Data-Driven Incipient Fault Detection and Diagnosis for the Running Gear in High-Speed Trains

Incipient fault detection and diagnosis (FDD) is an important measure to improve the efficient, safe and stable operation of high-speed trains. This paper proposes a data-driven FDD method, namely deep slow feature analysis and belief rule base method (DSFA-BRB), for the running gears of high-speed...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 69; no. 9; pp. 9566 - 9576
Main Authors Cheng, Chao, Qiao, Xinyu, Luo, Hao, Wang, Guijiu, Teng, Wanxiu, Zhang, Bangcheng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incipient fault detection and diagnosis (FDD) is an important measure to improve the efficient, safe and stable operation of high-speed trains. This paper proposes a data-driven FDD method, namely deep slow feature analysis and belief rule base method (DSFA-BRB), for the running gears of high-speed trains. The method uses two kinds of statistics to perform fault detection on the multi-dimensional data of the running gears. In addition, the characteristics of more accurate data are extracted, which greatly reduces the complexity of constructing a diagnostic and quantitative model. Further, by constructing a BRB model combining expert knowledge and data, it is possible to avoid misjudgment caused by data incompleteness. Compared with the traditional methods, the DSFA-BRB algorithm has better performance in reducing fault alarm probability. Finally, the validity of the algorithm is verified by the actual running gears system.
AbstractList Incipient fault detection and diagnosis (FDD) is an important measure to improve the efficient, safe and stable operation of high-speed trains. This paper proposes a data-driven FDD method, namely deep slow feature analysis and belief rule base method (DSFA-BRB), for the running gears of high-speed trains. The method uses two kinds of statistics to perform fault detection on the multi-dimensional data of the running gears. In addition, the characteristics of more accurate data are extracted, which greatly reduces the complexity of constructing a diagnostic and quantitative model. Further, by constructing a BRB model combining expert knowledge and data, it is possible to avoid misjudgment caused by data incompleteness. Compared with the traditional methods, the DSFA-BRB algorithm has better performance in reducing fault alarm probability. Finally, the validity of the algorithm is verified by the actual running gears system.
Author Wang, Guijiu
Teng, Wanxiu
Zhang, Bangcheng
Cheng, Chao
Luo, Hao
Qiao, Xinyu
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0001-5858-5193
  surname: Cheng
  fullname: Cheng, Chao
  email: chengchao@mail.tsinghua.edu.cn
  organization: School of Computer Science and Engineering, Changchun University of Technology, Changchun, China
– sequence: 2
  givenname: Xinyu
  surname: Qiao
  fullname: Qiao, Xinyu
  email: qiaoxinyu2018@126.com
  organization: School of Computer Science and Engineering, Changchun University of Technology, Changchun, China
– sequence: 3
  givenname: Hao
  orcidid: 0000-0003-2143-2438
  surname: Luo
  fullname: Luo, Hao
  email: hao.luo@hit.edu.cn
  organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Guijiu
  surname: Wang
  fullname: Wang, Guijiu
  email: wangguijiu@cccar.com.cn
  organization: National Engineering Laboratory, CRRC Changchun Railway Vehicles Co., Ltd., Changchun, China
– sequence: 5
  givenname: Wanxiu
  surname: Teng
  fullname: Teng, Wanxiu
  email: tengwanxiu@cccar.com.cn
  organization: National Engineering Laboratory, CRRC Changchun Railway Vehicles Co., Ltd., Changchun, China
– sequence: 6
  givenname: Bangcheng
  orcidid: 0000-0001-9490-0170
  surname: Zhang
  fullname: Zhang, Bangcheng
  email: zhangbangcheng@ccut.edu.cn
  organization: School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
BookMark eNo9kF1LwzAUhoNMcJveC94EvO7MadI2uZTVfcBA0OKdlKw93TJmWpNU8N_bseHV4T087znwTMjIthYJuQc2A2DqqfgoZjGL2YwzFss0uSJjUFxFiidqRMaMgYxUIpIbMvH-MEQhFIzJZ66DjnJnftDSta1MZ9AGutD9MdAcA1bBtJZqW9Pc6J1tvfG0aR0Ne6RvvbXG7ugStaPG0pXZ7aP3DrGmhdPG-lty3eijx7vLnJJi8VLMV9HmdbmeP2-iKlYQIkg510zHrEaFMgGBkMgqTYVmTaySbdpsK5DZsALd8LqRopJZJmErlOCAfEoez2c713736EN5aHtnh49lLBIAqaTiA8XOVOVa7x02ZefMl3a_JbDy5LAcHJYnh-XF4VB5OFcMIv7jCkBBxvkfn9VtqA
CODEN ITVTAB
CitedBy_id crossref_primary_10_1007_s12555_021_0276_9
crossref_primary_10_1109_TVT_2022_3179448
crossref_primary_10_1109_TVT_2021_3096732
crossref_primary_10_1142_S2737480721400033
crossref_primary_10_3390_e26050428
crossref_primary_10_1109_ACCESS_2021_3113381
crossref_primary_10_1016_j_isatra_2021_06_023
crossref_primary_10_1016_j_jprocont_2020_11_005
crossref_primary_10_3390_pr10040724
crossref_primary_10_1088_1361_6501_ad147b
crossref_primary_10_3390_s21124138
crossref_primary_10_1007_s12555_022_0241_2
crossref_primary_10_1109_TNNLS_2023_3328399
crossref_primary_10_3233_JIFS_224102
crossref_primary_10_1016_j_seta_2023_103208
crossref_primary_10_1109_TAI_2022_3172896
crossref_primary_10_1007_s12555_023_0059_6
crossref_primary_10_1109_TAI_2022_3177387
crossref_primary_10_1109_TITS_2022_3174265
crossref_primary_10_1016_j_ymssp_2022_109424
crossref_primary_10_3390_s21175957
crossref_primary_10_1109_TIM_2021_3070593
crossref_primary_10_1016_j_aei_2023_102342
crossref_primary_10_1016_j_ymssp_2023_110615
crossref_primary_10_3390_electronics11223741
crossref_primary_10_1016_j_ymssp_2023_110493
crossref_primary_10_1038_s41598_024_52829_3
crossref_primary_10_3233_JIFS_219064
Cites_doi 10.1109/TIE.2009.2038337
10.1109/TVT.2019.2894670
10.1109/TIA.2017.2660465
10.1109/TITS.2018.2865410
10.1109/TIM.2019.2903699
10.1109/TFUZZ.2018.2878196
10.1080/00423114.2018.1473615
10.1109/TVT.2019.2925903
10.1109/ACCESS.2018.2886289
10.1016/j.ifacol.2018.09.331
10.1109/TIE.2017.2733501
10.1109/TIE.2018.2811358
10.1016/j.conengprac.2017.03.001
10.1109/TIE.2018.2863191
10.1109/TVT.2019.2957962
10.1109/TITS.2019.2897583
10.1162/089976602317318938
10.1109/TVT.2017.2702859
10.1109/TVT.2018.2818538
10.1109/TIE.2017.2767547
10.1109/JSEN.2010.2093879
10.1002/aic.14888
10.1109/TCST.2017.2718979
10.1016/j.jprocont.2018.01.002
10.1109/TCST.2017.2735360
10.1109/TVT.2019.2904698
10.1109/TVT.2011.2172822
10.1109/TII.2017.2774242
10.1016/j.measurement.2018.04.059
10.1109/TIE.2011.2106094
10.1109/TITS.2017.2666428
10.1109/TII.2019.2895132
10.1109/TVT.2019.2955221
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2020.3002865
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 9576
ExternalDocumentID 10_1109_TVT_2020_3002865
9119173
Genre orig-research
GrantInformation_xml – fundername: Jilin Province Development and Reform Commission
  grantid: 2019C040-3
  funderid: 10.13039/100015800
– fundername: National Natural Science Foundation of China
  grantid: 61903047; 61973046
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
XFK
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-1633a0a20de9e8514e158c664a0f295b6fbc1878c61af3df84c87781b49431e3
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Thu Oct 10 17:28:17 EDT 2024
Fri Aug 23 01:00:58 EDT 2024
Wed Jun 26 19:26:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1633a0a20de9e8514e158c664a0f295b6fbc1878c61af3df84c87781b49431e3
ORCID 0000-0001-9490-0170
0000-0003-2143-2438
0000-0001-5858-5193
PQID 2451189893
PQPubID 85454
PageCount 11
ParticipantIDs proquest_journals_2451189893
crossref_primary_10_1109_TVT_2020_3002865
ieee_primary_9119173
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref27
  doi: 10.1109/TIE.2009.2038337
– ident: ref12
  doi: 10.1109/TVT.2019.2894670
– ident: ref28
  doi: 10.1109/TIA.2017.2660465
– ident: ref14
  doi: 10.1109/TITS.2018.2865410
– ident: ref19
  doi: 10.1109/TIM.2019.2903699
– ident: ref17
  doi: 10.1109/TFUZZ.2018.2878196
– ident: ref9
  doi: 10.1080/00423114.2018.1473615
– ident: ref25
  doi: 10.1109/TVT.2019.2925903
– ident: ref18
  doi: 10.1109/ACCESS.2018.2886289
– ident: ref31
  doi: 10.1016/j.ifacol.2018.09.331
– ident: ref7
  doi: 10.1109/TIE.2017.2733501
– ident: ref32
  doi: 10.1109/TIE.2018.2811358
– ident: ref13
  doi: 10.1016/j.conengprac.2017.03.001
– ident: ref6
  doi: 10.1109/TIE.2018.2863191
– ident: ref20
  doi: 10.1109/TVT.2019.2957962
– ident: ref1
  doi: 10.1109/TITS.2019.2897583
– ident: ref33
  doi: 10.1162/089976602317318938
– ident: ref16
  doi: 10.1109/TVT.2017.2702859
– ident: ref5
  doi: 10.1109/TVT.2018.2818538
– ident: ref11
  doi: 10.1109/TIE.2017.2767547
– ident: ref29
  doi: 10.1109/JSEN.2010.2093879
– ident: ref30
  doi: 10.1002/aic.14888
– ident: ref8
  doi: 10.1109/TCST.2017.2718979
– ident: ref15
  doi: 10.1016/j.jprocont.2018.01.002
– ident: ref3
  doi: 10.1109/TCST.2017.2735360
– ident: ref10
  doi: 10.1109/TVT.2019.2904698
– ident: ref2
  doi: 10.1109/TVT.2011.2172822
– ident: ref4
  doi: 10.1109/TII.2017.2774242
– ident: ref23
  doi: 10.1016/j.measurement.2018.04.059
– ident: ref22
  doi: 10.1109/TIE.2011.2106094
– ident: ref24
  doi: 10.1109/TITS.2017.2666428
– ident: ref21
  doi: 10.1109/TII.2019.2895132
– ident: ref26
  doi: 10.1109/TVT.2019.2955221
SSID ssj0014491
Score 2.5221086
Snippet Incipient fault detection and diagnosis (FDD) is an important measure to improve the efficient, safe and stable operation of high-speed trains. This paper...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 9566
SubjectTerms Algorithms
belief rule base
Circuit faults
Data-driven fault detection and diagnosis
deep slow feature analysis
Diagnostic systems
Fault detection
Fault diagnosis
Feature extraction
Gears
High speed rail
incipient fault
Interference
Multidimensional data
Predictive models
Principal component analysis
Railroad transportation
Running gear
the running gears
Title Data-Driven Incipient Fault Detection and Diagnosis for the Running Gear in High-Speed Trains
URI https://ieeexplore.ieee.org/document/9119173
https://www.proquest.com/docview/2451189893
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKohCQR5YkEhJHOfhEVFKQYIBAuqCIse5ShUooDZZ-PWcnbSqgIEtiezIuvP5vrPP3wGcKnRzjJV0OI_REQG6jvKDiF4zbujHeKAt2-dDOHoWd-Ng3ILz5V0YRLTJZ9g3j_YsP__Qldkqu5CGjSzy12AtkrK-q7U8MRCiqY7nkQETLFgcSbryInlJKBDkFJ-aCMO4kRUXZGuq_FqIrXcZbsH9Ylx1Uslbvyqzvv76Qdn434Fvw2YDM9llPS92oIXFLmyskA924HWgSuUMZma5Y7dmx91cjWRDVb2XbIClzdEqmCpyNqjz8aZzRhCXEWRkj5UtdcRuyFDYtGAmXcR5-iRXyBJTdGK-B8nwOrkaOU2xBUdz6ZUO4TJfuYqT6iQSDBPoBbEOQ6HcCZdBFk4y7cURffLUxM8nsdBxFBHoFZIwCPr70C4-CjwAFmVIKMLDkEst4jy3zTzta4I6igK8LpwtxJ9-1pQaqQ1FXJmSqlKjqrRRVRc6RprLdo0gu9Bb6CttbG6eckO1Zqph-od_9zqCdfPvOkOsB-1yVuExQYoyO7Fz6Rt2YMZM
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PbAgkZI4zsMjopTyHCAgFhQ5zlWqQAG1ycKv5-ykFQIGtiSyFevO5_vOPn8HcKjQzTFW0uE8RkcE6DrKDyJ6zbihH-OBtmyfd2H_UVw9B88zcDy9C4OINvkMO-bRnuXn77oyW2Un0rCRRf4szBGujsP6ttb0zECIpj6eRyZMwGByKOnKk-QpoVCQU4RqYgzjSL45IVtV5ddSbP1LbxluJyOr00peO1WZdfTnD9LG_w59BZYaoMlO65mxCjNYrMHiN_rBdXjpqlI53ZFZ8Nil2XM3lyNZT1VvJetiabO0CqaKnHXrjLzhmBHIZQQa2X1lix2xCzIVNiyYSRhxHj7IGbLElJ0Yb0DSO0_O-k5TbsHRXHqlQ8jMV67ipDyJBMQEekGsw1Aod8BlkIWDTHtxRJ88NfDzQSx0HEUEe4UkFIL-JrSK9wK3gEUZEo7wMORSizjPbTNP-5rAjqIQrw1HE_GnHzWpRmqDEVempKrUqCptVNWGdSPNabtGkG3YnegrbaxunHJDtmbqYfrbf_c6gPl-cnuT3lzeXe_AgvlPnS-2C61yVOEeAYwy27fz6gsCHsmX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Incipient+Fault+Detection+and+Diagnosis+for+the+Running+Gear+in+High-Speed+Trains&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Cheng%2C+Chao&rft.au=Qiao%2C+Xinyu&rft.au=Luo%2C+Hao&rft.au=Wang%2C+Guijiu&rft.date=2020-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=69&rft.issue=9&rft.spage=9566&rft_id=info:doi/10.1109%2FTVT.2020.3002865&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon