_3168927 crossref_primary_10_1109_TIM_2022_3180418 |
Cites_doi | 10.1111/joa.12364 10.1002/int.22551 10.1016/j.asoc.2020.106426 10.1142/S021800141854023X 10.1109/TAMD.2015.2431497 10.1109/JSEN.2021.3078087 10.1007/s11042-020-09354-y 10.1016/j.bbe.2020.04.005 10.1016/S0304-3940(97)00232-2 10.1109/ACCESS.2017.2724555 10.1016/j.neuroimage.2019.06.057 10.1016/j.bspc.2018.05.039 10.1016/j.neucom.2021.03.105 10.1016/j.measurement.2020.108047 10.1016/j.bspc.2021.102648 10.1002/int.22295 10.1016/0013-4694(70)90143-4 10.1109/TIM.2020.3011817 10.1097/AUD.0000000000000862 10.3390/app10051619 10.1145/2682899 10.1007/s12559-020-09789-3 10.1007/s12652-020-02338-8 10.1016/j.eswa.2017.09.062 10.1007/s12559-019-09699-z 10.1016/j.neuroscience.2020.01.045 10.1109/TIM.2020.3006611 10.3389/fnins.2020.00087 10.1016/j.neucom.2017.11.077 10.1016/j.asoc.2020.106954 10.1016/j.yebeh.2008.08.018 10.2166/hydro.2007.027 10.1016/j.ins.2012.07.049 10.3389/fnins.2018.00162 10.1016/j.eij.2019.10.002 10.1109/TAFFC.2017.2712143 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2021.3121473 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TIM_2021_3121473 9580860 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research on Advanced Technology and Engineering Application Team, Tianjin, China grantid: 20160524 – fundername: Post-Doctoral Research Projects of Hebei Province of China grantid: B2020003020 – fundername: Natural Science Foundation of Tianjin grantid: 18JCYBJC87700 funderid: 10.13039/501100006606 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-1e44a81888172966e8b073e01c8b96e8cc1214880bb06e7c8afc1d6b93cde203 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:24:55 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Tue Jul 01 03:07:07 EDT 2025 Wed Aug 27 02:26:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-1e44a81888172966e8b073e01c8b96e8cc1214880bb06e7c8afc1d6b93cde203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4277-1535 0000-0002-1710-3036 0000-0001-9357-4967 0000-0001-5846-9889 0000-0001-8679-9359 0000-0002-9295-7795 |
PQID | 2595722634 |
PQPubID | 85462 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2595722634 crossref_primary_10_1109_TIM_2021_3121473 crossref_citationtrail_10_1109_TIM_2021_3121473 ieee_primary_9580860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 lu (ref26) 2008 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 morris (ref23) 1995; 35 ref24 zhang (ref29) 2009; 31 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – volume: 35 start-page: 63 year: 1995 ident: ref23 article-title: SAM: The self-assessment manikin-An efficient cross-cultural measurement of emotional response publication-title: J Advert Res – ident: ref39 doi: 10.1111/joa.12364 – ident: ref8 doi: 10.1002/int.22551 – ident: ref14 doi: 10.1016/j.asoc.2020.106426 – start-page: 2133 year: 2008 ident: ref26 article-title: Predict the neurological recovery under hypothermia after cardiac arrest using C0 complexity measure of EEG signals publication-title: Proc 30th Annu Int Conf IEEE Eng Med Biol Soc (EMBS) – ident: ref30 doi: 10.1142/S021800141854023X – ident: ref31 doi: 10.1109/TAMD.2015.2431497 – ident: ref1 doi: 10.1109/JSEN.2021.3078087 – ident: ref15 doi: 10.1007/s11042-020-09354-y – ident: ref18 doi: 10.1016/j.bbe.2020.04.005 – ident: ref27 doi: 10.1016/S0304-3940(97)00232-2 – ident: ref6 doi: 10.1109/ACCESS.2017.2724555 – ident: ref38 doi: 10.1016/j.neuroimage.2019.06.057 – ident: ref13 doi: 10.1016/j.bspc.2018.05.039 – ident: ref20 doi: 10.1016/j.neucom.2021.03.105 – ident: ref32 doi: 10.1016/j.measurement.2020.108047 – ident: ref19 doi: 10.1016/j.bspc.2021.102648 – ident: ref33 doi: 10.1002/int.22295 – ident: ref24 doi: 10.1016/0013-4694(70)90143-4 – ident: ref3 doi: 10.1109/TIM.2020.3011817 – ident: ref22 doi: 10.1097/AUD.0000000000000862 – ident: ref16 doi: 10.3390/app10051619 – ident: ref2 doi: 10.1145/2682899 – ident: ref37 doi: 10.1007/s12559-020-09789-3 – volume: 31 start-page: 117 year: 2009 ident: ref29 article-title: On the classification of consciousness tasks based on the EEG singular spectrum entropy publication-title: Computing in Science & Eng – ident: ref34 doi: 10.1007/s12652-020-02338-8 – ident: ref12 doi: 10.1016/j.eswa.2017.09.062 – ident: ref36 doi: 10.1007/s12559-019-09699-z – ident: ref9 doi: 10.1016/j.neuroscience.2020.01.045 – ident: ref5 doi: 10.1109/TIM.2020.3006611 – ident: ref10 doi: 10.3389/fnins.2020.00087 – ident: ref11 doi: 10.1016/j.neucom.2017.11.077 – ident: ref21 doi: 10.1016/j.asoc.2020.106954 – ident: ref25 doi: 10.1016/j.yebeh.2008.08.018 – ident: ref35 doi: 10.2166/hydro.2007.027 – ident: ref28 doi: 10.1016/j.ins.2012.07.049 – ident: ref7 doi: 10.3389/fnins.2018.00162 – ident: ref17 doi: 10.1016/j.eij.2019.10.002 – ident: ref4 doi: 10.1109/TAFFC.2017.2712143 |
SSID | ssj0007647 |
Score | 2.4077816 |
Snippet | In recent years, many researchers have explored different methods to obtain discriminative features for electroencephalogram-based (EEG-based) emotion... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Brain modeling Classification Classification algorithms Deaf subjects Dynamical systems electroencephalogram (EEG) Electroencephalography Emotion recognition Emotions Entropy Feature extraction firefly algorithm (FA) genetic algorithm Heuristic methods Lobes Multiple objective analysis Nonlinear dynamics Protocols Reduction Subgroups |
Title | EEG-Based Emotion Recognition of Deaf Subjects by Integrated Genetic Firefly Algorithm |
URI | https://ieeexplore.ieee.org/document/9580860 https://www.proquest.com/docview/2595722634 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BEhM9-AEaUTQ9eDFxsLFu646oQzDBg0HDbVm7To3IDIwD_vW-dhvxK8bbtrRd09e-9_u1r-8BnEZotTjCeiPG6WBQzqjBGEUg5wuLKkZBdW7A4a3bv6c3Y2dcgfPVXRgppXY-ky31qM_y41Qs1FZZ23cYInAk6GtI3PK7Wiut67k0j49p4QJGVFAeSZp-ezQYIhHsWMhPVVYe-4sJ0jlVfihibV162zAs-5U7lby0FhlvifdvIRv_2_Ed2CpgJunm82IXKnJag81PwQdrsK6dP8W8Dg9BcG1coDmLSZBn9SF3pV8RPqcJuZJRQlDHqE2bOeFLMiijTMREBa7Gv5AeKs9ksiTdyWM6e86eXvdg1AtGl32jyLdgiI5vZYYlKY3QgDOGqAZpkGQcFYA0LcG4j29CqPHDBc-56UpPsCgRVuxy3xax7Jj2PlSn6VQeAEkin7oOfk88RGgecirmMdc2sYk4iljcgHYpgVAUschVSoxJqDmJ6Ycos1DJLCxk1oCzVY23PA7HH2XrSgSrcsXoN6BZCjksFuo8RPbneAhBbXr4e60j2FBt57suTahms4U8RhyS8RM9AT8AM2LV9A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8hGKMe_ACNKGoPXkwcbKzbuiMqCAocDBpuy9p1akRmYBzwr_d1H8SvGG_d0m5NX_ve79e-vgdw6qPV4gjrtQCng0Y5oxpjFIGcKwyqGAVNcgP2B3bnnt6MrFEBzpd3YaSUifOZrKlicpYfRGKutsrqrsUQgSNBX0G7bxnpba2l3nVsmkbINHAJIy7IDyV1tz7s9pEKNgxkqCovj_nFCCVZVX6o4sS-tLegn_csdSt5qc1jXhPv34I2_rfr27CZAU3STGfGDhTkpAQbn8IPlmA1cf8UszI8tFrX2gUatIC00rw-5C73LMJyFJIr6YcEtYzatpkRviDdPM5EQFToavwLaaP6DMcL0hw_RtPn-Ol1F4bt1vCyo2UZFzTRcI1YMySlPppwxhDXIBGSjKMKkLohGHfxSQg1frjkOddt6Qjmh8IIbO6aIpAN3dyD4iSayH0goe9S28L3oYOycpBVMYfZpo6fCHyfBRWo5xLwRBaNXCXFGHsJK9FdD2XmKZl5mcwqcLZs8ZZG4vijblmJYFkvG_0KVHMhe9lSnXnI_ywHQahJD35vdQJrnWG_5_W6g9tDWFf_SfdgqlCMp3N5hKgk5sfJZPwAiHjZPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Emotion+Recognition+of+Deaf+Subjects+by+Integrated+Genetic+Firefly+Algorithm&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Tian%2C+Zekun&rft.au=Li%2C+Dahua&rft.au=Song%2C+Yu&rft.au=Gao%2C+Qiang&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2021.3121473&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2021_3121473 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |