QoE-Driven Content-Centric Caching With Deep Reinforcement Learning in Edge-Enabled IoT
When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. The authors present here the last enhanced version of a bioinspired reinforcement-learning (RL) modular architecture able to perform skill-to-skill knowledge transfer...
Saved in:
Published in | IEEE computational intelligence magazine Vol. 14; no. 4; pp. 12 - 20 |
---|---|
Main Authors | , , |
Format | Magazine Article |
Language | English |
Published |
Washington
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1556-603X 1556-6048 1556-6048 1556-603X |
DOI | 10.1109/MCI.2019.2937608 |
Cover
Loading…
Abstract | When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. The authors present here the last enhanced version of a bioinspired reinforcement-learning (RL) modular architecture able to perform skill-to-skill knowledge transfer and called transfer expert RL (TERL) model. TERL architecture is based on a RL actor-critic model where both actor and critic have a hierarchical structure, inspired by the mixture-of-experts model, formed by a gating network that selects experts specializing in learning the policies or value functions of different tasks. A key feature of TERL is the capacity of its gating networks to accumulate, in parallel, evidence on the capacity of experts to solve the new tasks so as to increase the responsibility for action of the best ones. A second key feature is the use of two different responsibility signals for the experts' functioning and learning: this allows the training of multiple experts for each task so that some of them can be later recruited to solve new tasks and avoid catastrophic interference. The utility of TERL mechanisms is shown with tests involving two simulated dynamic robot arms engaged in solving reaching tasks, in particular a planar 2-DoF arm, and a 3-D 4-DoF arm. |
---|---|
AbstractList | When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. The authors present here the last enhanced version of a bioinspired reinforcement-learning (RL) modular architecture able to perform skill-to-skill knowledge transfer and called transfer expert RL (TERL) model. TERL architecture is based on a RL actor-critic model where both actor and critic have a hierarchical structure, inspired by the mixture-of-experts model, formed by a gating network that selects experts specializing in learning the policies or value functions of different tasks. A key feature of TERL is the capacity of its gating networks to accumulate, in parallel, evidence on the capacity of experts to solve the new tasks so as to increase the responsibility for action of the best ones. A second key feature is the use of two different responsibility signals for the experts' functioning and learning: this allows the training of multiple experts for each task so that some of them can be later recruited to solve new tasks and avoid catastrophic interference. The utility of TERL mechanisms is shown with tests involving two simulated dynamic robot arms engaged in solving reaching tasks, in particular a planar 2-DoF arm, and a 3-D 4-DoF arm. |
Author | He, Xiaoming Xu, Wenyao Wang, Kun |
Author_xml | – sequence: 1 givenname: Xiaoming surname: He fullname: He, Xiaoming organization: Internet of Things, Nanjing University of Posts and Telecommunications, China – sequence: 2 givenname: Kun surname: Wang fullname: Wang, Kun email: kun.wang1981@gmail.com organization: Electrical and Computer Engineering, University of California, Los Angeles, California United States – sequence: 3 givenname: Wenyao surname: Xu fullname: Xu, Wenyao email: wenyaoxu@buffalo.edu organization: Computer Science and Engineering, University at Buffalo, New York United States |
BookMark | eNp9kE1LAzEQhoNUsK3eBS8LnrfmYzebHGVbtVARpVBvIcnOtilttma3gv_elJYePHiZGZj3mYFngHq-8YDQLcEjQrB8eC2nI4qJHFHJCo7FBeqTPOcpx5nonWf2eYUGbbvGOMsIL_po8d5M0nFw3-CTsvEd-C4tYwnOJqW2K-eXycJ1q2QMsEs-wPm6CRa2MZLMQAd_CDifTKolpBOvzQaqZNrMr9FlrTct3Jz6EM2fJvPyJZ29PU_Lx1lqqSRdSqSlwhhTcUuLilJuGKtZLnJBrawtzSTozDDBMMvAFsIQDVUdF6IupDFsiO6PZ3eh-dpD26l1sw8-flSU4YJSTHERU_iYsqFp2wC12gW31eFHEawO9lS0pw721MleRPgfxLpOdy4qCtpt_gPvjqADgPMfIQrCeM5-ATdJfZ4 |
CODEN | ICIMCC |
CitedBy_id | crossref_primary_10_1109_COMST_2021_3073036 crossref_primary_10_1109_JIOT_2021_3086623 crossref_primary_10_1109_TITS_2020_3016002 crossref_primary_10_3390_s20041082 crossref_primary_10_1109_JIOT_2022_3164447 crossref_primary_10_1109_ACCESS_2020_3043765 crossref_primary_10_1155_2023_2852085 crossref_primary_10_4018_IJICTHD_299412 crossref_primary_10_1109_ACCESS_2023_3297280 crossref_primary_10_3390_informatics7040043 crossref_primary_10_1109_ACCESS_2022_3140719 crossref_primary_10_1109_TII_2020_2983979 crossref_primary_10_1109_TNSE_2022_3188658 crossref_primary_10_1155_2022_8392511 crossref_primary_10_3390_s22186995 crossref_primary_10_1109_MWC_001_1900406 crossref_primary_10_1016_j_matpr_2021_10_471 crossref_primary_10_1080_00207543_2024_2329316 crossref_primary_10_1109_TNSM_2023_3239664 crossref_primary_10_1109_ACCESS_2020_2987349 crossref_primary_10_1109_JIOT_2021_3057653 crossref_primary_10_1155_2021_8653083 crossref_primary_10_1007_s12083_022_01369_6 crossref_primary_10_1109_COMST_2022_3205377 crossref_primary_10_1109_TSUSC_2022_3173787 crossref_primary_10_1109_ACCESS_2021_3051719 crossref_primary_10_1109_TCCN_2020_3002253 crossref_primary_10_1016_j_sysarc_2024_103306 crossref_primary_10_1109_ACCESS_2022_3197585 crossref_primary_10_1109_MNET_011_1900393 crossref_primary_10_1109_ACCESS_2020_2983068 crossref_primary_10_1007_s00521_020_05021_3 crossref_primary_10_1109_JSYST_2023_3244923 crossref_primary_10_1109_JIOT_2020_2981557 crossref_primary_10_1002_eng2_70005 crossref_primary_10_1145_3648571 crossref_primary_10_1016_j_asoc_2021_107242 crossref_primary_10_1109_ACCESS_2020_3033455 crossref_primary_10_1109_TVT_2022_3199677 |
Cites_doi | 10.1109/COMST.2017.2684778 10.1109/JIOT.2017.2779820 10.1109/TCOMM.2014.2386330 10.1109/MCOM.2018.1800089 10.1109/TSC.2018.2867482 10.1109/TC.2014.2349503 10.1109/INFCOMW.2017.8116421 10.1109/MCOM.2005.1453413 10.1109/JIOT.2017.2759728 10.1109/TVT.2017.2702388 10.1109/TMM.2016.2619901 10.1109/ICME.2017.8019496 10.1109/TCOMM.2016.2636283 10.1109/TBC.2018.2823914 10.1109/ICME.2015.7177435 10.1109/JIOT.2018.2878435 10.1109/JIOT.2018.2866945 10.1007/s11036-016-0694-8 10.1109/LCN.2017.112 10.1109/TMM.2017.2652064 10.1109/TMC.2015.2442529 10.1109/TMM.2016.2612123 10.1109/MCOM.2018.1800036 |
ContentType | Magazine Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/MCI.2019.2937608 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Architecture |
EISSN | 1556-6048 1556-603X |
EndPage | 20 |
ExternalDocumentID | 10_1109_MCI_2019_2937608 8871365 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61872195; 61572262 funderid: 10.13039/501100001809 – fundername: National Science Foundation grantid: 1718375 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-19c28bbbd6c27d226b33f358582c9fc249ea4b383034ec78b1aedffc28f79bb3 |
IEDL.DBID | RIE |
ISSN | 1556-603X 1556-6048 |
IngestDate | Mon Jun 30 04:57:21 EDT 2025 Tue Jul 01 00:35:41 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Wed Aug 27 02:22:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-19c28bbbd6c27d226b33f358582c9fc249ea4b383034ec78b1aedffc28f79bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2307220207 |
PQPubID | 85408 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_MCI_2019_2937608 proquest_journals_2307220207 ieee_primary_8871365 crossref_citationtrail_10_1109_MCI_2019_2937608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | IEEE computational intelligence magazine |
PublicationTitleAbbrev | MCI |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 schaul (ref23) 2016 ref25 ref20 mnih (ref24) 2016 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref11 doi: 10.1109/COMST.2017.2684778 – ident: ref1 doi: 10.1109/JIOT.2017.2779820 – ident: ref22 doi: 10.1109/TCOMM.2014.2386330 – ident: ref10 doi: 10.1109/MCOM.2018.1800089 – start-page: 1928 year: 2016 ident: ref24 article-title: Asynchronous methods for deep reinforcement learning publication-title: Proc Int Conf Machine Learn (ICML) – ident: ref21 doi: 10.1109/TSC.2018.2867482 – start-page: 1 year: 2016 ident: ref23 article-title: Prioritized experience replay publication-title: Proc Int Conf Learning Representations (ICLR) – ident: ref16 doi: 10.1109/TC.2014.2349503 – ident: ref17 doi: 10.1109/INFCOMW.2017.8116421 – ident: ref25 doi: 10.1109/MCOM.2005.1453413 – ident: ref20 doi: 10.1109/JIOT.2017.2759728 – ident: ref4 doi: 10.1109/TVT.2017.2702388 – ident: ref12 doi: 10.1109/TMM.2016.2619901 – ident: ref15 doi: 10.1109/ICME.2017.8019496 – ident: ref5 doi: 10.1109/TCOMM.2016.2636283 – ident: ref2 doi: 10.1109/TBC.2018.2823914 – ident: ref18 doi: 10.1109/ICME.2015.7177435 – ident: ref7 doi: 10.1109/JIOT.2018.2878435 – ident: ref14 doi: 10.1109/JIOT.2018.2866945 – ident: ref9 doi: 10.1007/s11036-016-0694-8 – ident: ref8 doi: 10.1109/LCN.2017.112 – ident: ref13 doi: 10.1109/TMM.2017.2652064 – ident: ref6 doi: 10.1109/TMC.2015.2442529 – ident: ref19 doi: 10.1109/TMM.2016.2612123 – ident: ref3 doi: 10.1109/MCOM.2018.1800036 |
SSID | ssj0044167 |
Score | 1.264455 |
Snippet | When humans learn several skills to solve multiple tasks, they exhibit an extraordinary capacity to transfer knowledge between them. The authors present here... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12 |
SubjectTerms | Architecture Big Data Bio-inspired computing Biological system modeling Caching Computer simulation Experts Internet of Things Knowledge management Knowledge transfer Machine learning Reinforcement learning Robot arms Structural hierarchy Task analysis |
Title | QoE-Driven Content-Centric Caching With Deep Reinforcement Learning in Edge-Enabled IoT |
URI | https://ieeexplore.ieee.org/document/8871365 https://www.proquest.com/docview/2307220207 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO3maOsXplBy8CKZr065tjrIPNmGCMtlupUlf51C6MbuLf71J2g5REW-FJiHkfSfv_R7AdeKg6yH3KXLhUk-EkvJeD2mqKx2Zru006PzTB3_87N0veosa3O5rYRDRJJ-hpT_NW36yljt9VdZVAqGzsupQV4FbUatVaV1l1U23WGUeferb7qJ6krR5d9qf6BwubinTFvi6keQXE2R6qvxQxMa6jJowrfZVJJW8WrtcWPLjG2Tjfzd-CM0KNprcFYxxBDXMjqFZ9XAgpUi3YP64HtLBVus8YpCqspyaG9-VJP0i0ZLMV_kLGSBuyBMaoFVp7hRJic26JKuMDJMl0qEpxErIZD07gdloOOuPadlsgUrGnZw6XLJQCJH4kgWJcsqE66auCiZCJnkqVZSGsSdUPGsr2sogFE6MSap-hGnAhXBPoZGtMzwD4ogg9bjkTCg2kBrR3re9OEgUN_gYu6wN3er4I1kCket-GG-RCUhsHimCRZpgUUmwNtzsZ2wKEI4_xrb0-e_HlUffhk5F4aiU0vdIJ8Ezphzm4Pz3WRdwoNcuag870Mi3O7xUTkgurgz3fQKUddcM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHOA0YCDGMwcuSGRr02eOaAxtsE4CDbFbtaQuTKAWQXfh15Ok7YQAIW6VmihRbMdx4u8zwGlio-Mi9yly4VBXhJJyz0OaaqQj09hOw84fjf3BvXs99aYNOF9iYRDRJJ9hR3-at_wklwt9VdZVBqGzslZgzdNg3BKtVe-7yq-berHKQfrUt5xp_Shp8W7UG-osLt5Rzi3wdSnJL07IVFX5sRUb_3LVhKieWZlW8txZFKIjP76RNv536pvQrImjyUWpGlvQwGwbmnUVB1IZdQsebvM-vXzTux4xXFVZQc2d71ySXplqSR7mxRO5RHwld2ioVqW5VSQVO-sjmWeknzwi7RsoVkKG-WQHJlf9SW9Aq3ILVDJuF9TmkoVCiMSXLEjUsUw4TuqocCJkkqdSxWk4c4WKaC0lXRmEwp5hkqofYRpwIZxdWM3yDPeA2CJIXS45E0oRpOa09y13FiRKH3ycOawN3Xr5Y1lRkeuKGC-xCUksHiuBxVpgcSWwNpwte7yWNBx_tG3p9V-2q5a-DYe1hOPKTt9jnQbPmDoyB_u_9zqB9cEkGsWj4fjmADb0OCUS8RBWi7cFHqkjSSGOjSZ-AvQn2lQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoE-Driven+Content-Centric+Caching+With+Deep+Reinforcement+Learning+in+Edge-Enabled+IoT&rft.jtitle=IEEE+computational+intelligence+magazine&rft.au=He%2C+Xiaoming&rft.au=Wang%2C+Kun&rft.au=Xu%2C+Wenyao&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1556-6048&rft.eissn=1556-603X&rft.volume=14&rft.issue=4&rft.spage=12&rft_id=info:doi/10.1109%2FMCI.2019.2937608&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-603X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-603X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-603X&client=summon |