Trading off Between User Coverage and Network Robustness for Edge Server Placement
Edge Cloud Computing (ECC) provides a new paradigm for app vendors to serve their users with low latency by deploying their services on edge servers attached to base stations or access points in close proximity to mobile users. From the edge infrastructure provider's perspective, a cost-effecti...
Saved in:
Published in | IEEE transactions on cloud computing Vol. 10; no. 3; pp. 2178 - 2189 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Edge Cloud Computing (ECC) provides a new paradigm for app vendors to serve their users with low latency by deploying their services on edge servers attached to base stations or access points in close proximity to mobile users. From the edge infrastructure provider's perspective, a cost-effective <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq1-3008440.gif"/> </inline-formula> edge server placement (<inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq2-3008440.gif"/> </inline-formula>ESP) aims to place <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq3-3008440.gif"/> </inline-formula> edge servers within a particular geographic area to maximize the number of covered mobile users, i.e., to maximize the user coverage . However, in the distributed and volatile ECC environment, edge servers are subject to failures due to various reasons, e.g., software exceptions, hardware faults, cyberattacks, etc. Mobile users connected to a failed edge server have to access services in the remote cloud if they are not covered by any other edge servers. This significantly impacts mobile users quality of experience. Thus, the robustness of the edge server network (referred to as network robustness hereafter) in a specific area must be considered in edge server placement. In this article, we formally model this joint user coverage and network robustness oriented <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq4-3008440.gif"/> </inline-formula> edge server placement (<inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq5-3008440.gif"/> </inline-formula>ESP-CR) problem, and prove that finding the optimal solution to this problem is <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq6-3008440.gif"/> </inline-formula>-hard. To tackle this ESP-CR, we first propose an integer programming based optimal approach (namely ESP-O) for finding optimal solutions to small-scale <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq7-3008440.gif"/> </inline-formula>ESP-CR problems. Then, we propose an approximation approach, namely ESP-A, for solving large-scale <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq8-3008440.gif"/> </inline-formula>ESP-CR problems efficiently and theoretically prove its approximation ratio. Finally, the performance of these two approaches are experimentally evaluated against three representative approaches on a widely-used real-world dataset. |
---|---|
AbstractList | Edge Cloud Computing (ECC) provides a new paradigm for app vendors to serve their users with low latency by deploying their services on edge servers attached to base stations or access points in close proximity to mobile users. From the edge infrastructure provider’s perspective, a cost-effective [Formula Omitted] edge server placement ([Formula Omitted]ESP) aims to place [Formula Omitted] edge servers within a particular geographic area to maximize the number of covered mobile users, i.e., to maximize the user coverage . However, in the distributed and volatile ECC environment, edge servers are subject to failures due to various reasons, e.g., software exceptions, hardware faults, cyberattacks, etc. Mobile users connected to a failed edge server have to access services in the remote cloud if they are not covered by any other edge servers. This significantly impacts mobile users quality of experience. Thus, the robustness of the edge server network (referred to as network robustness hereafter) in a specific area must be considered in edge server placement. In this article, we formally model this joint user coverage and network robustness oriented [Formula Omitted] edge server placement ([Formula Omitted]ESP-CR) problem, and prove that finding the optimal solution to this problem is [Formula Omitted]-hard. To tackle this ESP-CR, we first propose an integer programming based optimal approach (namely ESP-O) for finding optimal solutions to small-scale [Formula Omitted]ESP-CR problems. Then, we propose an approximation approach, namely ESP-A, for solving large-scale [Formula Omitted]ESP-CR problems efficiently and theoretically prove its approximation ratio. Finally, the performance of these two approaches are experimentally evaluated against three representative approaches on a widely-used real-world dataset. Edge Cloud Computing (ECC) provides a new paradigm for app vendors to serve their users with low latency by deploying their services on edge servers attached to base stations or access points in close proximity to mobile users. From the edge infrastructure provider's perspective, a cost-effective <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq1-3008440.gif"/> </inline-formula> edge server placement (<inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq2-3008440.gif"/> </inline-formula>ESP) aims to place <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq3-3008440.gif"/> </inline-formula> edge servers within a particular geographic area to maximize the number of covered mobile users, i.e., to maximize the user coverage . However, in the distributed and volatile ECC environment, edge servers are subject to failures due to various reasons, e.g., software exceptions, hardware faults, cyberattacks, etc. Mobile users connected to a failed edge server have to access services in the remote cloud if they are not covered by any other edge servers. This significantly impacts mobile users quality of experience. Thus, the robustness of the edge server network (referred to as network robustness hereafter) in a specific area must be considered in edge server placement. In this article, we formally model this joint user coverage and network robustness oriented <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq4-3008440.gif"/> </inline-formula> edge server placement (<inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq5-3008440.gif"/> </inline-formula>ESP-CR) problem, and prove that finding the optimal solution to this problem is <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq6-3008440.gif"/> </inline-formula>-hard. To tackle this ESP-CR, we first propose an integer programming based optimal approach (namely ESP-O) for finding optimal solutions to small-scale <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq7-3008440.gif"/> </inline-formula>ESP-CR problems. Then, we propose an approximation approach, namely ESP-A, for solving large-scale <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="cui-ieq8-3008440.gif"/> </inline-formula>ESP-CR problems efficiently and theoretically prove its approximation ratio. Finally, the performance of these two approaches are experimentally evaluated against three representative approaches on a widely-used real-world dataset. |
Author | He, Qiang Jin, Hai Yang, Yun Chen, Feifei Cui, Guangming |
Author_xml | – sequence: 1 givenname: Guangming orcidid: 0000-0002-8334-6263 surname: Cui fullname: Cui, Guangming email: gcui@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia – sequence: 2 givenname: Qiang orcidid: 0000-0002-2607-4556 surname: He fullname: He, Qiang email: qhe@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia – sequence: 3 givenname: Feifei orcidid: 0000-0001-5455-3792 surname: Chen fullname: Chen, Feifei email: feifei.chen@deakin.edu.au organization: School of Information Technology, Deakin University, Burwood, VIC, Australia – sequence: 4 givenname: Hai orcidid: 0000-0002-3934-7605 surname: Jin fullname: Jin, Hai email: hjin@hust.edu.cn organization: Services Computing Technology and System Lab, Big Data Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, HuaZhong University of Science and Technology, Wuhan, China – sequence: 5 givenname: Yun orcidid: 0000-0002-7868-5471 surname: Yang fullname: Yang, Yun email: yyang@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia |
BookMark | eNp9kM1LAzEQxYNUsNbeBS8Bz1szyTa7OepSP6Co1Pa8xOxs2domNUkV_3tTKh48OJcZeO83M7xT0rPOIiHnwEYATF3Nq2rEGWcjwViZ5-yI9LkoeMYYlL00gyyzAiSckGEIK5aqHIMC1SezuddNZ5fUtS29wfiJaOkioKeV-0Cvl0i1behjUpx_ozP3ugvRYgi0dZ5OmqS_oE9O-rzWBjdo4xk5bvU64PCnD8jidjKv7rPp091DdT3NDFcQMzBCy_SUkDx9jEKCGudGK9nmRjFmgGtsilKgLBrTtkZxIQ0TJgeZF1yDGJDLw96td-87DLFeuZ236WTNC6ZgLHMlk0seXMa7EDy2temijp2z0etuXQOr9xHWKcJ6H2H9E2EC2R9w67uN9l__IRcHpEPEX7sCURagxDd-yHvF |
CODEN | ITCCF6 |
CitedBy_id | crossref_primary_10_26599_TST_2024_9010151 crossref_primary_10_1109_TSC_2021_3090173 crossref_primary_10_1109_TSC_2020_3028760 crossref_primary_10_1109_TSC_2022_3144441 crossref_primary_10_1016_j_adhoc_2023_103172 crossref_primary_10_1109_TMC_2024_3484158 crossref_primary_10_1016_j_cosrev_2023_100616 crossref_primary_10_1109_TSUSC_2022_3178661 crossref_primary_10_1007_s12652_023_04656_z crossref_primary_10_1016_j_engappai_2024_109662 crossref_primary_10_1109_ACCESS_2022_3183634 crossref_primary_10_1109_TCC_2021_3059448 crossref_primary_10_1109_JIOT_2020_3042164 crossref_primary_10_1007_s11227_023_05692_4 crossref_primary_10_1155_2021_5109163 crossref_primary_10_1007_s10586_022_03661_9 crossref_primary_10_1109_TDSC_2021_3055559 crossref_primary_10_1049_ell2_13157 crossref_primary_10_1145_3475991 crossref_primary_10_3390_aerospace11080659 crossref_primary_10_1109_LCOMM_2022_3161382 crossref_primary_10_1109_TPDS_2022_3166163 crossref_primary_10_4018_IJWSR_321199 crossref_primary_10_1109_TPDS_2020_3043755 crossref_primary_10_1109_JIOT_2021_3085129 crossref_primary_10_1109_TSC_2021_3112659 crossref_primary_10_3390_app142210130 crossref_primary_10_1109_JIOT_2024_3409569 crossref_primary_10_1109_JSYST_2022_3206490 crossref_primary_10_1145_3666091 crossref_primary_10_1186_s13677_022_00313_6 crossref_primary_10_1186_s13677_023_00524_5 crossref_primary_10_1186_s13677_023_00527_2 crossref_primary_10_1109_JIOT_2021_3079328 crossref_primary_10_1016_j_asoc_2025_112924 crossref_primary_10_1049_ntw2_12087 crossref_primary_10_1002_ett_4702 crossref_primary_10_1007_s11276_023_03339_z crossref_primary_10_1109_TSC_2021_3063148 crossref_primary_10_1007_s11280_024_01282_3 crossref_primary_10_1109_TMC_2021_3112941 crossref_primary_10_1109_TSC_2023_3296742 crossref_primary_10_1109_TPDS_2024_3409548 crossref_primary_10_1145_3585078 crossref_primary_10_1016_j_asej_2025_103300 crossref_primary_10_1145_3626566 |
Cites_doi | 10.1007/978-3-030-33702-5_37 10.1109/TPDS.2016.2604803 10.1109/INFCOM.2001.916655 10.1109/TCC.2015.2427200 10.1287/isre.2013.0480 10.1109/TCCN.2017.2725277 10.1109/SEC.2018.00043 10.1109/TMC.2018.2831230 10.1007/978-3-030-03596-9_15 10.1109/TPDS.2017.2687923 10.1109/TPDS.2014.2316834 10.1109/TPDS.2019.2917900 10.1109/ISCC.2012.6249269 10.1007/3-540-44719-9_1 10.1007/BF02591870 10.1145/2342509.2342513 10.1109/TPDS.2019.2938944 10.1109/TWC.2017.2785305 10.1109/ICPADS.2012.85 10.1109/ICASSP.2008.4518869 10.1145/505202.505224 10.1109/TNET.2015.2487344 10.1109/EDGE.2018.00016 10.1109/TCC.2017.2662226 10.1109/CLOUD49709.2020.00037 10.1109/TSC.2016.2519898 10.1109/TNET.2018.2841758 10.3390/s19010032 10.1109/ICWS49710.2020.00033 10.1109/TVT.2011.2166093 10.1109/JIOT.2016.2579198 10.1109/JSAC.2002.802066 10.1109/TCC.2020.3008448 10.1007/978-3-030-33702-5_8 10.1109/ICDCS47774.2020.00036 10.1109/TCC.2020.3001570 10.1109/INFCOM.2001.916684 10.1109/ICWS.2019.00027 10.1109/TCC.2017.2737624 10.1016/j.jpdc.2018.06.008 10.1109/TSMCA.2003.817050 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCC.2020.3008440 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2372-0018 |
EndPage | 2189 |
ExternalDocumentID | 10_1109_TCC_2020_3008440 9138719 |
Genre | orig-research |
GrantInformation_xml | – fundername: Australian Research Council grantid: DP180100212; DP200102491 funderid: 10.13039/501100000923 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-1c3a6716362440e361954ca96f4c900c12aed783e67dcffc9236c03c416472a13 |
IEDL.DBID | RIE |
ISSN | 2168-7161 |
IngestDate | Mon Jun 30 05:40:27 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Tue Jul 01 02:57:16 EDT 2025 Wed Aug 27 02:14:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-1c3a6716362440e361954ca96f4c900c12aed783e67dcffc9236c03c416472a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3934-7605 0000-0002-2607-4556 0000-0002-7868-5471 0000-0001-5455-3792 0000-0002-8334-6263 |
PQID | 2709156496 |
PQPubID | 2040413 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2709156496 crossref_citationtrail_10_1109_TCC_2020_3008440 ieee_primary_9138719 crossref_primary_10_1109_TCC_2020_3008440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cloud computing |
PublicationTitleAbbrev | TCC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 Tao (ref41) 2016 ref14 ref36 ref31 ref30 ref33 ref10 ref32 ref2 ref17 ref39 ref16 ref19 ref18 Hu (ref11) 2015; 11 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref22 Huang (ref24) ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Li (ref38); 3 ref5 Heuveldop (ref1) 2017 ref40 |
References_xml | – ident: ref29 doi: 10.1007/978-3-030-33702-5_37 – ident: ref10 doi: 10.1109/TPDS.2016.2604803 – ident: ref43 doi: 10.1109/INFCOM.2001.916655 – ident: ref19 doi: 10.1109/TCC.2015.2427200 – start-page: 15 volume-title: Proc. ACM Internet Meas. Conf. ident: ref24 article-title: Measuring and evaluating large-scale CDNs – ident: ref30 doi: 10.1287/isre.2013.0480 – ident: ref16 doi: 10.1109/TCCN.2017.2725277 – ident: ref22 doi: 10.1109/SEC.2018.00043 – ident: ref2 doi: 10.1109/TMC.2018.2831230 – ident: ref12 doi: 10.1007/978-3-030-03596-9_15 – ident: ref18 doi: 10.1109/TPDS.2017.2687923 – year: 2017 ident: ref1 article-title: Ericsson mobility report publication-title: Ericsson, Stockholm – ident: ref5 doi: 10.1109/TPDS.2014.2316834 – ident: ref17 doi: 10.1109/TPDS.2019.2917900 – ident: ref6 doi: 10.1109/ISCC.2012.6249269 – ident: ref27 doi: 10.1007/3-540-44719-9_1 – ident: ref25 doi: 10.1007/BF02591870 – ident: ref31 doi: 10.1145/2342509.2342513 – ident: ref13 doi: 10.1109/TPDS.2019.2938944 – ident: ref15 doi: 10.1109/TWC.2017.2785305 – ident: ref46 doi: 10.1109/ICPADS.2012.85 – ident: ref7 doi: 10.1109/ICASSP.2008.4518869 – ident: ref42 doi: 10.1145/505202.505224 – ident: ref9 doi: 10.1109/TNET.2015.2487344 – ident: ref21 doi: 10.1109/EDGE.2018.00016 – ident: ref40 doi: 10.1109/TCC.2017.2662226 – ident: ref37 doi: 10.1109/CLOUD49709.2020.00037 – ident: ref20 doi: 10.1109/TSC.2016.2519898 – ident: ref14 doi: 10.1109/TNET.2018.2841758 – year: 2016 ident: ref41 article-title: Dependency-aware dependable scheduling workflow applications with active replica placement in the cloud publication-title: IEEE Trans. Cloud Comput. – ident: ref3 doi: 10.3390/s19010032 – ident: ref35 doi: 10.1109/ICWS49710.2020.00033 – ident: ref4 doi: 10.1109/TVT.2011.2166093 – ident: ref8 doi: 10.1109/JIOT.2016.2579198 – volume: 3 start-page: 1282 volume-title: Proc. IEEE Conf. Comput. Commun. ident: ref38 article-title: On the optimal placement of web proxies in the internet – ident: ref44 doi: 10.1109/JSAC.2002.802066 – ident: ref34 doi: 10.1109/TCC.2020.3008448 – ident: ref28 doi: 10.1007/978-3-030-33702-5_8 – ident: ref32 doi: 10.1109/ICDCS47774.2020.00036 – ident: ref33 doi: 10.1109/TCC.2020.3001570 – ident: ref45 doi: 10.1109/INFCOM.2001.916684 – volume: 11 start-page: 1 issue: 11 year: 2015 ident: ref11 article-title: Mobile edge computing-a key technology towards 5G publication-title: ETSI White Paper – ident: ref36 doi: 10.1109/ICWS.2019.00027 – ident: ref39 doi: 10.1109/TCC.2017.2737624 – ident: ref23 doi: 10.1016/j.jpdc.2018.06.008 – ident: ref26 doi: 10.1109/TSMCA.2003.817050 |
SSID | ssj0000851919 |
Score | 2.428697 |
Snippet | Edge Cloud Computing (ECC) provides a new paradigm for app vendors to serve their users with low latency by deploying their services on edge servers attached... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2178 |
SubjectTerms | Approximation approximation approach Base stations Cloud computing edge cloud computing Edge computing Edge server placement Integer programming Mobile computing Mobile handsets network robustness Placement Radio equipment Robustness Runtime Servers Service introduction Software user coverage User experience |
Title | Trading off Between User Coverage and Network Robustness for Edge Server Placement |
URI | https://ieeexplore.ieee.org/document/9138719 https://www.proquest.com/docview/2709156496 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8NADA9zT744dYrTKffgi2C39tpde486NoawIWODvZXr9e5FWcW1L_71Jv0YoiK-FZqDkNwlv-RyCcAtglTDjZ86UtvICbxQOBjZGofb0NehSeWozHfMF2K2Dp42o00L7vdvYYwxZfGZGdBneZefZrqgVNlQej7ie3kABxi4VW-19vkUgg7Sk81NpCuHq_EY4z-OYSk1jafsxhfPU45S-WF_S6cy7cC8YaeqJXkZFHky0B_fOjX-l99jOKrRJXuotsMJtMz2FDrN5AZWH-QuLNFFkdNimbXssSrVYmvcjWxMJZ1oY5japmxR1YizZZYUu5yMIkOMyyYp_icjg_TPlIYnNs5gPZ2sxjOnnq7gaC693PG0rwRGS-jBUDjGF9T7TSspbKCl62qPK5OGkW9EmGprNSJBoV1fB9SBjCvPP4f2NtuaC2DcS1JXRzJBOBmMELGoyArUe8STSFmjejBsJB_ruvU4TcB4jcsQxJUx6iomXcW1rnpwt1_xVrXd-IO2S6Lf09VS70G_UW5cn8tdzEPERyMRSHH5-6orOOT0wKEsyO1DO38vzDXCjjy5KffbJ2wD0y4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED4VGGDhjSgU8AADQ9rESZx4YIACKq8KoVZiC4ljL6AW0VQIfgt_hf_GXR4VAsSGxBYpdiT7vtx9dz7fAewiSdVcu6kllQktzwmEhZ6ttrgJXBXoVPp5vOOqKzp97_zWv63B2-QujNY6Tz7TTXrMz_LToRpTqKwlHRf5vSxTKC_0yzM6aKODs2OU5h7npye9dscqewhYiksnsxzlxgJ9AtTTnmdrV1CFMxVLYTwlbVs5PNZpELpaBKkyRiHfEcp2lUd1tnjsuPjdKZhBnuHz4nbYJIJDZEU6sjr7tGWr126jx8nREaYy9RRP-WTr8uYt3zR-bsZOF-C92oAie-W-Oc6Spnr9Uhvyv-7QIsyX_JkdFoBfgpoeLMNC1ZuClapqBW7QCJNZZkNj2FGRjMb6-L-xNiWtohZl8SBl3SILnt0Mk_EoI7XPkMWzkxTfkxrF8dd00EDLXoX-n6xsDaYHw4FeB8adJLVVKBMkzJ6PnCwOjUBkhzwJY6PjOrQqSUeqLK5OPT4eotzJsmWE2IgIG1GJjTrsT2Y8FoVFfhm7QqKejCulXIdGBaao1DyjiAfIAH3hSbHx86wdmO30ri6jy7PuxSbMcbrOkacfN2A6exrrLSRZWbKdY53B3V9D5wN7TS4H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trading+off+Between+User+Coverage+and+Network+Robustness+for+Edge+Server+Placement&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Cui%2C+Guangming&rft.au=He%2C+Qiang&rft.au=Chen%2C+Feifei&rft.au=Jin%2C+Hai&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2372-0018&rft.volume=10&rft.issue=3&rft.spage=2178&rft_id=info:doi/10.1109%2FTCC.2020.3008440&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon |