Analysis of transport from cylindrical surfaces subject to catalytic reactions and non-uniform impinging flows in porous media A non-equilibrium thermodynamics approach
This paper investigates forced convection of heat and mass from the catalytic surface of a cylinder featuring non-uniform transpiration and impinging flows in porous media. The non-equilibrium thermodynamics including Soret and Dufour effects and local thermal non-equilibrium are considered. Through...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 138; no. 1; pp. 659 - 678 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates forced convection of heat and mass from the catalytic surface of a cylinder featuring non-uniform transpiration and impinging flows in porous media. The non-equilibrium thermodynamics including Soret and Dufour effects and local thermal non-equilibrium are considered. Through employing appropriate change of variables, the governing equations in cylindrical coordinate are reduced to nonlinear ordinary differential equations and solved using a finite difference scheme. This results in the calculation of the temperature and concentration fields as well as the local and surface-averaged Nusselt and Sherwood numbers. The conducted analyses further include evaluation of the rate of entropy generation within the porous medium. It is shown that internal heat exchanges inside the porous medium, represented by Biot number, dominate the temperature fields and Nusselt number. This indicates that consideration of local thermal non-equilibrium is of highly important. It is also demonstrated that Dufour and Soret effects can significantly influence the development of thermal and concentration boundary layers and hence modify the values of Nusselt and Sherwood numbers. In particular, it is shown that small variations in Soret and Dufour numbers can lead to noticeable changes in the average Nusselt and Sherwood numbers. Such modifications are strongly dependent upon the type of transpiration and characteristics of the impinging flow. The present work is the first analysis of non-equilibrium effects upon transport by stagnation flows around the curved surfaces embedded in porous media. |
---|---|
AbstractList | This paper investigates forced convection of heat and mass from the catalytic surface of a cylinder featuring non-uniform transpiration and impinging flows in porous media. The non-equilibrium thermodynamics including Soret and Dufour effects and local thermal non-equilibrium are considered. Through employing appropriate change of variables, the governing equations in cylindrical coordinate are reduced to nonlinear ordinary differential equations and solved using a finite difference scheme. This results in the calculation of the temperature and concentration fields as well as the local and surface-averaged Nusselt and Sherwood numbers. The conducted analyses further include evaluation of the rate of entropy generation within the porous medium. It is shown that internal heat exchanges inside the porous medium, represented by Biot number, dominate the temperature fields and Nusselt number. This indicates that consideration of local thermal non-equilibrium is of highly important. It is also demonstrated that Dufour and Soret effects can significantly influence the development of thermal and concentration boundary layers and hence modify the values of Nusselt and Sherwood numbers. In particular, it is shown that small variations in Soret and Dufour numbers can lead to noticeable changes in the average Nusselt and Sherwood numbers. Such modifications are strongly dependent upon the type of transpiration and characteristics of the impinging flow. The present work is the first analysis of non-equilibrium effects upon transport by stagnation flows around the curved surfaces embedded in porous media. |
Author | Mehdizadeh, Amirfarhang Alizadeh, Rasool Nourbakhsh, Amireh Karimi, Nader |
Author_xml | – sequence: 1 givenname: Rasool surname: Alizadeh fullname: Alizadeh, Rasool organization: Department of Mechanical Engineering, Quchan Branch, Islamic Azad University – sequence: 2 givenname: Nader surname: Karimi fullname: Karimi, Nader email: Nader.Karimi@glasgow.ac.uk organization: School of Engineering, University of Glasgow, School of Computing and Engineering, Civil and Mechanical Engineering Department, University of Missouri-Kansas City – sequence: 3 givenname: Amirfarhang surname: Mehdizadeh fullname: Mehdizadeh, Amirfarhang organization: School of Computing and Engineering, Civil and Mechanical Engineering Department, University of Missouri-Kansas City – sequence: 4 givenname: Amireh surname: Nourbakhsh fullname: Nourbakhsh, Amireh organization: Department of Mechanical Engineering, Bu-Ali Sina University |
BookMark | eNp9kMtqAyEUhqWk0CTtC3TlC0zrZTKXZQi9QaCbdi1njAbDjAZ1KMmiz96TpqsuAoI_4qfn_2Zk4oM3hNxz9sAZqx8TZ20tC8bbgjVcsOJ4RaZ80TSFaEU1wSwxV3zBbsgspR1jrG0Zn5LvpYf-kFyiwdIcwad9iJnaGAaqD73zm-g09DSN0YI2CUO3MzrTHKiGjGx2mkYDOrvgEwW_oThbMXpnQxyoG_bOb3FR24evRJ2n-EEYEx3MxsEtubbQJ3P3t8_J5_PTx-q1WL-_vK2W60KLlueCVyVoXra66wS2E4ZjKEHKUtumqppagq5liSWltMCM4J01ULMF9gSNp3PSnN_VMaQUjVXaZTiNjJ1drzhTJ4_q7FGhR_XrUR0RFf_QfXQDxMNlSJ6hhJf91kS1C2NE1ekS9QPy0Yu4 |
CitedBy_id | crossref_primary_10_1016_j_seta_2022_102083 crossref_primary_10_1166_jon_2024_2192 crossref_primary_10_1016_j_est_2021_103684 crossref_primary_10_1007_s10973_019_09245_x crossref_primary_10_1016_j_ijheatmasstransfer_2020_120471 crossref_primary_10_1007_s11356_022_22569_w crossref_primary_10_1016_j_chemphys_2025_112623 crossref_primary_10_1080_00986445_2021_1980397 crossref_primary_10_1016_j_seta_2022_102100 crossref_primary_10_1080_10407782_2023_2173344 crossref_primary_10_1080_15567036_2020_1850932 crossref_primary_10_1155_2023_8238703 crossref_primary_10_1016_j_jtice_2021_03_043 crossref_primary_10_1007_s10973_020_09295_6 crossref_primary_10_1177_0954406220957710 crossref_primary_10_1080_00986445_2021_1974412 crossref_primary_10_1016_j_ces_2021_116730 crossref_primary_10_1038_s41598_020_80553_1 crossref_primary_10_1016_j_seta_2021_101928 crossref_primary_10_1080_00986445_2021_1948408 crossref_primary_10_1080_00986445_2021_1948409 crossref_primary_10_1088_2399_6528_abcdba crossref_primary_10_1007_s10973_020_09679_8 crossref_primary_10_2478_amns_2022_2_0113 crossref_primary_10_1016_j_seta_2022_102099 crossref_primary_10_1007_s10973_019_08415_1 crossref_primary_10_1080_00986445_2021_1935254 crossref_primary_10_1016_j_ijthermalsci_2020_106788 crossref_primary_10_1080_00986445_2021_1974417 crossref_primary_10_1115_1_4047402 crossref_primary_10_1016_j_enganabound_2022_03_012 crossref_primary_10_1016_j_seta_2021_101882 crossref_primary_10_1016_j_seta_2022_102111 crossref_primary_10_1016_j_seta_2022_102254 crossref_primary_10_1007_s00366_021_01492_7 crossref_primary_10_1080_00986445_2021_1974414 crossref_primary_10_1007_s10973_019_08629_3 crossref_primary_10_1016_j_jtice_2021_05_015 crossref_primary_10_1002_htj_22106 crossref_primary_10_1177_0954406220954893 crossref_primary_10_1007_s10973_019_08556_3 crossref_primary_10_1016_j_jtice_2021_04_027 crossref_primary_10_1016_j_molliq_2020_113492 crossref_primary_10_1016_j_jobe_2022_104697 crossref_primary_10_1016_j_est_2022_104128 |
Cites_doi | 10.1515/zna-2010-0505 10.1007/BF00385923 10.1023/A:1004243728777 10.1016/j.molliq.2017.11.020 10.1016/j.ijheatmasstransfer.2015.09.078 10.1016/j.ijthermalsci.2015.05.002 10.1007/s00231-006-0132-8 10.1007/s00231-010-0633-3 10.1016/j.cej.2015.03.037 10.1016/j.applthermaleng.2017.07.211 10.1016/j.energy.2015.09.010 10.1093/hesc/9780199609819.003.0050 10.1007/978-1-4614-5541-7 10.1016/j.applthermaleng.2016.06.036 10.3390/e18050131 10.1016/j.ijheatmasstransfer.2017.11.118 10.1007/s10973-018-7027-z 10.1016/j.applthermaleng.2016.04.095 10.1016/j.molliq.2017.02.014 10.1016/j.apt.2016.04.005 10.1016/j.icheatmasstransfer.2014.08.039 10.1007/s10483-012-1623-6 10.1016/j.energy.2015.11.039 10.1016/j.ijheatmasstransfer.2003.09.017 10.1007/s00231-007-0296-x 10.1016/j.ijheatmasstransfer.2017.06.021 10.1016/j.aej.2016.04.017 10.1007/s40430-015-0389-2 10.1115/1.4033164 10.1007/s10973-018-7071-8 10.1016/j.apt.2015.07.017 10.1016/j.applthermaleng.2016.10.159 10.1007/s11242-006-0020-1 10.1090/qam/99683 10.1016/j.applthermaleng.2017.03.057 10.1007/s11242-017-0942-9 10.1016/j.energy.2017.06.104 10.1016/j.ijheatmasstransfer.2008.10.017 10.1016/j.cej.2011.08.009 10.1016/j.cep.2018.02.025 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 |
Copyright_xml | – notice: The Author(s) 2019 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10973-019-08120-z |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 678 |
ExternalDocumentID | 10_1007_s10973_019_08120_z |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZE2 ZMTXR ~02 ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c291t-164ac149cbb21202e1bb24a334cf866873ac73413833fa0e21bfea705000ac383 |
IEDL.DBID | C6C |
ISSN | 1388-6150 |
IngestDate | Tue Jul 01 00:37:32 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Fri Feb 21 02:33:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Local thermal non-equilibrium Soret effect Entropy generation Coupled heat and mass transfer Stagnation-point flow Dufour effect Similarity solution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-164ac149cbb21202e1bb24a334cf866873ac73413833fa0e21bfea705000ac383 |
OpenAccessLink | https://doi.org/10.1007/s10973-019-08120-z |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1007_s10973_019_08120_z crossref_primary_10_1007_s10973_019_08120_z springer_journals_10_1007_s10973_019_08120_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191000 2019-10-00 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2019 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Esfe MH, Saedodin S, Malekshah EH, Babaie A, Rostamian H. Mixed convection inside lid-driven cavities filled with nanofluids. J Therm Anal Calorim. 2018; 1–47. KefayatiGHRSimulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosureInt J Heat Mass Transf.2016921066108910.1016/j.ijheatmasstransfer.2015.09.078 TorabiMKarimiNZhangKHeat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sourcesEnergy.20159310612710.1016/j.energy.2015.09.010 Atkins P. Physical chemistry: thermodynamics, structure, and change. Macmillan Higher Education, 2014. GorlaRSRHeat transfer in an axisymmetric stagnation flow on a cylinderAppl Sci Res197632554155310.1007/BF00385923 HuntGKarimiNTorabiMFirst and second law analysis of nanofluid convection through a porous channel-The effects of partial filling and internal heat sourcesAppl Therm Eng201610345948010.1016/j.applthermaleng.2016.04.095 DeenWMAnalysis of transport phenomena, topics in chemical engineering1998New YorkOxford University Press3 Alizadeh R, Karimi N, Arjmandzadeh R, Mehdizadeh A. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J Therm Anal Calorim. 2018; p. 1–18 DemirelYNonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems2007New YorkElsevier EsfeMHHajmohammadHToghraieDRostamianHMahianOWongwisesSMulti-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systemsEnergy.201713716017110.1016/j.energy.2017.06.104 HuntGKarimiNTorabiMTwo-dimensional analytical investigation of coupled heat and mass transfer and entropy generation in a porous, catalytic microreactorInt J Heat Mass Transf20181193723911:CAS:528:DC%2BC2sXhvFSrsL%2FL10.1016/j.ijheatmasstransfer.2017.11.118 Al-SumailyGFHussenHMThompsonMCValidation of thermal equilibrium assumption in free convection flow over a cylinder embedded in a packed bedInt Commun Heat Mass Transfer20145818419210.1016/j.icheatmasstransfer.2014.08.039 PalDChatterjeeSSoret and Dufour effects on MHD convective heat and mass transfer of a power-law fluid over an inclined plate with variable thermal conductivity in a porous mediumAppl Math Comput20132191475567574 PostelnicuAInfluence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effectsHeat Mass Transf200743659560210.1007/s00231-006-0132-8 ReddyPSChamkhaAJSoret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorptionAdv Powder Technol2016274120712181:CAS:528:DC%2BC28XmvFCnsLc%3D10.1016/j.apt.2016.04.005 TorabiMKarimiNZhangKPetersonGPGeneration of entropy and forced convection of heat in a conduit partially filled with porous media–local thermal non-equilibrium and exothermicity effectsAppl Therm Eng201610651853610.1016/j.applthermaleng.2016.06.036 CunningGMDavisAMJWeidmanPDRadial stagnation flow on a rotating circular cylinder with uniform transpirationJ Eng Math199833211312810.1023/A:1004243728777 KavianyMPrinciples of heat transfer in porous media2012New YorkSpringer Science & Business Media MaboodFKhanWAIsmailAMMHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpirationChem Eng J20152734304371:CAS:528:DC%2BC2MXlsV2ntbo%3D10.1016/j.cej.2015.03.037 HayatTMustafaMMesloubSMixed convection boundary layer flow over a stretching surface filled with a Maxwell fluid in presence of Soret and Dufour effectsZ Naturforsch A20106554014101:CAS:528:DC%2BC3cXpt1Cmuro%3D10.1515/zna-2010-0505 TsaiRHuangJSHeat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surfaceInt J Heat Mass Transf2009529–10239924061:CAS:528:DC%2BD1MXit1Cnsbg%3D10.1016/j.ijheatmasstransfer.2008.10.017 FreidoonimehrNRashidiMMAbelmanSLorenziniGAnalytical modeling of MHD flow over a permeable rotating disk in the presence of Soret and Dufour effects: entropy analysisEntropy.201618513110.3390/e18050131 OthmanNAYacobNABachokNIshakAPopIMixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluidAppl Therm Eng20171151412141710.1016/j.applthermaleng.2016.10.159 HuntGTorabiMGovoneLKarimiNMehdizadehATwo-dimensional heat and mass transfer and thermodynamic analyses of porous microreactors with Soret and thermal radiation effects—an analytical approachChem Eng Process20181261902051:CAS:528:DC%2BC1cXks12ht7g%3D10.1016/j.cep.2018.02.025 Hemmat EsfeMAbbasian AraniAAMon YanWAghaeiANumerical study of mixed convection inside a γ-shaped cavity with Mg (OH2)-EG nanofluidsCurr Nanosci2017134354363 EsfeMHRostamianHShabani-samghabadiAAraniAAAApplication of three-level general factorial design approach for thermal conductivity of MgO/water nanofluidsAppl Therm Eng20171271194119910.1016/j.applthermaleng.2017.07.211 EsfeMHRostamianHNon-Newtonian power-law behavior of TiO2/SAE 50 nano-lubricant: an experimental report and new correlationJ Mol Liq201723221922510.1016/j.molliq.2017.02.014 KarimiNAgboDTalat KhanAYoungerPLOn the effects of exothermicity and endothermicity upon the temperature fields in a partially-filled porous channelInt J Therm Sci20159612814810.1016/j.ijthermalsci.2015.05.002 AbbasZSheikhMMotsaSSNumerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiationEnergy.20169512201:CAS:528:DC%2BC2MXitVGhsLvF10.1016/j.energy.2015.11.039 DinarvandSHosseiniRAbulhasansariMPopIBuongiorno’s model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluidAdv Powder Technol2015265142314341:CAS:528:DC%2BC2MXht12ms7rE10.1016/j.apt.2015.07.017 TorabiMKarimiNPetersonGPYeeSChallenges and progress on the modelling of entropy generation in porous media: a reviewInt J Heat Mass Transf2017114314610.1016/j.ijheatmasstransfer.2017.06.021 ThomasJWNumerical partial differential equations: finite difference methods2013New YorkSpringer Science & Business Media ChamkhaAJBen-NakhiAMHD mixed convection–radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour’s effectsHeat Mass Transf200844784510.1007/s00231-007-0296-x HuntGKarimiNTorabiMAnalytical investigation of heat transfer and classical entropy generation in microreactors–The influences of exothermicity and asymmetryAppl Therm Eng20171194034241:CAS:528:DC%2BC2sXlsVelu7c%3D10.1016/j.applthermaleng.2017.03.057 PostelnicuAInfluence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effectsInt J Heat Mass Transf2004476–71467147210.1016/j.ijheatmasstransfer.2003.09.017 AlizadehRRahimiABArjmandzadehRNajafiMAlizadehAUnaxisymmetric stagnation-point flow and heat transfer of a viscous fluid with variable viscosity on a cylinder in constant heat fluxAlexandria Eng J20165521271128310.1016/j.aej.2016.04.017 BirdRStewartWLightfootETransport phenomena20022New YorkWiley75113 EsfeMHZabihiFRostamianHEsfandehSExperimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposesJ Mol Liq201824967768710.1016/j.molliq.2017.11.020 AlizadehRRahimiABNajafiMUnaxisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving cylinder with time-dependent axial velocityJ Braz Soc Mech Sci Eng2016381859810.1007/s40430-015-0389-2 PostelnicuAHeat and mass transfer by natural convection at a stagnation point in a porous medium considering Soret and Dufour effectsHeat Mass Transf2010468–983184010.1007/s00231-010-0633-3 WangCYAxisymmetric stagnation flow on a cylinderQ Appl Math197432220721310.1090/qam/99683 HayatTShehzadSAAlsaediASoret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluidAppl Math Mech201233101301131210.1007/s10483-012-1623-6 AlizadehRRahimiABKarimiNAlizadehAOn the hydrodynamics and heat convection of an impinging external flow upon a cylinder with transpiration and embedded in a porous mediumTransp Porous Med201712035796041:CAS:528:DC%2BC2sXhs1yht7jM10.1007/s11242-017-0942-9 NieldDABejanABejanNConvection in porous media20134New YorkSpringer10.1007/978-1-4614-5541-7 PrasadVRVasuBAnwar BégOThermo-diffusion and diffusion-thermo effects on MHD free convection flow past a vertical porous plate embedded in a non-Darcian porous mediumChem Eng J2011173259860610.1016/j.cej.2011.08.009 RosaliHIshakAPopIMixed convection boundary layer flow near the lower stagnation point of a cylinder embedded in a porous medium using a thermal nonequilibrium modelJ Heat Transfer2016138808450110.1115/1.4033164 AfifyAAEffects of temperature-dependent viscosity with Soret and Dufour numbers on non-Darcy MHD free convective heat and mass transfer past a vertical surface embedded in a porous mediumTransp Porous Media20076633914011:CAS:528:DC%2BD2sXhs1Wit74%3D10.1007/s11242-006-0020-1 Govone L, Torabi M, Wang L, Karimi N. Effects of nanofluid and radiative heat transfer on the double-diffusive forced convection in microreactors. J Therm Anal Calorim. 2018; 1–15. A Postelnicu (8120_CR13) 2010; 46 R Alizadeh (8120_CR38) 2016; 55 R Bird (8120_CR2) 2002 R Tsai (8120_CR15) 2009; 52 G Hunt (8120_CR48) 2016; 103 D Pal (8120_CR7) 2013; 219 CY Wang (8120_CR44) 1974; 32 S Dinarvand (8120_CR25) 2015; 26 8120_CR16 Y Demirel (8120_CR1) 2007 N Karimi (8120_CR10) 2015; 96 8120_CR35 8120_CR36 NA Othman (8120_CR27) 2017; 115 MH Esfe (8120_CR18) 2017; 127 G Hunt (8120_CR9) 2017; 119 GM Cunning (8120_CR37) 1998; 33 A Postelnicu (8120_CR12) 2007; 43 T Hayat (8120_CR14) 2010; 65 GF Al-Sumaily (8120_CR28) 2014; 58 G Hunt (8120_CR33) 2018; 119 AJ Chamkha (8120_CR6) 2008; 44 RSR Gorla (8120_CR45) 1976; 32 M Kaviany (8120_CR3) 2012 GHR Kefayati (8120_CR43) 2016; 92 Z Abbas (8120_CR26) 2016; 95 M Torabi (8120_CR31) 2016; 106 F Mabood (8120_CR23) 2015; 273 N Freidoonimehr (8120_CR32) 2016; 18 A Postelnicu (8120_CR11) 2004; 47 R Alizadeh (8120_CR39) 2016; 38 JW Thomas (8120_CR42) 2013 MH Esfe (8120_CR19) 2017; 232 MH Esfe (8120_CR21) 2018; 249 VR Prasad (8120_CR22) 2011; 173 M Hemmat Esfe (8120_CR17) 2017; 13 PS Reddy (8120_CR24) 2016; 27 H Rosali (8120_CR29) 2016; 138 WM Deen (8120_CR46) 1998 DA Nield (8120_CR4) 2013 G Hunt (8120_CR34) 2018; 126 8120_CR41 T Hayat (8120_CR47) 2012; 33 MH Esfe (8120_CR20) 2017; 137 R Alizadeh (8120_CR40) 2017; 120 AA Afify (8120_CR5) 2007; 66 M Torabi (8120_CR30) 2015; 93 M Torabi (8120_CR8) 2017; 114 |
References_xml | – reference: NieldDABejanABejanNConvection in porous media20134New YorkSpringer10.1007/978-1-4614-5541-7 – reference: KarimiNAgboDTalat KhanAYoungerPLOn the effects of exothermicity and endothermicity upon the temperature fields in a partially-filled porous channelInt J Therm Sci20159612814810.1016/j.ijthermalsci.2015.05.002 – reference: DeenWMAnalysis of transport phenomena, topics in chemical engineering1998New YorkOxford University Press3 – reference: FreidoonimehrNRashidiMMAbelmanSLorenziniGAnalytical modeling of MHD flow over a permeable rotating disk in the presence of Soret and Dufour effects: entropy analysisEntropy.201618513110.3390/e18050131 – reference: TsaiRHuangJSHeat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surfaceInt J Heat Mass Transf2009529–10239924061:CAS:528:DC%2BD1MXit1Cnsbg%3D10.1016/j.ijheatmasstransfer.2008.10.017 – reference: HuntGKarimiNTorabiMFirst and second law analysis of nanofluid convection through a porous channel-The effects of partial filling and internal heat sourcesAppl Therm Eng201610345948010.1016/j.applthermaleng.2016.04.095 – reference: KavianyMPrinciples of heat transfer in porous media2012New YorkSpringer Science & Business Media – reference: AfifyAAEffects of temperature-dependent viscosity with Soret and Dufour numbers on non-Darcy MHD free convective heat and mass transfer past a vertical surface embedded in a porous mediumTransp Porous Media20076633914011:CAS:528:DC%2BD2sXhs1Wit74%3D10.1007/s11242-006-0020-1 – reference: PostelnicuAInfluence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effectsHeat Mass Transf200743659560210.1007/s00231-006-0132-8 – reference: Al-SumailyGFHussenHMThompsonMCValidation of thermal equilibrium assumption in free convection flow over a cylinder embedded in a packed bedInt Commun Heat Mass Transfer20145818419210.1016/j.icheatmasstransfer.2014.08.039 – reference: OthmanNAYacobNABachokNIshakAPopIMixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluidAppl Therm Eng20171151412141710.1016/j.applthermaleng.2016.10.159 – reference: TorabiMKarimiNPetersonGPYeeSChallenges and progress on the modelling of entropy generation in porous media: a reviewInt J Heat Mass Transf2017114314610.1016/j.ijheatmasstransfer.2017.06.021 – reference: Esfe MH, Saedodin S, Malekshah EH, Babaie A, Rostamian H. Mixed convection inside lid-driven cavities filled with nanofluids. J Therm Anal Calorim. 2018; 1–47. – reference: RosaliHIshakAPopIMixed convection boundary layer flow near the lower stagnation point of a cylinder embedded in a porous medium using a thermal nonequilibrium modelJ Heat Transfer2016138808450110.1115/1.4033164 – reference: HuntGKarimiNTorabiMTwo-dimensional analytical investigation of coupled heat and mass transfer and entropy generation in a porous, catalytic microreactorInt J Heat Mass Transf20181193723911:CAS:528:DC%2BC2sXhvFSrsL%2FL10.1016/j.ijheatmasstransfer.2017.11.118 – reference: WangCYAxisymmetric stagnation flow on a cylinderQ Appl Math197432220721310.1090/qam/99683 – reference: ThomasJWNumerical partial differential equations: finite difference methods2013New YorkSpringer Science & Business Media – reference: Hemmat EsfeMAbbasian AraniAAMon YanWAghaeiANumerical study of mixed convection inside a γ-shaped cavity with Mg (OH2)-EG nanofluidsCurr Nanosci2017134354363 – reference: AbbasZSheikhMMotsaSSNumerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiationEnergy.20169512201:CAS:528:DC%2BC2MXitVGhsLvF10.1016/j.energy.2015.11.039 – reference: HayatTMustafaMMesloubSMixed convection boundary layer flow over a stretching surface filled with a Maxwell fluid in presence of Soret and Dufour effectsZ Naturforsch A20106554014101:CAS:528:DC%2BC3cXpt1Cmuro%3D10.1515/zna-2010-0505 – reference: DemirelYNonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems2007New YorkElsevier – reference: TorabiMKarimiNZhangKHeat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sourcesEnergy.20159310612710.1016/j.energy.2015.09.010 – reference: AlizadehRRahimiABKarimiNAlizadehAOn the hydrodynamics and heat convection of an impinging external flow upon a cylinder with transpiration and embedded in a porous mediumTransp Porous Med201712035796041:CAS:528:DC%2BC2sXhs1yht7jM10.1007/s11242-017-0942-9 – reference: HuntGKarimiNTorabiMAnalytical investigation of heat transfer and classical entropy generation in microreactors–The influences of exothermicity and asymmetryAppl Therm Eng20171194034241:CAS:528:DC%2BC2sXlsVelu7c%3D10.1016/j.applthermaleng.2017.03.057 – reference: PostelnicuAInfluence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effectsInt J Heat Mass Transf2004476–71467147210.1016/j.ijheatmasstransfer.2003.09.017 – reference: EsfeMHHajmohammadHToghraieDRostamianHMahianOWongwisesSMulti-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systemsEnergy.201713716017110.1016/j.energy.2017.06.104 – reference: PrasadVRVasuBAnwar BégOThermo-diffusion and diffusion-thermo effects on MHD free convection flow past a vertical porous plate embedded in a non-Darcian porous mediumChem Eng J2011173259860610.1016/j.cej.2011.08.009 – reference: BirdRStewartWLightfootETransport phenomena20022New YorkWiley75113 – reference: Alizadeh R, Karimi N, Arjmandzadeh R, Mehdizadeh A. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J Therm Anal Calorim. 2018; p. 1–18 – reference: GorlaRSRHeat transfer in an axisymmetric stagnation flow on a cylinderAppl Sci Res197632554155310.1007/BF00385923 – reference: AlizadehRRahimiABNajafiMUnaxisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving cylinder with time-dependent axial velocityJ Braz Soc Mech Sci Eng2016381859810.1007/s40430-015-0389-2 – reference: MaboodFKhanWAIsmailAMMHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpirationChem Eng J20152734304371:CAS:528:DC%2BC2MXlsV2ntbo%3D10.1016/j.cej.2015.03.037 – reference: HayatTShehzadSAAlsaediASoret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluidAppl Math Mech201233101301131210.1007/s10483-012-1623-6 – reference: EsfeMHZabihiFRostamianHEsfandehSExperimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposesJ Mol Liq201824967768710.1016/j.molliq.2017.11.020 – reference: CunningGMDavisAMJWeidmanPDRadial stagnation flow on a rotating circular cylinder with uniform transpirationJ Eng Math199833211312810.1023/A:1004243728777 – reference: PostelnicuAHeat and mass transfer by natural convection at a stagnation point in a porous medium considering Soret and Dufour effectsHeat Mass Transf2010468–983184010.1007/s00231-010-0633-3 – reference: AlizadehRRahimiABArjmandzadehRNajafiMAlizadehAUnaxisymmetric stagnation-point flow and heat transfer of a viscous fluid with variable viscosity on a cylinder in constant heat fluxAlexandria Eng J20165521271128310.1016/j.aej.2016.04.017 – reference: TorabiMKarimiNZhangKPetersonGPGeneration of entropy and forced convection of heat in a conduit partially filled with porous media–local thermal non-equilibrium and exothermicity effectsAppl Therm Eng201610651853610.1016/j.applthermaleng.2016.06.036 – reference: EsfeMHRostamianHShabani-samghabadiAAraniAAAApplication of three-level general factorial design approach for thermal conductivity of MgO/water nanofluidsAppl Therm Eng20171271194119910.1016/j.applthermaleng.2017.07.211 – reference: ReddyPSChamkhaAJSoret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorptionAdv Powder Technol2016274120712181:CAS:528:DC%2BC28XmvFCnsLc%3D10.1016/j.apt.2016.04.005 – reference: HuntGTorabiMGovoneLKarimiNMehdizadehATwo-dimensional heat and mass transfer and thermodynamic analyses of porous microreactors with Soret and thermal radiation effects—an analytical approachChem Eng Process20181261902051:CAS:528:DC%2BC1cXks12ht7g%3D10.1016/j.cep.2018.02.025 – reference: Govone L, Torabi M, Wang L, Karimi N. Effects of nanofluid and radiative heat transfer on the double-diffusive forced convection in microreactors. J Therm Anal Calorim. 2018; 1–15. – reference: Atkins P. Physical chemistry: thermodynamics, structure, and change. Macmillan Higher Education, 2014. – reference: PalDChatterjeeSSoret and Dufour effects on MHD convective heat and mass transfer of a power-law fluid over an inclined plate with variable thermal conductivity in a porous mediumAppl Math Comput20132191475567574 – reference: KefayatiGHRSimulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosureInt J Heat Mass Transf.2016921066108910.1016/j.ijheatmasstransfer.2015.09.078 – reference: ChamkhaAJBen-NakhiAMHD mixed convection–radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour’s effectsHeat Mass Transf200844784510.1007/s00231-007-0296-x – reference: EsfeMHRostamianHNon-Newtonian power-law behavior of TiO2/SAE 50 nano-lubricant: an experimental report and new correlationJ Mol Liq201723221922510.1016/j.molliq.2017.02.014 – reference: DinarvandSHosseiniRAbulhasansariMPopIBuongiorno’s model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluidAdv Powder Technol2015265142314341:CAS:528:DC%2BC2MXht12ms7rE10.1016/j.apt.2015.07.017 – volume: 65 start-page: 401 issue: 5 year: 2010 ident: 8120_CR14 publication-title: Z Naturforsch A doi: 10.1515/zna-2010-0505 – volume-title: Numerical partial differential equations: finite difference methods year: 2013 ident: 8120_CR42 – volume: 32 start-page: 541 issue: 5 year: 1976 ident: 8120_CR45 publication-title: Appl Sci Res doi: 10.1007/BF00385923 – start-page: 75 volume-title: Transport phenomena year: 2002 ident: 8120_CR2 – volume: 33 start-page: 113 issue: 2 year: 1998 ident: 8120_CR37 publication-title: J Eng Math doi: 10.1023/A:1004243728777 – volume: 249 start-page: 677 year: 2018 ident: 8120_CR21 publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.11.020 – volume: 92 start-page: 1066 year: 2016 ident: 8120_CR43 publication-title: Int J Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.09.078 – volume: 96 start-page: 128 year: 2015 ident: 8120_CR10 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2015.05.002 – volume: 43 start-page: 595 issue: 6 year: 2007 ident: 8120_CR12 publication-title: Heat Mass Transf doi: 10.1007/s00231-006-0132-8 – ident: 8120_CR16 – volume: 46 start-page: 831 issue: 8–9 year: 2010 ident: 8120_CR13 publication-title: Heat Mass Transf doi: 10.1007/s00231-010-0633-3 – volume: 273 start-page: 430 year: 2015 ident: 8120_CR23 publication-title: Chem Eng J doi: 10.1016/j.cej.2015.03.037 – volume: 127 start-page: 1194 year: 2017 ident: 8120_CR18 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.07.211 – volume: 93 start-page: 106 year: 2015 ident: 8120_CR30 publication-title: Energy. doi: 10.1016/j.energy.2015.09.010 – ident: 8120_CR36 doi: 10.1093/hesc/9780199609819.003.0050 – volume-title: Convection in porous media year: 2013 ident: 8120_CR4 doi: 10.1007/978-1-4614-5541-7 – volume: 106 start-page: 518 year: 2016 ident: 8120_CR31 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.06.036 – volume-title: Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems year: 2007 ident: 8120_CR1 – volume: 18 start-page: 131 issue: 5 year: 2016 ident: 8120_CR32 publication-title: Entropy. doi: 10.3390/e18050131 – volume: 119 start-page: 372 year: 2018 ident: 8120_CR33 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.11.118 – ident: 8120_CR35 doi: 10.1007/s10973-018-7027-z – volume: 103 start-page: 459 year: 2016 ident: 8120_CR48 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.04.095 – volume-title: Principles of heat transfer in porous media year: 2012 ident: 8120_CR3 – start-page: 3 volume-title: Analysis of transport phenomena, topics in chemical engineering year: 1998 ident: 8120_CR46 – volume: 232 start-page: 219 year: 2017 ident: 8120_CR19 publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.02.014 – volume: 13 start-page: 354 issue: 4 year: 2017 ident: 8120_CR17 publication-title: Curr Nanosci – volume: 219 start-page: 7556 issue: 14 year: 2013 ident: 8120_CR7 publication-title: Appl Math Comput – volume: 27 start-page: 1207 issue: 4 year: 2016 ident: 8120_CR24 publication-title: Adv Powder Technol doi: 10.1016/j.apt.2016.04.005 – volume: 58 start-page: 184 year: 2014 ident: 8120_CR28 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2014.08.039 – volume: 33 start-page: 1301 issue: 10 year: 2012 ident: 8120_CR47 publication-title: Appl Math Mech doi: 10.1007/s10483-012-1623-6 – volume: 95 start-page: 12 year: 2016 ident: 8120_CR26 publication-title: Energy. doi: 10.1016/j.energy.2015.11.039 – volume: 47 start-page: 1467 issue: 6–7 year: 2004 ident: 8120_CR11 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2003.09.017 – volume: 44 start-page: 845 issue: 7 year: 2008 ident: 8120_CR6 publication-title: Heat Mass Transf doi: 10.1007/s00231-007-0296-x – volume: 114 start-page: 31 year: 2017 ident: 8120_CR8 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.06.021 – volume: 55 start-page: 1271 issue: 2 year: 2016 ident: 8120_CR38 publication-title: Alexandria Eng J doi: 10.1016/j.aej.2016.04.017 – volume: 38 start-page: 85 issue: 1 year: 2016 ident: 8120_CR39 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-015-0389-2 – volume: 138 start-page: 084501 issue: 8 year: 2016 ident: 8120_CR29 publication-title: J Heat Transfer doi: 10.1115/1.4033164 – ident: 8120_CR41 doi: 10.1007/s10973-018-7071-8 – volume: 26 start-page: 1423 issue: 5 year: 2015 ident: 8120_CR25 publication-title: Adv Powder Technol doi: 10.1016/j.apt.2015.07.017 – volume: 115 start-page: 1412 year: 2017 ident: 8120_CR27 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.10.159 – volume: 66 start-page: 391 issue: 3 year: 2007 ident: 8120_CR5 publication-title: Transp Porous Media doi: 10.1007/s11242-006-0020-1 – volume: 32 start-page: 207 issue: 2 year: 1974 ident: 8120_CR44 publication-title: Q Appl Math doi: 10.1090/qam/99683 – volume: 119 start-page: 403 year: 2017 ident: 8120_CR9 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.03.057 – volume: 120 start-page: 579 issue: 3 year: 2017 ident: 8120_CR40 publication-title: Transp Porous Med doi: 10.1007/s11242-017-0942-9 – volume: 137 start-page: 160 year: 2017 ident: 8120_CR20 publication-title: Energy. doi: 10.1016/j.energy.2017.06.104 – volume: 52 start-page: 2399 issue: 9–10 year: 2009 ident: 8120_CR15 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2008.10.017 – volume: 173 start-page: 598 issue: 2 year: 2011 ident: 8120_CR22 publication-title: Chem Eng J doi: 10.1016/j.cej.2011.08.009 – volume: 126 start-page: 190 year: 2018 ident: 8120_CR34 publication-title: Chem Eng Process doi: 10.1016/j.cep.2018.02.025 |
SSID | ssj0009901 |
Score | 2.4415846 |
Snippet | This paper investigates forced convection of heat and mass from the catalytic surface of a cylinder featuring non-uniform transpiration and impinging flows in... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 659 |
SubjectTerms | Analytical Chemistry Chemistry Chemistry and Materials Science Inorganic Chemistry Measurement Science and Instrumentation Physical Chemistry Polymer Sciences |
Subtitle | A non-equilibrium thermodynamics approach |
Title | Analysis of transport from cylindrical surfaces subject to catalytic reactions and non-uniform impinging flows in porous media |
URI | https://link.springer.com/article/10.1007/s10973-019-08120-z |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DnoRn_hmDt400CRtuj2ui6soenJBTyXJJiDormy7iB787c5kW0URQShtKGlSJgkzk8n3DWNHXmS-0E7zodYJTzsycIOagNsit4WXic9i9Pz6Rl8M0su77K6hySEszI_4PUHcipxO_BQclRe6Om_zbDETKqc0DT3d-yLYLZKZc4UjTyTnDUDm9za-K6HvEdCoWPqrbKWxCKE7G8I1NudH62yp1yZi22DvLXEIjAPULRk5EDAE3CuaicNI8wHVdBLogBUWLO2uQD2GuDvzii0DGocRwlCBGQ0BnX4-HREq6wkenggzhReEx_FLBQ8jwA7G0woirGSTDfpnt70L3qRN4E4WouboABmHjo-zFvVSIr3AQmqUSl3oaN3JlXE5Ka-OUsEkXgobvMkTSo1gHL7dYgv4F36bQWYzZQrpjZEhVYYWu9cqCcI7mwoRdpho5Vi6hlOcUls8ll9syCT7EmVfRtmXbzvs-POb5xmjxp-1T9rhKZvVVf1Rffd_1ffYsqRpEQ_n7bOFejL1B2hk1PaQLXb7p6c39Dy_vzo7jLMN7wPZ_QAXAM3s |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA6tPdhL6ZPa5xx6awO72fdRpMW26knB25LEBARdi7tS9NDf3kncrRWKUNhDWLKvyWRnJpnvG0IelBuoJJQhHYWhQ_2YacrRElCRRCJRzFGB3T3v9sL2wH8bBsMSFJZX2e7VlqT9U_8CuyWRyf1JKJoxDHpW--QAnYHY6PKANTdUu4mzDrNQBwzdeQmV-fse2-Zoey_UmpiXY3JU-obQXA_mCdlT2Smpt6qSbGfkq6IQgZmGoqIlBwMRAbnEjxpZwg_IF3NtUq2wIcw6CxQzsOs0S7wzoJtowQw58GwEGP7TRWbwWVMYTw16Cg_Qk9lnDuMM8AGzRQ4WYHJOBi_P_VablgUUqGSJW1AMhbjEEEgKgRbKYcrFhs89z5c6DsM48riMjBmLPU9zRzFXaMUjxxRJ4BLPXpAavoW6JBCIwOMJU5wz7XvcTHsVeo52lRS-6-oGcSs5prJkFzdFLibphhfZyD5F2adW9umqQR5_rvlYc2vs7P1UDU9azrN8R_er_3W_J_V2v9tJO6-992tyyIyK2JS9G1Ir5gt1i65HIe6spn0DjuXRCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QL2IT3w7B28atukj3R5ldVlfiwcFbyXJJiCsrdgW2T34251kW90FWRB6CCVN28m0k8nM9w0hZ5pFOuGK0wHnHg3bvqECLQGVSSwT7Xs6ctHzhz7vPYe3L9HLFIrfZbs3IckJpsGyNGVl631gWlPAtyS2eUAJRZOGDtB4kSyjp8Ks-9XhnV_a3cSbuFyoD5b6vIbN_D3GrGmajYs6c9PdIOv1OhEuJxO7SRZ0tkVWO015tm3y1dCJQG6gbCjKwcJFQI3wBQeO_AOK6sPYtCtsSLvnAmUObs9mhCMDLhkdsKEAkQ0gyzNaZRar9QavbxZJhQeYYf5ZwGsGeIO8KsCBTXbIc_f6qdOjdTEFqvyElRTdIqHQHVJSorXyfM2wEYogCJVpc96OA6Fia9LaQWCEp30mjRaxZwsmCIVnd8kSPoXeIxDJKBCJr4XwTRgI-wvQPPAM00qGjJl9who5pqpmGrcFL4bpL0eylX2Ksk-d7NPxPjn_ueZ9wrMxt_dFMz1p_c0Vc7of_K_7KVl5vOqm9zf9u0Oy5lsNcdl7R2Sp_Kj0Ma5CSnniFO0blXnVMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+transport+from+cylindrical+surfaces+subject+to+catalytic+reactions+and+non-uniform+impinging+flows+in+porous+media&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Alizadeh%2C+Rasool&rft.au=Karimi%2C+Nader&rft.au=Mehdizadeh%2C+Amirfarhang&rft.au=Nourbakhsh%2C+Amireh&rft.date=2019-10-01&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=138&rft.issue=1&rft.spage=659&rft.epage=678&rft_id=info:doi/10.1007%2Fs10973-019-08120-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10973_019_08120_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |