Data-Driven Incipient Fault Detection and Diagnosis for the Running Gear in High-Speed Trains
Incipient fault detection and diagnosis (FDD) is an important measure to improve the efficient, safe and stable operation of high-speed trains. This paper proposes a data-driven FDD method, namely deep slow feature analysis and belief rule base method (DSFA-BRB), for the running gears of high-speed...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 69; no. 9; pp. 9566 - 9576 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incipient fault detection and diagnosis (FDD) is an important measure to improve the efficient, safe and stable operation of high-speed trains. This paper proposes a data-driven FDD method, namely deep slow feature analysis and belief rule base method (DSFA-BRB), for the running gears of high-speed trains. The method uses two kinds of statistics to perform fault detection on the multi-dimensional data of the running gears. In addition, the characteristics of more accurate data are extracted, which greatly reduces the complexity of constructing a diagnostic and quantitative model. Further, by constructing a BRB model combining expert knowledge and data, it is possible to avoid misjudgment caused by data incompleteness. Compared with the traditional methods, the DSFA-BRB algorithm has better performance in reducing fault alarm probability. Finally, the validity of the algorithm is verified by the actual running gears system. |
---|---|
AbstractList | Incipient fault detection and diagnosis (FDD) is an important measure to improve the efficient, safe and stable operation of high-speed trains. This paper proposes a data-driven FDD method, namely deep slow feature analysis and belief rule base method (DSFA-BRB), for the running gears of high-speed trains. The method uses two kinds of statistics to perform fault detection on the multi-dimensional data of the running gears. In addition, the characteristics of more accurate data are extracted, which greatly reduces the complexity of constructing a diagnostic and quantitative model. Further, by constructing a BRB model combining expert knowledge and data, it is possible to avoid misjudgment caused by data incompleteness. Compared with the traditional methods, the DSFA-BRB algorithm has better performance in reducing fault alarm probability. Finally, the validity of the algorithm is verified by the actual running gears system. |
Author | Wang, Guijiu Teng, Wanxiu Zhang, Bangcheng Cheng, Chao Luo, Hao Qiao, Xinyu |
Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0001-5858-5193 surname: Cheng fullname: Cheng, Chao email: chengchao@mail.tsinghua.edu.cn organization: School of Computer Science and Engineering, Changchun University of Technology, Changchun, China – sequence: 2 givenname: Xinyu surname: Qiao fullname: Qiao, Xinyu email: qiaoxinyu2018@126.com organization: School of Computer Science and Engineering, Changchun University of Technology, Changchun, China – sequence: 3 givenname: Hao orcidid: 0000-0003-2143-2438 surname: Luo fullname: Luo, Hao email: hao.luo@hit.edu.cn organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 4 givenname: Guijiu surname: Wang fullname: Wang, Guijiu email: wangguijiu@cccar.com.cn organization: National Engineering Laboratory, CRRC Changchun Railway Vehicles Co., Ltd., Changchun, China – sequence: 5 givenname: Wanxiu surname: Teng fullname: Teng, Wanxiu email: tengwanxiu@cccar.com.cn organization: National Engineering Laboratory, CRRC Changchun Railway Vehicles Co., Ltd., Changchun, China – sequence: 6 givenname: Bangcheng orcidid: 0000-0001-9490-0170 surname: Zhang fullname: Zhang, Bangcheng email: zhangbangcheng@ccut.edu.cn organization: School of Mechatronic Engineering, Changchun University of Technology, Changchun, China |
BookMark | eNo9kF1LwzAUhoNMcJveC94EvO7MadI2uZTVfcBA0OKdlKw93TJmWpNU8N_bseHV4T087znwTMjIthYJuQc2A2DqqfgoZjGL2YwzFss0uSJjUFxFiidqRMaMgYxUIpIbMvH-MEQhFIzJZ66DjnJnftDSta1MZ9AGutD9MdAcA1bBtJZqW9Pc6J1tvfG0aR0Ne6RvvbXG7ugStaPG0pXZ7aP3DrGmhdPG-lty3eijx7vLnJJi8VLMV9HmdbmeP2-iKlYQIkg510zHrEaFMgGBkMgqTYVmTaySbdpsK5DZsALd8LqRopJZJmErlOCAfEoez2c713736EN5aHtnh49lLBIAqaTiA8XOVOVa7x02ZefMl3a_JbDy5LAcHJYnh-XF4VB5OFcMIv7jCkBBxvkfn9VtqA |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1007_s12555_021_0276_9 crossref_primary_10_1109_TVT_2022_3179448 crossref_primary_10_1109_TVT_2021_3096732 crossref_primary_10_1142_S2737480721400033 crossref_primary_10_3390_e26050428 crossref_primary_10_1109_ACCESS_2021_3113381 crossref_primary_10_1016_j_isatra_2021_06_023 crossref_primary_10_1016_j_jprocont_2020_11_005 crossref_primary_10_3390_pr10040724 crossref_primary_10_1088_1361_6501_ad147b crossref_primary_10_3390_s21124138 crossref_primary_10_1007_s12555_022_0241_2 crossref_primary_10_1109_TNNLS_2023_3328399 crossref_primary_10_3233_JIFS_224102 crossref_primary_10_1016_j_seta_2023_103208 crossref_primary_10_1109_TAI_2022_3172896 crossref_primary_10_1007_s12555_023_0059_6 crossref_primary_10_1109_TAI_2022_3177387 crossref_primary_10_1109_TITS_2022_3174265 crossref_primary_10_1016_j_ymssp_2022_109424 crossref_primary_10_3390_s21175957 crossref_primary_10_1109_TIM_2021_3070593 crossref_primary_10_1016_j_aei_2023_102342 crossref_primary_10_1016_j_ymssp_2023_110615 crossref_primary_10_3390_electronics11223741 crossref_primary_10_1016_j_ymssp_2023_110493 crossref_primary_10_1038_s41598_024_52829_3 crossref_primary_10_3233_JIFS_219064 |
Cites_doi | 10.1109/TIE.2009.2038337 10.1109/TVT.2019.2894670 10.1109/TIA.2017.2660465 10.1109/TITS.2018.2865410 10.1109/TIM.2019.2903699 10.1109/TFUZZ.2018.2878196 10.1080/00423114.2018.1473615 10.1109/TVT.2019.2925903 10.1109/ACCESS.2018.2886289 10.1016/j.ifacol.2018.09.331 10.1109/TIE.2017.2733501 10.1109/TIE.2018.2811358 10.1016/j.conengprac.2017.03.001 10.1109/TIE.2018.2863191 10.1109/TVT.2019.2957962 10.1109/TITS.2019.2897583 10.1162/089976602317318938 10.1109/TVT.2017.2702859 10.1109/TVT.2018.2818538 10.1109/TIE.2017.2767547 10.1109/JSEN.2010.2093879 10.1002/aic.14888 10.1109/TCST.2017.2718979 10.1016/j.jprocont.2018.01.002 10.1109/TCST.2017.2735360 10.1109/TVT.2019.2904698 10.1109/TVT.2011.2172822 10.1109/TII.2017.2774242 10.1016/j.measurement.2018.04.059 10.1109/TIE.2011.2106094 10.1109/TITS.2017.2666428 10.1109/TII.2019.2895132 10.1109/TVT.2019.2955221 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2020.3002865 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 9576 |
ExternalDocumentID | 10_1109_TVT_2020_3002865 9119173 |
Genre | orig-research |
GrantInformation_xml | – fundername: Jilin Province Development and Reform Commission grantid: 2019C040-3 funderid: 10.13039/100015800 – fundername: National Natural Science Foundation of China grantid: 61903047; 61973046 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 VH1 XFK AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-1633a0a20de9e8514e158c664a0f295b6fbc1878c61af3df84c87781b49431e3 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Thu Oct 10 17:28:17 EDT 2024 Fri Aug 23 01:00:58 EDT 2024 Wed Jun 26 19:26:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-1633a0a20de9e8514e158c664a0f295b6fbc1878c61af3df84c87781b49431e3 |
ORCID | 0000-0001-9490-0170 0000-0003-2143-2438 0000-0001-5858-5193 |
PQID | 2451189893 |
PQPubID | 85454 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2451189893 crossref_primary_10_1109_TVT_2020_3002865 ieee_primary_9119173 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref27 doi: 10.1109/TIE.2009.2038337 – ident: ref12 doi: 10.1109/TVT.2019.2894670 – ident: ref28 doi: 10.1109/TIA.2017.2660465 – ident: ref14 doi: 10.1109/TITS.2018.2865410 – ident: ref19 doi: 10.1109/TIM.2019.2903699 – ident: ref17 doi: 10.1109/TFUZZ.2018.2878196 – ident: ref9 doi: 10.1080/00423114.2018.1473615 – ident: ref25 doi: 10.1109/TVT.2019.2925903 – ident: ref18 doi: 10.1109/ACCESS.2018.2886289 – ident: ref31 doi: 10.1016/j.ifacol.2018.09.331 – ident: ref7 doi: 10.1109/TIE.2017.2733501 – ident: ref32 doi: 10.1109/TIE.2018.2811358 – ident: ref13 doi: 10.1016/j.conengprac.2017.03.001 – ident: ref6 doi: 10.1109/TIE.2018.2863191 – ident: ref20 doi: 10.1109/TVT.2019.2957962 – ident: ref1 doi: 10.1109/TITS.2019.2897583 – ident: ref33 doi: 10.1162/089976602317318938 – ident: ref16 doi: 10.1109/TVT.2017.2702859 – ident: ref5 doi: 10.1109/TVT.2018.2818538 – ident: ref11 doi: 10.1109/TIE.2017.2767547 – ident: ref29 doi: 10.1109/JSEN.2010.2093879 – ident: ref30 doi: 10.1002/aic.14888 – ident: ref8 doi: 10.1109/TCST.2017.2718979 – ident: ref15 doi: 10.1016/j.jprocont.2018.01.002 – ident: ref3 doi: 10.1109/TCST.2017.2735360 – ident: ref10 doi: 10.1109/TVT.2019.2904698 – ident: ref2 doi: 10.1109/TVT.2011.2172822 – ident: ref4 doi: 10.1109/TII.2017.2774242 – ident: ref23 doi: 10.1016/j.measurement.2018.04.059 – ident: ref22 doi: 10.1109/TIE.2011.2106094 – ident: ref24 doi: 10.1109/TITS.2017.2666428 – ident: ref21 doi: 10.1109/TII.2019.2895132 – ident: ref26 doi: 10.1109/TVT.2019.2955221 |
SSID | ssj0014491 |
Score | 2.5221086 |
Snippet | Incipient fault detection and diagnosis (FDD) is an important measure to improve the efficient, safe and stable operation of high-speed trains. This paper... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 9566 |
SubjectTerms | Algorithms belief rule base Circuit faults Data-driven fault detection and diagnosis deep slow feature analysis Diagnostic systems Fault detection Fault diagnosis Feature extraction Gears High speed rail incipient fault Interference Multidimensional data Predictive models Principal component analysis Railroad transportation Running gear the running gears |
Title | Data-Driven Incipient Fault Detection and Diagnosis for the Running Gear in High-Speed Trains |
URI | https://ieeexplore.ieee.org/document/9119173 https://www.proquest.com/docview/2451189893 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKohCQR5YkEhJHOfhEVFKQYIBAuqCIse5ShUooDZZ-PWcnbSqgIEtiezIuvP5vrPP3wGcKnRzjJV0OI_REQG6jvKDiF4zbujHeKAt2-dDOHoWd-Ng3ILz5V0YRLTJZ9g3j_YsP__Qldkqu5CGjSzy12AtkrK-q7U8MRCiqY7nkQETLFgcSbryInlJKBDkFJ-aCMO4kRUXZGuq_FqIrXcZbsH9Ylx1Uslbvyqzvv76Qdn434Fvw2YDM9llPS92oIXFLmyskA924HWgSuUMZma5Y7dmx91cjWRDVb2XbIClzdEqmCpyNqjz8aZzRhCXEWRkj5UtdcRuyFDYtGAmXcR5-iRXyBJTdGK-B8nwOrkaOU2xBUdz6ZUO4TJfuYqT6iQSDBPoBbEOQ6HcCZdBFk4y7cURffLUxM8nsdBxFBHoFZIwCPr70C4-CjwAFmVIKMLDkEst4jy3zTzta4I6igK8LpwtxJ9-1pQaqQ1FXJmSqlKjqrRRVRc6RprLdo0gu9Bb6CttbG6eckO1Zqph-od_9zqCdfPvOkOsB-1yVuExQYoyO7Fz6Rt2YMZM |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PbAgkZI4zsMjopTyHCAgFhQ5zlWqQAG1ycKv5-ykFQIGtiSyFevO5_vOPn8HcKjQzTFW0uE8RkcE6DrKDyJ6zbihH-OBtmyfd2H_UVw9B88zcDy9C4OINvkMO-bRnuXn77oyW2Un0rCRRf4szBGujsP6ttb0zECIpj6eRyZMwGByKOnKk-QpoVCQU4RqYgzjSL45IVtV5ddSbP1LbxluJyOr00peO1WZdfTnD9LG_w59BZYaoMlO65mxCjNYrMHiN_rBdXjpqlI53ZFZ8Nil2XM3lyNZT1VvJetiabO0CqaKnHXrjLzhmBHIZQQa2X1lix2xCzIVNiyYSRhxHj7IGbLElJ0Yb0DSO0_O-k5TbsHRXHqlQ8jMV67ipDyJBMQEekGsw1Aod8BlkIWDTHtxRJ88NfDzQSx0HEUEe4UkFIL-JrSK9wK3gEUZEo7wMORSizjPbTNP-5rAjqIQrw1HE_GnHzWpRmqDEVempKrUqCptVNWGdSPNabtGkG3YnegrbaxunHJDtmbqYfrbf_c6gPl-cnuT3lzeXe_AgvlPnS-2C61yVOEeAYwy27fz6gsCHsmX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Incipient+Fault+Detection+and+Diagnosis+for+the+Running+Gear+in+High-Speed+Trains&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Cheng%2C+Chao&rft.au=Qiao%2C+Xinyu&rft.au=Luo%2C+Hao&rft.au=Wang%2C+Guijiu&rft.date=2020-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=69&rft.issue=9&rft.spage=9566&rft_id=info:doi/10.1109%2FTVT.2020.3002865&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |