SarcTrack

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, w...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 124; no. 8; p. 1172
Main Authors Toepfer, Christopher N, Sharma, Arun, Cicconet, Marcelo, Garfinkel, Amanda C, Mücke, Michael, Neyazi, Meraj, Willcox, Jon A L, Agarwal, Radhika, Schmid, Manuel, Rao, Jyoti, Ewoldt, Jourdan, Pourquié, Olivier, Chopra, Anant, Chen, Christopher S, Seidman, Jonathan G, Seidman, Christine E
Format Journal Article
LanguageEnglish
Published United States 12.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues. We aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate. We developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C ( MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment. SarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants.
AbstractList Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues.RATIONALEHuman induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues.We aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate.OBJECTIVEWe aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate.We developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C ( MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment.METHODS AND RESULTSWe developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C ( MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment.SarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants.CONCLUSIONSSarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues. We aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate. We developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C ( MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment. SarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants.
Author Neyazi, Meraj
Seidman, Christine E
Schmid, Manuel
Garfinkel, Amanda C
Chen, Christopher S
Willcox, Jon A L
Agarwal, Radhika
Cicconet, Marcelo
Mücke, Michael
Toepfer, Christopher N
Rao, Jyoti
Chopra, Anant
Seidman, Jonathan G
Pourquié, Olivier
Sharma, Arun
Ewoldt, Jourdan
Author_xml – sequence: 1
  givenname: Christopher N
  surname: Toepfer
  fullname: Toepfer, Christopher N
  organization: Wellcome Centre for Human Genetics (C.N.T.), University of Oxford, United Kingdom
– sequence: 2
  givenname: Arun
  surname: Sharma
  fullname: Sharma, Arun
  organization: From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
– sequence: 3
  givenname: Marcelo
  surname: Cicconet
  fullname: Cicconet, Marcelo
  organization: Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
– sequence: 4
  givenname: Amanda C
  surname: Garfinkel
  fullname: Garfinkel, Amanda C
  organization: From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
– sequence: 5
  givenname: Michael
  surname: Mücke
  fullname: Mücke, Michael
  organization: Charité-Universitätsmedizin, Berlin, Germany (M.M.)
– sequence: 6
  givenname: Meraj
  surname: Neyazi
  fullname: Neyazi, Meraj
  organization: Hannover Medical School, Germany (M.N.)
– sequence: 7
  givenname: Jon A L
  surname: Willcox
  fullname: Willcox, Jon A L
  organization: From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
– sequence: 8
  givenname: Radhika
  surname: Agarwal
  fullname: Agarwal, Radhika
  organization: From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
– sequence: 9
  givenname: Manuel
  surname: Schmid
  fullname: Schmid, Manuel
  organization: Deutsches Herzzentrum München, Technische Universität München, Germany (M.S.)
– sequence: 10
  givenname: Jyoti
  surname: Rao
  fullname: Rao, Jyoti
  organization: Harvard Stem Cell Institute, Boston, MA (J.R., O.P.)
– sequence: 11
  givenname: Jourdan
  surname: Ewoldt
  fullname: Ewoldt, Jourdan
  organization: The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (J.E., A.C., C.S.C.)
– sequence: 12
  givenname: Olivier
  surname: Pourquié
  fullname: Pourquié, Olivier
  organization: Harvard Stem Cell Institute, Boston, MA (J.R., O.P.)
– sequence: 13
  givenname: Anant
  surname: Chopra
  fullname: Chopra, Anant
  organization: The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (J.E., A.C., C.S.C.)
– sequence: 14
  givenname: Christopher S
  surname: Chen
  fullname: Chen, Christopher S
  organization: The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (J.E., A.C., C.S.C.)
– sequence: 15
  givenname: Jonathan G
  surname: Seidman
  fullname: Seidman, Jonathan G
  organization: From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
– sequence: 16
  givenname: Christine E
  surname: Seidman
  fullname: Seidman, Christine E
  organization: Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30700234$$D View this record in MEDLINE/PubMed
BookMark eNpNjktLw0AUhQep2LT6E3TtJnXu3LlJZilFq1BwYV2HedxgNI86Yxb-eytWcHXOgY_DtxCzYRxYiEuQK4ACbnwbfeRkX-1hVysETZJORAakdK6phNm_PheLlN6kBI3KnIk5ylJKhToT2bONfhetfz8Xp43tEl8ccyle7u9264d8-7R5XN9uc68MUE6hAHbKWSN9U2gfCmdQU6OpaigwHdyAXEBvrSoQq0pjGUzDKnBwzkpciuvf330cPyZOn3XfJs9dZwcep1QrKI0uFZgf9OqITq7nUO9j29v4Vf_p4zemdEjw
CitedBy_id crossref_primary_10_1161_CIRCRESAHA_120_317076
crossref_primary_10_1016_j_jacbts_2023_07_013
crossref_primary_10_1085_jgp_202112928
crossref_primary_10_1016_j_xcrm_2020_100052
crossref_primary_10_1161_RES_0000000000000406
crossref_primary_10_2139_ssrn_3900713
crossref_primary_10_1080_17460441_2020_1722637
crossref_primary_10_1016_j_trsl_2022_08_009
crossref_primary_10_3389_fphys_2021_750364
crossref_primary_10_1016_j_yjmcc_2023_04_008
crossref_primary_10_1371_journal_pone_0252346
crossref_primary_10_1038_s41598_022_26889_2
crossref_primary_10_21105_joss_05322
crossref_primary_10_2139_ssrn_3952830
crossref_primary_10_1007_s12265_022_10348_4
crossref_primary_10_3390_hearts1030018
crossref_primary_10_1111_bph_15228
crossref_primary_10_1161_CIRCGEN_119_002823
crossref_primary_10_1126_sciadv_abo7622
crossref_primary_10_1007_s00424_021_02536_z
crossref_primary_10_3389_fcvm_2022_966094
crossref_primary_10_1152_ajpheart_00941_2020
crossref_primary_10_3390_ijms24054724
crossref_primary_10_1016_j_softx_2020_100547
crossref_primary_10_1089_zeb_2023_0015
crossref_primary_10_1002_bit_27582
crossref_primary_10_1371_journal_pone_0300348
crossref_primary_10_1016_j_biopha_2023_116036
crossref_primary_10_1016_j_cophys_2022_100535
crossref_primary_10_1111_febs_16925
crossref_primary_10_1161_CIRCRESAHA_120_316575
crossref_primary_10_3390_cells11081280
crossref_primary_10_1038_s41551_022_00885_3
crossref_primary_10_1016_j_isci_2022_104577
crossref_primary_10_1016_j_yjmcc_2020_03_008
crossref_primary_10_1109_ACCESS_2020_3001191
crossref_primary_10_1016_j_cels_2021_05_001
crossref_primary_10_1016_j_cjca_2023_11_009
crossref_primary_10_3389_fcimb_2023_1098457
crossref_primary_10_1038_s41598_024_52081_9
crossref_primary_10_3389_fcell_2022_986107
crossref_primary_10_1016_j_cmpb_2021_106437
crossref_primary_10_1016_j_yjmcc_2021_09_009
crossref_primary_10_1161_CIRCRESAHA_119_314844
crossref_primary_10_1113_JP279410
crossref_primary_10_1016_j_celrep_2021_109512
crossref_primary_10_1152_ajpheart_00345_2020
crossref_primary_10_1016_j_bbadis_2020_165774
crossref_primary_10_1002_adbi_202000121
crossref_primary_10_1016_j_heliyon_2021_e07671
crossref_primary_10_1016_j_jbc_2022_101867
crossref_primary_10_1242_bio_058568
crossref_primary_10_1016_j_stem_2020_02_011
crossref_primary_10_1161_CIRCRESAHA_120_316966
crossref_primary_10_1371_journal_pcbi_1007676
crossref_primary_10_1021_acsnano_3c06325
crossref_primary_10_3390_biomedicines10030640
crossref_primary_10_1002_cpz1_462
crossref_primary_10_1161_CIRCRESAHA_121_318868
crossref_primary_10_1016_j_snb_2023_134014
crossref_primary_10_1007_s10741_020_10021_5
crossref_primary_10_1063_1_5129347
crossref_primary_10_1063_5_0057434
crossref_primary_10_1172_jci_insight_178131
crossref_primary_10_1161_CIRCRESAHA_119_313569
crossref_primary_10_1002_adhm_201901656
crossref_primary_10_3389_fcvm_2023_1238515
crossref_primary_10_1016_j_bbiosy_2022_100068
crossref_primary_10_1242_bio_060548
crossref_primary_10_1093_cvr_cvac142
crossref_primary_10_1016_j_molmed_2019_06_005
crossref_primary_10_1093_cvr_cvaa124
crossref_primary_10_1016_j_cmpb_2023_107372
crossref_primary_10_1016_j_xcrm_2021_100436
crossref_primary_10_1161_CIRCULATIONAHA_122_059688
crossref_primary_10_1371_journal_pcbi_1009443
crossref_primary_10_1002_ejhf_2414
crossref_primary_10_3389_fcvm_2021_613295
crossref_primary_10_1016_j_phrs_2020_105176
crossref_primary_10_1016_j_stemcr_2023_08_005
crossref_primary_10_1007_s12551_020_00725_1
crossref_primary_10_1161_CIRCULATIONAHA_119_042339
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/circresaha.118.314505
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
ExternalDocumentID 30700234
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: U01 HL098166
– fundername: Wellcome Trust
  grantid: 206466/Z/17/Z
– fundername: NHLBI NIH HHS
  grantid: R01 HL084553
– fundername: Howard Hughes Medical Institute
– fundername: NICHD NIH HHS
  grantid: R01 HD085121
GroupedDBID ---
-~X
.-D
.3C
.Z2
01R
0R~
18M
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABQRW
ABVCZ
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACNWC
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ADBBV
ADGGA
ADHPY
AE3
AE6
AENEX
AFDTB
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJIOK
AJNWD
AJZMW
AKULP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BAWUL
BOYCO
BQLVK
C45
CGR
CS3
CUY
CVF
DIK
DIWNM
DU5
E.X
E3Z
EBS
ECM
EEVPB
EIF
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
NPM
N~7
N~B
O9-
OAG
OAH
OB2
ODA
OK1
OL1
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
RAH
RHF
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
YFH
YOC
ZFV
7X8
ID FETCH-LOGICAL-c2915-5d61eb2ba90cf64cd6b9345f458f5de516115bd3caa263388437d9fe2dedbba03
ISSN 1524-4571
IngestDate Sat Oct 26 04:08:29 EDT 2024
Sat Nov 02 12:31:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords MYK-461
cardiomyocyte contractility
myosin binding protein-C
cell imaging
hypertrophic cardiomyopathy
induced pluripotent stem cells
sarcomeres
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2915-5d61eb2ba90cf64cd6b9345f458f5de516115bd3caa263388437d9fe2dedbba03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1161/circresaha.118.314505
PMID 30700234
PQID 2179472190
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2179472190
pubmed_primary_30700234
PublicationCentury 2000
PublicationDate 2019-04-12
20190412
PublicationDateYYYYMMDD 2019-04-12
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2019
References 30973811 - Circ Res. 2019 Apr 12;124(8):1146-1148
References_xml
SSID ssj0014329
Score 2.6007745
Snippet Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1172
SubjectTerms Algorithms
Benzylamines - antagonists & inhibitors
Benzylamines - pharmacology
Cardiovascular Agents - pharmacology
Carrier Proteins - genetics
Clustered Regularly Interspaced Short Palindromic Repeats
Computer-Aided Design
Fluorescence
Humans
Induced Pluripotent Stem Cells - drug effects
Induced Pluripotent Stem Cells - physiology
Microscopy, Atomic Force - methods
Myocardial Contraction
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - physiology
Myosins - drug effects
Myosins - metabolism
Propranolol - pharmacology
Sarcomeres - physiology
Software
Uracil - analogs & derivatives
Uracil - antagonists & inhibitors
Uracil - pharmacology
Urea - analogs & derivatives
Urea - pharmacology
Verapamil - pharmacology
Title SarcTrack
URI https://www.ncbi.nlm.nih.gov/pubmed/30700234
https://www.proquest.com/docview/2179472190
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQb2I77coeJOtzSbZJsdS1Co-QLfQ25InFLSV2l789U52s9uCFdRLCIFsNnzDl5lMZgahc62pFYmmkRMSDBRhZCQMNFwkjltBsLQ-wPnhMel06V2P9aZ19PLokrGq68-5cSX_QRXGAFcfJfsHZKuPwgD0AV9oAWFof4XxC0gpHDYhr32Zb6A_0qEm10VI5VNd-aZD--5C6N80q8CMOyZPZJ3zxWhSiU27r8FqtmVsj7avw-rZjhw5sGaDq__NX0uEe9dwk4BzpwiOZ8kvphFlRUmUup0zVjJmEfYcRIPP8B_GRSGe78SceGJu3z63QbBanRaM8DrBlDXY9CQqve-PT9l19_4-S6966SJa8jkOfVmEm171ege0vLwAXfV7ITgLlrmcu8jPBkSuSKTraC1YAKetAs4NtGAHm2j5Ibxx2EIrFarbqHt9lbY7UShYEelYYBYxk2CrYiVFQ7uEapMoQShzlHHHjGXwd5gpQ7SUcUII55Q0jXA2NtYoJRtkB9UGgOceOvXTJI2xo8JSrQSXVpKmhJ7mRmGzj87K_WRACN7LIwd2OPnIYk-xYNeLxj7aLTaavReZSzJP8KCk0YNfzD5Eq1MhOUK18Whij0EBG6uTHIovmkMtHA
link.rule.ids 314,780,784,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SarcTrack&rft.jtitle=Circulation+research&rft.au=Toepfer%2C+Christopher+N&rft.au=Sharma%2C+Arun&rft.au=Cicconet%2C+Marcelo&rft.au=Garfinkel%2C+Amanda+C&rft.date=2019-04-12&rft.issn=1524-4571&rft.eissn=1524-4571&rft.volume=124&rft.issue=8&rft.spage=1172&rft_id=info:doi/10.1161%2FCIRCRESAHA.118.314505&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4571&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4571&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4571&client=summon