EEG-Based Emotion Recognition of Deaf Subjects by Integrated Genetic Firefly Algorithm

In recent years, many researchers have explored different methods to obtain discriminative features for electroencephalogram-based (EEG-based) emotion recognition, but a few studies have been investigated on deaf subjects. In this study, we have established a deaf EEG emotion dataset, which contains...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 11
Main Authors Tian, Zekun, Li, Dahua, Song, Yu, Gao, Qiang, Kang, Qiaoju, Yang, Yi
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, many researchers have explored different methods to obtain discriminative features for electroencephalogram-based (EEG-based) emotion recognition, but a few studies have been investigated on deaf subjects. In this study, we have established a deaf EEG emotion dataset, which contains three kinds of emotion (positive, neutral, and negative) with 15 subjects. Ten kinds of time-frequency domain features and eleven kinds of nonlinear dynamic system features were extracted from the EEG signals. To obtain the optimal feature combination and optimal classifier, an integrated genetic firefly algorithm (IGFA) was proposed. The multi-objective function with variable weight was utilized to balance the classification accuracy and the feature reduction ratio that are contradictory goals to find brighter fireflies in each generation. To retain the historical optimal solution and reduce the feature dimension, an optimal population protection scheme and subgroups generation scheme was carried out. The experimental results show that the averaged feature reduction rate of the proposed method is 0.959, and the averaged classification accuracy is 0.961. By investigating important brain regions, deaf subjects have common areas in the frontal and temporal lobes for EEG emotion recognition, while individual areas occur in the occipital and parietal lobes.
AbstractList In recent years, many researchers have explored different methods to obtain discriminative features for electroencephalogram-based (EEG-based) emotion recognition, but a few studies have been investigated on deaf subjects. In this study, we have established a deaf EEG emotion dataset, which contains three kinds of emotion (positive, neutral, and negative) with 15 subjects. Ten kinds of time-frequency domain features and eleven kinds of nonlinear dynamic system features were extracted from the EEG signals. To obtain the optimal feature combination and optimal classifier, an integrated genetic firefly algorithm (IGFA) was proposed. The multi-objective function with variable weight was utilized to balance the classification accuracy and the feature reduction ratio that are contradictory goals to find brighter fireflies in each generation. To retain the historical optimal solution and reduce the feature dimension, an optimal population protection scheme and subgroups generation scheme was carried out. The experimental results show that the averaged feature reduction rate of the proposed method is 0.959, and the averaged classification accuracy is 0.961. By investigating important brain regions, deaf subjects have common areas in the frontal and temporal lobes for EEG emotion recognition, while individual areas occur in the occipital and parietal lobes.
Author Tian, Zekun
Li, Dahua
Gao, Qiang
Kang, Qiaoju
Song, Yu
Yang, Yi
Author_xml – sequence: 1
  givenname: Zekun
  orcidid: 0000-0003-4277-1535
  surname: Tian
  fullname: Tian, Zekun
  email: t.zk@foxmail.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
– sequence: 2
  givenname: Dahua
  orcidid: 0000-0002-1710-3036
  surname: Li
  fullname: Li, Dahua
  email: lidah2005@163.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-9295-7795
  surname: Song
  fullname: Song, Yu
  email: jasonsongrain@hotmail.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
– sequence: 4
  givenname: Qiang
  orcidid: 0000-0001-9357-4967
  surname: Gao
  fullname: Gao, Qiang
  email: gaoqiang@tjut.edu.cn
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, Maritime College, Tianjin University of Technology, Tianjin, China
– sequence: 5
  givenname: Qiaoju
  orcidid: 0000-0001-5846-9889
  surname: Kang
  fullname: Kang, Qiaoju
  email: qiaojuKang@hotmail.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
– sequence: 6
  givenname: Yi
  orcidid: 0000-0001-8679-9359
  surname: Yang
  fullname: Yang, Yi
  email: yyfly ing@yeah.net
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
BookMark eNp9kM9PwjAUgBuDiYDeTbws8Tx87ba2OyIOJMGYKPG6dOUNS2DFthz4792EePDg6b2XvO_9-Aak19gGCbmlMKIU8ofl_GXEgNFRQhlNRXJB-jTLRJxzznqkD0BlnKcZvyID7zcAIHgq-uSjKGbxo_K4ioqdDcY20Rtqu27MT27r6AlVHb0fqg3q4KPqGM2bgGunQovMsMFgdDQ1DuvtMRpv19aZ8Lm7Jpe12nq8OcchWU6L5eQ5XrzO5pPxItYspyGmmKZKUiklFay9FGUFIkGgWlZ5W2ndPSMlVBVwFFqqWtMVr_JEr5BBMiT3p7F7Z78O6EO5sQfXtBtLluWZYIwnadsFpy7trPftpeXemZ1yx5JC2ckrW3llJ688y2sR_gfRJqhOSXDKbP8D706gQcTfPXkmQXJIvgEfX3yv
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3297647
crossref_primary_10_1109_JBHI_2022_3212475
crossref_primary_10_1109_TIM_2024_3369130
crossref_primary_10_2139_ssrn_4066353
crossref_primary_10_1109_ACCESS_2023_3270977
crossref_primary_10_1109_JSEN_2024_3440340
crossref_primary_10_1109_TCE_2023_3320661
crossref_primary_10_1109_TIM_2022_3165280
crossref_primary_10_1109_JSEN_2023_3239507
crossref_primary_10_1109_TIM_2023_3240230
crossref_primary_10_1016_j_bspc_2023_105013
crossref_primary_10_1109_TNSRE_2022_3225948
crossref_primary_10_3390_s23125461
crossref_primary_10_1109_TIM_2022_3168927
crossref_primary_10_1109_TIM_2022_3180418
Cites_doi 10.1111/joa.12364
10.1002/int.22551
10.1016/j.asoc.2020.106426
10.1142/S021800141854023X
10.1109/TAMD.2015.2431497
10.1109/JSEN.2021.3078087
10.1007/s11042-020-09354-y
10.1016/j.bbe.2020.04.005
10.1016/S0304-3940(97)00232-2
10.1109/ACCESS.2017.2724555
10.1016/j.neuroimage.2019.06.057
10.1016/j.bspc.2018.05.039
10.1016/j.neucom.2021.03.105
10.1016/j.measurement.2020.108047
10.1016/j.bspc.2021.102648
10.1002/int.22295
10.1016/0013-4694(70)90143-4
10.1109/TIM.2020.3011817
10.1097/AUD.0000000000000862
10.3390/app10051619
10.1145/2682899
10.1007/s12559-020-09789-3
10.1007/s12652-020-02338-8
10.1016/j.eswa.2017.09.062
10.1007/s12559-019-09699-z
10.1016/j.neuroscience.2020.01.045
10.1109/TIM.2020.3006611
10.3389/fnins.2020.00087
10.1016/j.neucom.2017.11.077
10.1016/j.asoc.2020.106954
10.1016/j.yebeh.2008.08.018
10.2166/hydro.2007.027
10.1016/j.ins.2012.07.049
10.3389/fnins.2018.00162
10.1016/j.eij.2019.10.002
10.1109/TAFFC.2017.2712143
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3121473
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2021_3121473
9580860
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research on Advanced Technology and Engineering Application Team, Tianjin, China
  grantid: 20160524
– fundername: Post-Doctoral Research Projects of Hebei Province of China
  grantid: B2020003020
– fundername: Natural Science Foundation of Tianjin
  grantid: 18JCYBJC87700
  funderid: 10.13039/501100006606
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-1e44a81888172966e8b073e01c8b96e8cc1214880bb06e7c8afc1d6b93cde203
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:24:55 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Tue Jul 01 03:07:07 EDT 2025
Wed Aug 27 02:26:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1e44a81888172966e8b073e01c8b96e8cc1214880bb06e7c8afc1d6b93cde203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4277-1535
0000-0002-1710-3036
0000-0001-9357-4967
0000-0001-5846-9889
0000-0001-8679-9359
0000-0002-9295-7795
PQID 2595722634
PQPubID 85462
PageCount 11
ParticipantIDs proquest_journals_2595722634
crossref_primary_10_1109_TIM_2021_3121473
crossref_citationtrail_10_1109_TIM_2021_3121473
ieee_primary_9580860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
lu (ref26) 2008
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
morris (ref23) 1995; 35
ref24
zhang (ref29) 2009; 31
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 35
  start-page: 63
  year: 1995
  ident: ref23
  article-title: SAM: The self-assessment manikin-An efficient cross-cultural measurement of emotional response
  publication-title: J Advert Res
– ident: ref39
  doi: 10.1111/joa.12364
– ident: ref8
  doi: 10.1002/int.22551
– ident: ref14
  doi: 10.1016/j.asoc.2020.106426
– start-page: 2133
  year: 2008
  ident: ref26
  article-title: Predict the neurological recovery under hypothermia after cardiac arrest using C0 complexity measure of EEG signals
  publication-title: Proc 30th Annu Int Conf IEEE Eng Med Biol Soc (EMBS)
– ident: ref30
  doi: 10.1142/S021800141854023X
– ident: ref31
  doi: 10.1109/TAMD.2015.2431497
– ident: ref1
  doi: 10.1109/JSEN.2021.3078087
– ident: ref15
  doi: 10.1007/s11042-020-09354-y
– ident: ref18
  doi: 10.1016/j.bbe.2020.04.005
– ident: ref27
  doi: 10.1016/S0304-3940(97)00232-2
– ident: ref6
  doi: 10.1109/ACCESS.2017.2724555
– ident: ref38
  doi: 10.1016/j.neuroimage.2019.06.057
– ident: ref13
  doi: 10.1016/j.bspc.2018.05.039
– ident: ref20
  doi: 10.1016/j.neucom.2021.03.105
– ident: ref32
  doi: 10.1016/j.measurement.2020.108047
– ident: ref19
  doi: 10.1016/j.bspc.2021.102648
– ident: ref33
  doi: 10.1002/int.22295
– ident: ref24
  doi: 10.1016/0013-4694(70)90143-4
– ident: ref3
  doi: 10.1109/TIM.2020.3011817
– ident: ref22
  doi: 10.1097/AUD.0000000000000862
– ident: ref16
  doi: 10.3390/app10051619
– ident: ref2
  doi: 10.1145/2682899
– ident: ref37
  doi: 10.1007/s12559-020-09789-3
– volume: 31
  start-page: 117
  year: 2009
  ident: ref29
  article-title: On the classification of consciousness tasks based on the EEG singular spectrum entropy
  publication-title: Computing in Science & Eng
– ident: ref34
  doi: 10.1007/s12652-020-02338-8
– ident: ref12
  doi: 10.1016/j.eswa.2017.09.062
– ident: ref36
  doi: 10.1007/s12559-019-09699-z
– ident: ref9
  doi: 10.1016/j.neuroscience.2020.01.045
– ident: ref5
  doi: 10.1109/TIM.2020.3006611
– ident: ref10
  doi: 10.3389/fnins.2020.00087
– ident: ref11
  doi: 10.1016/j.neucom.2017.11.077
– ident: ref21
  doi: 10.1016/j.asoc.2020.106954
– ident: ref25
  doi: 10.1016/j.yebeh.2008.08.018
– ident: ref35
  doi: 10.2166/hydro.2007.027
– ident: ref28
  doi: 10.1016/j.ins.2012.07.049
– ident: ref7
  doi: 10.3389/fnins.2018.00162
– ident: ref17
  doi: 10.1016/j.eij.2019.10.002
– ident: ref4
  doi: 10.1109/TAFFC.2017.2712143
SSID ssj0007647
Score 2.4077816
Snippet In recent years, many researchers have explored different methods to obtain discriminative features for electroencephalogram-based (EEG-based) emotion...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Brain modeling
Classification
Classification algorithms
Deaf subjects
Dynamical systems
electroencephalogram (EEG)
Electroencephalography
Emotion recognition
Emotions
Entropy
Feature extraction
firefly algorithm (FA)
genetic algorithm
Heuristic methods
Lobes
Multiple objective analysis
Nonlinear dynamics
Protocols
Reduction
Subgroups
Title EEG-Based Emotion Recognition of Deaf Subjects by Integrated Genetic Firefly Algorithm
URI https://ieeexplore.ieee.org/document/9580860
https://www.proquest.com/docview/2595722634
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BEhM9-AEaUTQ9eDFxsLFu646oQzDBg0HDbVm7To3IDIwD_vW-dhvxK8bbtrRd09e-9_u1r-8BnEZotTjCeiPG6WBQzqjBGEUg5wuLKkZBdW7A4a3bv6c3Y2dcgfPVXRgppXY-ky31qM_y41Qs1FZZ23cYInAk6GtI3PK7Wiut67k0j49p4QJGVFAeSZp-ezQYIhHsWMhPVVYe-4sJ0jlVfihibV162zAs-5U7lby0FhlvifdvIRv_2_Ed2CpgJunm82IXKnJag81PwQdrsK6dP8W8Dg9BcG1coDmLSZBn9SF3pV8RPqcJuZJRQlDHqE2bOeFLMiijTMREBa7Gv5AeKs9ksiTdyWM6e86eXvdg1AtGl32jyLdgiI5vZYYlKY3QgDOGqAZpkGQcFYA0LcG4j29CqPHDBc-56UpPsCgRVuxy3xax7Jj2PlSn6VQeAEkin7oOfk88RGgecirmMdc2sYk4iljcgHYpgVAUschVSoxJqDmJ6Ycos1DJLCxk1oCzVY23PA7HH2XrSgSrcsXoN6BZCjksFuo8RPbneAhBbXr4e60j2FBt57suTahms4U8RhyS8RM9AT8AM2LV9A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8hGKMe_ACNKGoPXkwcbKzbuiMqCAocDBpuy9p1akRmYBzwr_d1H8SvGG_d0m5NX_ve79e-vgdw6qPV4gjrtQCng0Y5oxpjFIGcKwyqGAVNcgP2B3bnnt6MrFEBzpd3YaSUifOZrKlicpYfRGKutsrqrsUQgSNBX0G7bxnpba2l3nVsmkbINHAJIy7IDyV1tz7s9pEKNgxkqCovj_nFCCVZVX6o4sS-tLegn_csdSt5qc1jXhPv34I2_rfr27CZAU3STGfGDhTkpAQbn8IPlmA1cf8UszI8tFrX2gUatIC00rw-5C73LMJyFJIr6YcEtYzatpkRviDdPM5EQFToavwLaaP6DMcL0hw_RtPn-Ol1F4bt1vCyo2UZFzTRcI1YMySlPppwxhDXIBGSjKMKkLohGHfxSQg1frjkOddt6Qjmh8IIbO6aIpAN3dyD4iSayH0goe9S28L3oYOycpBVMYfZpo6fCHyfBRWo5xLwRBaNXCXFGHsJK9FdD2XmKZl5mcwqcLZs8ZZG4vijblmJYFkvG_0KVHMhe9lSnXnI_ywHQahJD35vdQJrnWG_5_W6g9tDWFf_SfdgqlCMp3N5hKgk5sfJZPwAiHjZPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Emotion+Recognition+of+Deaf+Subjects+by+Integrated+Genetic+Firefly+Algorithm&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Tian%2C+Zekun&rft.au=Li%2C+Dahua&rft.au=Song%2C+Yu&rft.au=Gao%2C+Qiang&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2021.3121473&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2021_3121473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon