QoE-Driven Content-Centric Caching With Deep Reinforcement Learning in Edge-Enabled IoT

When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. The authors present here the last enhanced version of a bioinspired reinforcement-learning (RL) modular architecture able to perform skill-to-skill knowledge transfer...

Full description

Saved in:
Bibliographic Details
Published inIEEE computational intelligence magazine Vol. 14; no. 4; pp. 12 - 20
Main Authors He, Xiaoming, Wang, Kun, Xu, Wenyao
Format Magazine Article
LanguageEnglish
Published Washington IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1556-603X
1556-6048
1556-6048
1556-603X
DOI10.1109/MCI.2019.2937608

Cover

Loading…
Abstract When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. The authors present here the last enhanced version of a bioinspired reinforcement-learning (RL) modular architecture able to perform skill-to-skill knowledge transfer and called transfer expert RL (TERL) model. TERL architecture is based on a RL actor-critic model where both actor and critic have a hierarchical structure, inspired by the mixture-of-experts model, formed by a gating network that selects experts specializing in learning the policies or value functions of different tasks. A key feature of TERL is the capacity of its gating networks to accumulate, in parallel, evidence on the capacity of experts to solve the new tasks so as to increase the responsibility for action of the best ones. A second key feature is the use of two different responsibility signals for the experts' functioning and learning: this allows the training of multiple experts for each task so that some of them can be later recruited to solve new tasks and avoid catastrophic interference. The utility of TERL mechanisms is shown with tests involving two simulated dynamic robot arms engaged in solving reaching tasks, in particular a planar 2-DoF arm, and a 3-D 4-DoF arm.
AbstractList When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. The authors present here the last enhanced version of a bioinspired reinforcement-learning (RL) modular architecture able to perform skill-to-skill knowledge transfer and called transfer expert RL (TERL) model. TERL architecture is based on a RL actor-critic model where both actor and critic have a hierarchical structure, inspired by the mixture-of-experts model, formed by a gating network that selects experts specializing in learning the policies or value functions of different tasks. A key feature of TERL is the capacity of its gating networks to accumulate, in parallel, evidence on the capacity of experts to solve the new tasks so as to increase the responsibility for action of the best ones. A second key feature is the use of two different responsibility signals for the experts' functioning and learning: this allows the training of multiple experts for each task so that some of them can be later recruited to solve new tasks and avoid catastrophic interference. The utility of TERL mechanisms is shown with tests involving two simulated dynamic robot arms engaged in solving reaching tasks, in particular a planar 2-DoF arm, and a 3-D 4-DoF arm.
Author He, Xiaoming
Xu, Wenyao
Wang, Kun
Author_xml – sequence: 1
  givenname: Xiaoming
  surname: He
  fullname: He, Xiaoming
  organization: Internet of Things, Nanjing University of Posts and Telecommunications, China
– sequence: 2
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  email: kun.wang1981@gmail.com
  organization: Electrical and Computer Engineering, University of California, Los Angeles, California United States
– sequence: 3
  givenname: Wenyao
  surname: Xu
  fullname: Xu, Wenyao
  email: wenyaoxu@buffalo.edu
  organization: Computer Science and Engineering, University at Buffalo, New York United States
BookMark eNp9kE1LAzEQhoNUsK3eBS8LnrfmYzebHGVbtVARpVBvIcnOtilttma3gv_elJYePHiZGZj3mYFngHq-8YDQLcEjQrB8eC2nI4qJHFHJCo7FBeqTPOcpx5nonWf2eYUGbbvGOMsIL_po8d5M0nFw3-CTsvEd-C4tYwnOJqW2K-eXycJ1q2QMsEs-wPm6CRa2MZLMQAd_CDifTKolpBOvzQaqZNrMr9FlrTct3Jz6EM2fJvPyJZ29PU_Lx1lqqSRdSqSlwhhTcUuLilJuGKtZLnJBrawtzSTozDDBMMvAFsIQDVUdF6IupDFsiO6PZ3eh-dpD26l1sw8-flSU4YJSTHERU_iYsqFp2wC12gW31eFHEawO9lS0pw721MleRPgfxLpOdy4qCtpt_gPvjqADgPMfIQrCeM5-ATdJfZ4
CODEN ICIMCC
CitedBy_id crossref_primary_10_1109_COMST_2021_3073036
crossref_primary_10_1109_JIOT_2021_3086623
crossref_primary_10_1109_TITS_2020_3016002
crossref_primary_10_3390_s20041082
crossref_primary_10_1109_JIOT_2022_3164447
crossref_primary_10_1109_ACCESS_2020_3043765
crossref_primary_10_1155_2023_2852085
crossref_primary_10_4018_IJICTHD_299412
crossref_primary_10_1109_ACCESS_2023_3297280
crossref_primary_10_3390_informatics7040043
crossref_primary_10_1109_ACCESS_2022_3140719
crossref_primary_10_1109_TII_2020_2983979
crossref_primary_10_1109_TNSE_2022_3188658
crossref_primary_10_1155_2022_8392511
crossref_primary_10_3390_s22186995
crossref_primary_10_1109_MWC_001_1900406
crossref_primary_10_1016_j_matpr_2021_10_471
crossref_primary_10_1080_00207543_2024_2329316
crossref_primary_10_1109_TNSM_2023_3239664
crossref_primary_10_1109_ACCESS_2020_2987349
crossref_primary_10_1109_JIOT_2021_3057653
crossref_primary_10_1155_2021_8653083
crossref_primary_10_1007_s12083_022_01369_6
crossref_primary_10_1109_COMST_2022_3205377
crossref_primary_10_1109_TSUSC_2022_3173787
crossref_primary_10_1109_ACCESS_2021_3051719
crossref_primary_10_1109_TCCN_2020_3002253
crossref_primary_10_1016_j_sysarc_2024_103306
crossref_primary_10_1109_ACCESS_2022_3197585
crossref_primary_10_1109_MNET_011_1900393
crossref_primary_10_1109_ACCESS_2020_2983068
crossref_primary_10_1007_s00521_020_05021_3
crossref_primary_10_1109_JSYST_2023_3244923
crossref_primary_10_1109_JIOT_2020_2981557
crossref_primary_10_1002_eng2_70005
crossref_primary_10_1145_3648571
crossref_primary_10_1016_j_asoc_2021_107242
crossref_primary_10_1109_ACCESS_2020_3033455
crossref_primary_10_1109_TVT_2022_3199677
Cites_doi 10.1109/COMST.2017.2684778
10.1109/JIOT.2017.2779820
10.1109/TCOMM.2014.2386330
10.1109/MCOM.2018.1800089
10.1109/TSC.2018.2867482
10.1109/TC.2014.2349503
10.1109/INFCOMW.2017.8116421
10.1109/MCOM.2005.1453413
10.1109/JIOT.2017.2759728
10.1109/TVT.2017.2702388
10.1109/TMM.2016.2619901
10.1109/ICME.2017.8019496
10.1109/TCOMM.2016.2636283
10.1109/TBC.2018.2823914
10.1109/ICME.2015.7177435
10.1109/JIOT.2018.2878435
10.1109/JIOT.2018.2866945
10.1007/s11036-016-0694-8
10.1109/LCN.2017.112
10.1109/TMM.2017.2652064
10.1109/TMC.2015.2442529
10.1109/TMM.2016.2612123
10.1109/MCOM.2018.1800036
ContentType Magazine Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/MCI.2019.2937608
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Architecture
EISSN 1556-6048
1556-603X
EndPage 20
ExternalDocumentID 10_1109_MCI_2019_2937608
8871365
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61872195; 61572262
  funderid: 10.13039/501100001809
– fundername: National Science Foundation
  grantid: 1718375
  funderid: 10.13039/100000001
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-19c28bbbd6c27d226b33f358582c9fc249ea4b383034ec78b1aedffc28f79bb3
IEDL.DBID RIE
ISSN 1556-603X
1556-6048
IngestDate Mon Jun 30 04:57:21 EDT 2025
Tue Jul 01 00:35:41 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
Wed Aug 27 02:22:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-19c28bbbd6c27d226b33f358582c9fc249ea4b383034ec78b1aedffc28f79bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2307220207
PQPubID 85408
PageCount 9
ParticipantIDs crossref_primary_10_1109_MCI_2019_2937608
proquest_journals_2307220207
ieee_primary_8871365
crossref_citationtrail_10_1109_MCI_2019_2937608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle IEEE computational intelligence magazine
PublicationTitleAbbrev MCI
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
schaul (ref23) 2016
ref25
ref20
mnih (ref24) 2016
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/COMST.2017.2684778
– ident: ref1
  doi: 10.1109/JIOT.2017.2779820
– ident: ref22
  doi: 10.1109/TCOMM.2014.2386330
– ident: ref10
  doi: 10.1109/MCOM.2018.1800089
– start-page: 1928
  year: 2016
  ident: ref24
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Machine Learn (ICML)
– ident: ref21
  doi: 10.1109/TSC.2018.2867482
– start-page: 1
  year: 2016
  ident: ref23
  article-title: Prioritized experience replay
  publication-title: Proc Int Conf Learning Representations (ICLR)
– ident: ref16
  doi: 10.1109/TC.2014.2349503
– ident: ref17
  doi: 10.1109/INFCOMW.2017.8116421
– ident: ref25
  doi: 10.1109/MCOM.2005.1453413
– ident: ref20
  doi: 10.1109/JIOT.2017.2759728
– ident: ref4
  doi: 10.1109/TVT.2017.2702388
– ident: ref12
  doi: 10.1109/TMM.2016.2619901
– ident: ref15
  doi: 10.1109/ICME.2017.8019496
– ident: ref5
  doi: 10.1109/TCOMM.2016.2636283
– ident: ref2
  doi: 10.1109/TBC.2018.2823914
– ident: ref18
  doi: 10.1109/ICME.2015.7177435
– ident: ref7
  doi: 10.1109/JIOT.2018.2878435
– ident: ref14
  doi: 10.1109/JIOT.2018.2866945
– ident: ref9
  doi: 10.1007/s11036-016-0694-8
– ident: ref8
  doi: 10.1109/LCN.2017.112
– ident: ref13
  doi: 10.1109/TMM.2017.2652064
– ident: ref6
  doi: 10.1109/TMC.2015.2442529
– ident: ref19
  doi: 10.1109/TMM.2016.2612123
– ident: ref3
  doi: 10.1109/MCOM.2018.1800036
SSID ssj0044167
Score 1.264455
Snippet When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. The authors present here...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms Architecture
Big Data
Bio-inspired computing
Biological system modeling
Caching
Computer simulation
Experts
Internet of Things
Knowledge management
Knowledge transfer
Machine learning
Reinforcement learning
Robot arms
Structural hierarchy
Task analysis
Title QoE-Driven Content-Centric Caching With Deep Reinforcement Learning in Edge-Enabled IoT
URI https://ieeexplore.ieee.org/document/8871365
https://www.proquest.com/docview/2307220207
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO3maOsXplBy8CKZr065tjrIPNmGCMtlupUlf51C6MbuLf71J2g5REW-FJiHkfSfv_R7AdeKg6yH3KXLhUk-EkvJeD2mqKx2Zru006PzTB3_87N0veosa3O5rYRDRJJ-hpT_NW36yljt9VdZVAqGzsupQV4FbUatVaV1l1U23WGUeferb7qJ6krR5d9qf6BwubinTFvi6keQXE2R6qvxQxMa6jJowrfZVJJW8WrtcWPLjG2Tjfzd-CM0KNprcFYxxBDXMjqFZ9XAgpUi3YP64HtLBVus8YpCqspyaG9-VJP0i0ZLMV_kLGSBuyBMaoFVp7hRJic26JKuMDJMl0qEpxErIZD07gdloOOuPadlsgUrGnZw6XLJQCJH4kgWJcsqE66auCiZCJnkqVZSGsSdUPGsr2sogFE6MSap-hGnAhXBPoZGtMzwD4ogg9bjkTCg2kBrR3re9OEgUN_gYu6wN3er4I1kCket-GG-RCUhsHimCRZpgUUmwNtzsZ2wKEI4_xrb0-e_HlUffhk5F4aiU0vdIJ8Ezphzm4Pz3WRdwoNcuag870Mi3O7xUTkgurgz3fQKUddcM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHOA0YCDGMwcuSGRr02eOaAxtsE4CDbFbtaQuTKAWQXfh15Ok7YQAIW6VmihRbMdx4u8zwGlio-Mi9yly4VBXhJJyz0OaaqQj09hOw84fjf3BvXs99aYNOF9iYRDRJJ9hR3-at_wklwt9VdZVBqGzslZgzdNg3BKtVe-7yq-berHKQfrUt5xp_Shp8W7UG-osLt5Rzi3wdSnJL07IVFX5sRUb_3LVhKieWZlW8txZFKIjP76RNv536pvQrImjyUWpGlvQwGwbmnUVB1IZdQsebvM-vXzTux4xXFVZQc2d71ySXplqSR7mxRO5RHwld2ioVqW5VSQVO-sjmWeknzwi7RsoVkKG-WQHJlf9SW9Aq3ILVDJuF9TmkoVCiMSXLEjUsUw4TuqocCJkkqdSxWk4c4WKaC0lXRmEwp5hkqofYRpwIZxdWM3yDPeA2CJIXS45E0oRpOa09y13FiRKH3ycOawN3Xr5Y1lRkeuKGC-xCUksHiuBxVpgcSWwNpwte7yWNBx_tG3p9V-2q5a-DYe1hOPKTt9jnQbPmDoyB_u_9zqB9cEkGsWj4fjmADb0OCUS8RBWi7cFHqkjSSGOjSZ-AvQn2lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoE-Driven+Content-Centric+Caching+With+Deep+Reinforcement+Learning+in+Edge-Enabled+IoT&rft.jtitle=IEEE+computational+intelligence+magazine&rft.au=He%2C+Xiaoming&rft.au=Wang%2C+Kun&rft.au=Xu%2C+Wenyao&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1556-6048&rft.eissn=1556-603X&rft.volume=14&rft.issue=4&rft.spage=12&rft_id=info:doi/10.1109%2FMCI.2019.2937608&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-603X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-603X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-603X&client=summon