Modification and optimization of the storage ring lattice of the High Energy Photon Source

Purpose For the High Energy Photon Source (HEPS), a green-field fourth-generation storage ring light source, the preliminary design report (PDR) was completed in 2018, when the accelerator physics design had been basically finished. During the subsequent hardware and engineering design of the HEPS s...

Full description

Saved in:
Bibliographic Details
Published inRadiation detection technology and methods Vol. 4; no. 4; pp. 415 - 424
Main Authors Jiao, Yi, Chen, Fusan, He, Ping, Li, Chunhua, Li, Jingyi, Qin, Qing, Qu, Huamin, Wan, Jinyu, Wang, Jiuqing, Xu, Gang
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.12.2020
Subjects
Online AccessGet full text
ISSN2509-9930
2509-9949
DOI10.1007/s41605-020-00189-7

Cover

Loading…
Abstract Purpose For the High Energy Photon Source (HEPS), a green-field fourth-generation storage ring light source, the preliminary design report (PDR) was completed in 2018, when the accelerator physics design had been basically finished. During the subsequent hardware and engineering design of the HEPS storage ring based on the PDR design, a few problems and challenges emerged, calling for modifications of the lattice. Method In this paper, we will introduce the background and reasons for the modifications and present the linear optics and simulation results for the nonlinear performance of the modified lattice of the HEPS storage ring. Result and conclusion The modified lattice satisfies the requirements from hardware and engineering design.
AbstractList Purpose For the High Energy Photon Source (HEPS), a green-field fourth-generation storage ring light source, the preliminary design report (PDR) was completed in 2018, when the accelerator physics design had been basically finished. During the subsequent hardware and engineering design of the HEPS storage ring based on the PDR design, a few problems and challenges emerged, calling for modifications of the lattice. Method In this paper, we will introduce the background and reasons for the modifications and present the linear optics and simulation results for the nonlinear performance of the modified lattice of the HEPS storage ring. Result and conclusion The modified lattice satisfies the requirements from hardware and engineering design.
Author Wang, Jiuqing
Li, Jingyi
Qin, Qing
Wan, Jinyu
He, Ping
Qu, Huamin
Jiao, Yi
Xu, Gang
Chen, Fusan
Li, Chunhua
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0001-6318-2583
  surname: Jiao
  fullname: Jiao, Yi
  email: jiaoyi@ihep.ac.cn
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Fusan
  surname: Chen
  fullname: Chen, Fusan
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Ping
  surname: He
  fullname: He, Ping
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Chunhua
  surname: Li
  fullname: Li, Chunhua
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Jingyi
  surname: Li
  fullname: Li, Jingyi
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 6
  givenname: Qing
  surname: Qin
  fullname: Qin, Qing
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 7
  givenname: Huamin
  surname: Qu
  fullname: Qu, Huamin
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 8
  givenname: Jinyu
  surname: Wan
  fullname: Wan, Jinyu
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 9
  givenname: Jiuqing
  surname: Wang
  fullname: Wang, Jiuqing
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 10
  givenname: Gang
  surname: Xu
  fullname: Xu, Gang
  organization: Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
BookMark eNp9kLFOwzAQhi1UJErpCzD5BQJnO4njEVWFIhWBBCwsluM4qavWrmwzlKcnbYCBodOd7td30v9dopHzziB0TeCGAPDbmJMSigwoZACkEhk_Q2NagMiEyMXob2dwgaYxrgGAcpZXwMfo48k3trVaJesdVq7Bfpfs1n4NB9_itDI4Jh9UZ3CwrsMblZLV5jdb2G6F586Ebo9fVj711Kv_DNpcofNWbaKZ_swJer-fv80W2fL54XF2t8w0FSRlhCgBNW-4FqomhOVGFUBbJQrCuNGlampdK0PanJJKl3mrGw0FaxoqaCm0YBNEh786-BiDaeUu2K0Ke0lAHgTJQZDsBcmjIMl7qPoHaZuOnVNQdnMaZQMadwcfJsh139f1FU9R34F4faM
CitedBy_id crossref_primary_10_1007_s41605_024_00472_x
crossref_primary_10_1088_1361_6501_ac8277
crossref_primary_10_1016_j_nima_2023_168565
crossref_primary_10_1088_1748_0221_18_06_P06014
crossref_primary_10_1088_1748_0221_16_11_P11003
crossref_primary_10_1007_s41605_023_00417_w
crossref_primary_10_1007_s41365_024_01365_w
crossref_primary_10_1007_s41605_023_00384_2
crossref_primary_10_1007_s41605_021_00257_6
crossref_primary_10_1007_s41605_021_00308_y
crossref_primary_10_1016_j_nima_2021_165579
crossref_primary_10_1007_s41605_023_00389_x
crossref_primary_10_1088_1367_2630_ac77ac
crossref_primary_10_1088_1748_0221_18_12_P12003
crossref_primary_10_1007_s41605_024_00518_0
crossref_primary_10_1007_s41605_020_00231_8
crossref_primary_10_1016_j_nima_2022_167635
crossref_primary_10_1007_s41365_021_00974_z
crossref_primary_10_3390_sym15030660
crossref_primary_10_1007_s41365_022_01126_7
crossref_primary_10_1103_PhysRevAccelBeams_25_053501
crossref_primary_10_1088_1361_6501_ad080d
crossref_primary_10_1107_S1600577522011122
crossref_primary_10_1088_1748_0221_19_08_P08013
crossref_primary_10_1103_PhysRevD_109_072001
crossref_primary_10_1007_s41605_023_00398_w
crossref_primary_10_1007_s41605_020_00202_z
crossref_primary_10_1007_s41605_022_00374_w
crossref_primary_10_1063_5_0160208
crossref_primary_10_1007_s41605_020_00209_6
crossref_primary_10_1007_s41605_023_00407_y
crossref_primary_10_1016_j_nima_2022_166816
crossref_primary_10_1107_S160057752301086X
Cites_doi 10.1107/S1600577518012110
10.1103/PhysRevSTAB.18.090702
10.1107/S1600577514015203
10.1103/PhysRevAccelBeams.21.054601
10.1107/S0909049509009479
10.1088/1674-1137/40/7/077002
10.1016/j.nima.2014.10.002
10.1103/PhysRevAccelBeams.22.050704
10.1103/PhysRevSTAB.15.054002
10.1103/PhysRevSTAB.14.054002
10.1107/S1600577514015215
10.1088/1674-1137/41/2/027001
10.1016/j.nima.2019.162683
10.1107/S1600577514011515
10.1016/j.nima.2019.162506
10.1088/1674-1137/37/5/057003
10.1103/PhysRevAccelBeams.22.021601
10.1016/j.nima.2014.04.078
10.1007/s41605-020-00209-6
10.1088/1742-6596/1067/3/032004
10.1103/PhysRevAccelBeams.23.081601
10.1007/s41605-020-00202-z
10.1007/s41605-020-00205-w
10.1088/1742-6596/1067/3/032003
ContentType Journal Article
Copyright Institute of High Energy Physics, Chinese Academy of Sciences 2020
Copyright_xml – notice: Institute of High Energy Physics, Chinese Academy of Sciences 2020
DBID AAYXX
CITATION
DOI 10.1007/s41605-020-00189-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2509-9949
EndPage 424
ExternalDocumentID 10_1007_s41605_020_00189_7
GrantInformation_xml – fundername: Bureau of Frontier Sciences and Education of Chinese Academy of Sciences
  grantid: QYZDJ-SSW-SLH001
– fundername: Youth Innovation Promotion Association of Chinese Academy of Sciences
  grantid: Y201904
– fundername: NSFC
  grantid: 11922512
GroupedDBID -EM
0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYUE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-11a90b7d7c9ab1134ea502fa95137ec6adbcbae1f4218c64fcdc053dd29269c93
ISSN 2509-9930
IngestDate Tue Jul 01 04:01:32 EDT 2025
Thu Apr 24 23:14:05 EDT 2025
Fri Feb 21 02:37:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords High Energy Photon Source
Fourth-generation storage ring light source
Linear optics
Lattice
Nonlinear performance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-11a90b7d7c9ab1134ea502fa95137ec6adbcbae1f4218c64fcdc053dd29269c93
ORCID 0000-0001-6318-2583
PageCount 10
ParticipantIDs crossref_primary_10_1007_s41605_020_00189_7
crossref_citationtrail_10_1007_s41605_020_00189_7
springer_journals_10_1007_s41605_020_00189_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Radiation detection technology and methods
PublicationTitleAbbrev Radiat Detect Technol Methods
PublicationYear 2020
Publisher Springer Singapore
Publisher_xml – name: Springer Singapore
References Nagaoka, Bane (CR1) 2014; 21
Cai, Bane, Hettel (CR13) 2012; 15
Riemann, Streun (CR25) 2019; 22
Streun, Wrulich (CR24) 2015; 770
Hettel (CR3) 2014; 21
CR15
CR14
Jiao (CR17) 2016; 40
CR33
CR10
CR32
CR31
Wan, Chu, Jiao, Li (CR21) 2019
Walker (CR30) 2019; 22
Jiao, Cai, Chao (CR22) 2011; 14
Li, Cheng, Yu, Rainer (CR20) 2018; 21
Tanaka, Kitamura (CR28) 2009; 16
Yang, Bai, Zhang, Xu, Wang (CR18) 2019
CR2
Borland, Decker, Emery (CR11) 2014; 21
Jiao, Xu (CR19) 2017; 41
CR4
CR6
Huang, Safranek (CR12) 2014; 757
CR8
CR7
CR9
CR27
Jiao, Xu, Cui, Duan, Guo, He, Ji, Li, Li, Meng, Peng, Tian, Wang, Wang, Wei, Xu, Yan, Yu, Zhao, Qin (CR5) 2018; 25
CR26
CR23
Xu, Jiao (CR16) 2013; 37
Lindberg, Kim (CR29) 2015; 18
T Tanaka (189_CR28) 2009; 16
P Yang (189_CR18) 2019
R Hettel (189_CR3) 2014; 21
Y Li (189_CR20) 2018; 21
RR Lindberg (189_CR29) 2015; 18
189_CR23
A Streun (189_CR24) 2015; 770
Y Jiao (189_CR22) 2011; 14
RP Walker (189_CR30) 2019; 22
189_CR15
M Borland (189_CR11) 2014; 21
Y Jiao (189_CR19) 2017; 41
J Wan (189_CR21) 2019
189_CR2
G Xu (189_CR16) 2013; 37
189_CR4
Y Jiao (189_CR5) 2018; 25
189_CR33
189_CR6
189_CR14
189_CR7
R Nagaoka (189_CR1) 2014; 21
189_CR8
189_CR9
189_CR10
189_CR32
189_CR31
B Riemann (189_CR25) 2019; 22
Y Cai (189_CR13) 2012; 15
189_CR27
189_CR26
X Huang (189_CR12) 2014; 757
Y Jiao (189_CR17) 2016; 40
References_xml – volume: 25
  start-page: 1611
  year: 2018
  end-page: 1618
  ident: CR5
  article-title: The HEPS project
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577518012110
– volume: 18
  start-page: 090702
  year: 2015
  ident: CR29
  article-title: Compact representations of partially coherent undulator radiation suitable for wave propagation
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.18.090702
– ident: CR4
– ident: CR14
– ident: CR2
– volume: 21
  start-page: 912
  year: 2014
  end-page: 936
  ident: CR11
  article-title: Lattice design challenges for fourth-generation storage-ring light sources
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577514015203
– ident: CR10
– volume: 21
  start-page: 054601
  year: 2018
  ident: CR20
  article-title: Genetic algorithm enhanced by machine learning in dynamic aperture optimization
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.21.054601
– ident: CR33
– ident: CR6
– ident: CR8
– volume: 16
  start-page: 380
  year: 2009
  end-page: 386
  ident: CR28
  article-title: Universal function for the brilliance of undulator radiation considering the energy spread effect
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049509009479
– volume: 40
  start-page: 077002
  issue: 7
  year: 2016
  ident: CR17
  article-title: Improving nonlinear performance of the HEPS baseline design with a genetic algorithm
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/40/7/077002
– volume: 770
  start-page: 98
  year: 2015
  end-page: 112
  ident: CR24
  article-title: Compact low emittance light soures based on longitudinal gradient bending magnets
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2014.10.002
– ident: CR27
– volume: 22
  start-page: 050704
  year: 2019
  ident: CR30
  article-title: Undulator radiation brightness and coherence near the diffraction limit
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.22.050704
– ident: CR23
– volume: 15
  start-page: 054002
  year: 2012
  ident: CR13
  article-title: Ultimate storage ring based on fourth-order geometric achromats
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.15.054002
– volume: 14
  start-page: 054002
  year: 2011
  ident: CR22
  article-title: Modified theoretical minimum emittance lattice for an electron storage ring with extreme-low emittance
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.14.054002
– volume: 21
  start-page: 937
  year: 2014
  end-page: 960
  ident: CR1
  article-title: Collective effects in a diffraction-limited storage ring
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577514015215
– volume: 41
  start-page: 027001
  issue: 2
  year: 2017
  ident: CR19
  article-title: Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/41/2/027001
– ident: CR15
– year: 2019
  ident: CR21
  article-title: Improvement of machine learning enhanced genetic algorithm for nonlinear beam dynamics optimization
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/j.nima.2019.162683
– volume: 21
  start-page: 843
  issue: 5
  year: 2014
  end-page: 855
  ident: CR3
  article-title: DLSR design and plans: an international overview
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577514011515
– ident: CR31
– year: 2019
  ident: CR18
  article-title: Design of a hybrid ten-bend-achromat lattice for a diffraction-limited storage ring light source
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2019.162506
– ident: CR9
– volume: 37
  start-page: 057003
  issue: 5
  year: 2013
  ident: CR16
  article-title: Towards the ultimate storage ring: the lattice design for Beijing Advanced Photon Source
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/37/5/057003
– ident: CR32
– volume: 22
  start-page: 021601
  year: 2019
  ident: CR25
  article-title: Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.22.021601
– volume: 757
  start-page: 48
  year: 2014
  ident: CR12
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2014.04.078
– ident: CR7
– ident: CR26
– ident: 189_CR9
  doi: 10.1007/s41605-020-00209-6
– volume: 21
  start-page: 912
  year: 2014
  ident: 189_CR11
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577514015203
– ident: 189_CR23
  doi: 10.1088/1742-6596/1067/3/032004
– volume: 15
  start-page: 054002
  year: 2012
  ident: 189_CR13
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.15.054002
– volume: 14
  start-page: 054002
  year: 2011
  ident: 189_CR22
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.14.054002
– volume: 16
  start-page: 380
  year: 2009
  ident: 189_CR28
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049509009479
– year: 2019
  ident: 189_CR18
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2019.162506
– ident: 189_CR32
– ident: 189_CR33
  doi: 10.1103/PhysRevAccelBeams.23.081601
– year: 2019
  ident: 189_CR21
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/j.nima.2019.162683
– volume: 757
  start-page: 48
  year: 2014
  ident: 189_CR12
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2014.04.078
– volume: 21
  start-page: 054601
  year: 2018
  ident: 189_CR20
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.21.054601
– ident: 189_CR27
– volume: 25
  start-page: 1611
  year: 2018
  ident: 189_CR5
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577518012110
– volume: 41
  start-page: 027001
  issue: 2
  year: 2017
  ident: 189_CR19
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/41/2/027001
– ident: 189_CR8
  doi: 10.1007/s41605-020-00202-z
– volume: 770
  start-page: 98
  year: 2015
  ident: 189_CR24
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2014.10.002
– volume: 37
  start-page: 057003
  issue: 5
  year: 2013
  ident: 189_CR16
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/37/5/057003
– volume: 18
  start-page: 090702
  year: 2015
  ident: 189_CR29
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.18.090702
– ident: 189_CR14
– volume: 22
  start-page: 050704
  year: 2019
  ident: 189_CR30
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.22.050704
– ident: 189_CR7
  doi: 10.1007/s41605-020-00205-w
– ident: 189_CR6
– volume: 21
  start-page: 937
  year: 2014
  ident: 189_CR1
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577514015215
– ident: 189_CR2
– volume: 40
  start-page: 077002
  issue: 7
  year: 2016
  ident: 189_CR17
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/40/7/077002
– volume: 22
  start-page: 021601
  year: 2019
  ident: 189_CR25
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.22.021601
– ident: 189_CR31
– volume: 21
  start-page: 843
  issue: 5
  year: 2014
  ident: 189_CR3
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577514011515
– ident: 189_CR4
– ident: 189_CR15
  doi: 10.1088/1742-6596/1067/3/032003
– ident: 189_CR10
– ident: 189_CR26
SSID ssj0002734807
ssib052855707
Score 2.3274398
Snippet Purpose For the High Energy Photon Source (HEPS), a green-field fourth-generation storage ring light source, the preliminary design report (PDR) was completed...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 415
SubjectTerms Beam Physics
Hadrons
Heavy Ions
Nuclear Energy
Nuclear Physics
Original Paper
Particle Acceleration and Detection
Physics
Physics and Astronomy
Title Modification and optimization of the storage ring lattice of the High Energy Photon Source
URI https://link.springer.com/article/10.1007/s41605-020-00189-7
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyRepvElNjbkB95KUOw4dfO4TasqJCbENmnwEvkrWqWtQTR94c_gL-b8lXgMJsZLWjmXpM39fD6ff3dG6K0pSp5L8NxobmYZK5XJpJI6EyWHK2DMENqxLU6niwv24bK8HI1-JqylTSffqx9_zCv5H61CG-jVZsk-QLP9TaEBvoN-4QgahuM_6fhjqy3Tx-vQRsBbMAA3IbMyrv5b-qMl5jii3bXoLNstnrMsj8mJT__7dNXaEhtnLpqf-qyfbfkCd0dtOuO3Fu_6iLx7rt-HemAjLoWLwH5ZDuwBb97mKQlo4RPM4uBpaUFLTwHYrK42Ig1I0N_JHTEgOTmze3rDJMIMJg38rSoDj8ivxJi0zRcujTaZJdBjiX1lPvczDNXMp1_fGQU88WMNvqZlJlKbOk9mVcaHMa9nIvZVm51wDcK1E675I7RFYepBx2jrcH50dBqtVElntmwZ7yN5rkCQy8vv_17IznI5mnd-xW0P6Pbyu_NqznfQdpiO4EOPradoZFbP0GNHC1br5-hrijAMmsYpwnDbYEARDgjD9hE4ICyeswjDHmHYIwx7hL1AF_OT8-NFFnbjyBStSJcRIqpccs1VJSQhBTOizGkjwEUvuFFToaGTC0MaBl6jmrJGaQUWXmta0WmlquIlGq_alXmFsFI0l6SpDFE5MwUXBXwYZSgFh59KuotIfEO1CqXq7Y4p1_Xf1bWLJv0133yhlnul38UXX4cOvb5HfO9h4q_Rk6Fj7KNx931jDsB37eSbAKZfONiUAg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+and+optimization+of+the+storage+ring+lattice+of+the+High+Energy+Photon+Source&rft.jtitle=Radiation+detection+technology+and+methods&rft.au=Jiao%2C+Yi&rft.au=Chen%2C+Fusan&rft.au=He%2C+Ping&rft.au=Li%2C+Chunhua&rft.date=2020-12-01&rft.pub=Springer+Singapore&rft.issn=2509-9930&rft.eissn=2509-9949&rft.volume=4&rft.issue=4&rft.spage=415&rft.epage=424&rft_id=info:doi/10.1007%2Fs41605-020-00189-7&rft.externalDocID=10_1007_s41605_020_00189_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2509-9930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2509-9930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2509-9930&client=summon