Reconstructing interpretable features in computational super-resolution microscopy via regularized latent search

Supervised deep learning approaches can artificially increase the resolution of microscopy images by learning a mapping between two image resolutions or modalities. However, such methods often require a large set of hard-to-get low-res/high-res image pairs and produce synthetic images with a moderat...

Full description

Saved in:
Bibliographic Details
Published inBiological imaging (Cambridge, England) Vol. 4; pp. e8 - 20
Main Authors Gheisari, Marzieh, Genovesio, Auguste
Format Journal Article
LanguageEnglish
Published England Cambridge University Press 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Supervised deep learning approaches can artificially increase the resolution of microscopy images by learning a mapping between two image resolutions or modalities. However, such methods often require a large set of hard-to-get low-res/high-res image pairs and produce synthetic images with a moderate increase in resolution. Conversely, recent methods based on generative adversarial network (GAN) latent search offered a drastic increase in resolution without the need of paired images. However, they offer limited reconstruction of the high-resolution (HR) image interpretable features. Here, we propose a robust super-resolution (SR) method based on regularized latent search (RLS) that offers an actionable balance between fidelity to the ground truth (GT) and realism of the recovered image given a distribution prior. The latter allows to split the analysis of a low-resolution (LR) image into a computational SR task performed by deep learning followed by a quantification task performed by a handcrafted algorithm based on interpretable biological features. This two-step process holds potential for various applications such as diagnostics on mobile devices, where the main aim is not to recover the HR details of a specific sample but rather to obtain HR images that preserve explainable and quantifiable differences between conditions.
AbstractList Supervised deep learning approaches can artificially increase the resolution of microscopy images by learning a mapping between two image resolutions or modalities. However, such methods often require a large set of hard-to-get low-res/high-res image pairs and produce synthetic images with a moderate increase in resolution. Conversely, recent methods based on generative adversarial network (GAN) latent search offered a drastic increase in resolution without the need of paired images. However, they offer limited reconstruction of the high-resolution (HR) image interpretable features. Here, we propose a robust super-resolution (SR) method based on regularized latent search (RLS) that offers an actionable balance between fidelity to the ground truth (GT) and realism of the recovered image given a distribution prior. The latter allows to split the analysis of a low-resolution (LR) image into a computational SR task performed by deep learning followed by a quantification task performed by a handcrafted algorithm based on interpretable biological features. This two-step process holds potential for various applications such as diagnostics on mobile devices, where the main aim is not to recover the HR details of a specific sample but rather to obtain HR images that preserve explainable and quantifiable differences between conditions.
Supervised deep learning approaches can artificially increase the resolution of microscopy images by learning a mapping between two image resolutions or modalities. However, such methods often require a large set of hard-to-get low-res/high-res image pairs and produce synthetic images with a moderate increase in resolution. Conversely, recent methods based on generative adversarial network (GAN) latent search offered a drastic increase in resolution without the need of paired images. However, they offer limited reconstruction of the high-resolution (HR) image interpretable features. Here, we propose a robust super-resolution (SR) method based on regularized latent search (RLS) that offers an actionable balance between fidelity to the ground truth (GT) and realism of the recovered image given a distribution prior. The latter allows to split the analysis of a low-resolution (LR) image into a computational SR task performed by deep learning followed by a quantification task performed by a handcrafted algorithm based on interpretable biological features. This two-step process holds potential for various applications such as diagnostics on mobile devices, where the main aim is not to recover the HR details of a specific sample but rather to obtain HR images that preserve explainable and quantifiable differences between conditions.Supervised deep learning approaches can artificially increase the resolution of microscopy images by learning a mapping between two image resolutions or modalities. However, such methods often require a large set of hard-to-get low-res/high-res image pairs and produce synthetic images with a moderate increase in resolution. Conversely, recent methods based on generative adversarial network (GAN) latent search offered a drastic increase in resolution without the need of paired images. However, they offer limited reconstruction of the high-resolution (HR) image interpretable features. Here, we propose a robust super-resolution (SR) method based on regularized latent search (RLS) that offers an actionable balance between fidelity to the ground truth (GT) and realism of the recovered image given a distribution prior. The latter allows to split the analysis of a low-resolution (LR) image into a computational SR task performed by deep learning followed by a quantification task performed by a handcrafted algorithm based on interpretable biological features. This two-step process holds potential for various applications such as diagnostics on mobile devices, where the main aim is not to recover the HR details of a specific sample but rather to obtain HR images that preserve explainable and quantifiable differences between conditions.
Author Gheisari, Marzieh
Genovesio, Auguste
AuthorAffiliation Institut de Biologie de l’Ecole Normale Supérieure (ENS), PSL Research University , Paris , France
AuthorAffiliation_xml – name: Institut de Biologie de l’Ecole Normale Supérieure (ENS), PSL Research University , Paris , France
Author_xml – sequence: 1
  givenname: Marzieh
  surname: Gheisari
  fullname: Gheisari, Marzieh
  organization: Institut de Biologie de l'Ecole Normale Supérieure (ENS), PSL Research University, Paris, France
– sequence: 2
  givenname: Auguste
  orcidid: 0000-0003-1877-5595
  surname: Genovesio
  fullname: Genovesio, Auguste
  organization: Institut de Biologie de l'Ecole Normale Supérieure (ENS), PSL Research University, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39314829$$D View this record in MEDLINE/PubMed
BookMark eNplUk1r3TAQNCWlSdP8gF6KoZde3Got2ZZOpYSkDQQK_YDexFpev-ihZ7mSHEh_feS8NCStLitmZ4edZV4WB5OfqCheA3sPDLoP3-uWc8X4r1qw_KR4VhytULViB4_-h8VJjNtMqRVwBepFccgVByFrdVTM38j4KaawmGSnTWmnRGEOlLB3VI6EaQkUM1wav5uXhMn6CV0Zl5lClVveLStU7qwJPho_35TXFstAm8VhsH9oKB0mmlIZCYO5elU8H9FFOrmvx8XP87Mfp1-qy6-fL04_XVYmrymqkXcNdqZV0Ml-YJxzrLlgtZR8YIOSigERDryWAAyF6Nqxke1ohk6QNNn2cXGx1x08bvUc7A7DjfZo9R3gw0ZjSNY40r0RsiUGQ5-v0gmBjQGOBo0RY9tRm7U-7rXmpd_RYLKbgO6J6NPOZK_0xl9rAAGSyTorvLtXCP73QjHpnY2GnMOJ_BI1Bya7VvBGZerbf6hbv4R88zsWB2iaBjIL9qz16jHQ-LANML3mQ_-Xjzzz5rGNh4m_aeC3kwy5sw
ContentType Journal Article
Copyright The Author(s) 2024.
The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024 The Author(s)
Copyright_xml – notice: The Author(s) 2024.
– notice: The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024 The Author(s)
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1017/S2633903X24000084
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Publicly Available Content Database (ProQuest Open Access資料庫)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2633-903X
EndPage 20
ExternalDocumentID oai_doaj_org_article_bc486e01db314744a5c13acacc4f67e6
10_1017_S2633903X24000084
39314829
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: Labex Memolife
– fundername: ;
  grantid: PSL University
– fundername: ;
  grantid: Pseudotime
GroupedDBID 09C
09E
0R~
7X7
8FI
8FJ
AANRG
AASVR
ABUWG
ABVZP
ACZWT
ADAZD
ADDNB
ADKIL
ADVJH
AEBAK
AEYHU
AFKRA
AGABE
AGBYD
AGJUD
AHIPN
AHRGI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AQJOH
BBNVY
BENPR
BHPHI
BLZWO
CCPQU
CCQAD
CJCSC
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
IKXGN
IPYYG
M7P
M~E
NPM
OK1
PGMZT
PIMPY
RCA
ROL
RPM
UKHRP
WFFJZ
AAYXX
CITATION
3V.
7XB
8FE
8FH
8FK
AZQEC
DWQXO
GNUQQ
K9.
LK8
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c2914-f375a7c69178bd0333a23402883d0d98901eead328110a4476f586fcd74e8c903
IEDL.DBID RPM
ISSN 2633-903X
IngestDate Tue Oct 22 15:15:33 EDT 2024
Tue Sep 24 05:24:48 EDT 2024
Sat Oct 26 02:07:13 EDT 2024
Thu Oct 10 21:50:59 EDT 2024
Fri Aug 23 01:42:02 EDT 2024
Sat Nov 02 12:12:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords microscopy
diagnostic
generative prior
super-resolution
Language English
License The Author(s) 2024.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2914-f375a7c69178bd0333a23402883d0d98901eead328110a4476f586fcd74e8c903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1877-5595
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418082/
PMID 39314829
PQID 3103115551
PQPubID 5515559
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_bc486e01db314744a5c13acacc4f67e6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11418082
proquest_miscellaneous_3108764359
proquest_journals_3103115551
crossref_primary_10_1017_S2633903X24000084
pubmed_primary_39314829
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
– name: Cambridge, UK
PublicationTitle Biological imaging (Cambridge, England)
PublicationTitleAlternate Biol Imaging
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0002913919
Score 2.289966
Snippet Supervised deep learning approaches can artificially increase the resolution of microscopy images by learning a mapping between two image resolutions or...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e8
SubjectTerms Computer applications
Deep learning
diagnostic
generative prior
Image processing
Localization
Methods
Microscopy
Realism
Signal to noise ratio
super-resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yB_Eirrrau6NE8CQ0292VTtJHFZdB0JMLc2vy3B0Ye4d5LOivtyrpGWZU8OI1lUO6UpX6Kqn-irG3svYQo4PSozuVQrautL6VJWCwJvIQagNH1RZf5fRafJ61s4NWX1QTlumBs-IurRNahqr2FmqhhDCtq8E445yIUoVMtl11B8kUncENsV3W3e4ZkziiGwmY38OMiiarxGZ6EIgSX__fQObvtZIHwefqCXs8okb-Pq_2lD0Iw1P28Mv4Lv6MLSmL3HHBDjd8vi8ltIvAY0jsnWsc5i51cRhvAPl6uwyrEkWjAfLvVJ9Hf6r84Pdzw1epU_1q_jN4vkBUOmx4do3n7Prq07eP03LspVA61IUoI6jWKCcxO9PWVwBgGsDcUWvwle80woKARgWNRjxghFAytlpG55UI2qHeztjJcDeEl4yL2IBVwnREFifBGGsriMQrQwencgV7t1Nsv8yUGX2uJVP9H7tQsA-k-v1EYrtOA2gD_WgD_b9soGCT3cb1owuue2qghnAXEWHB3uzF6Dz0ImKGcLdNczAaIGLsCvYi7_N-JdABcaSiRB9ZwNFSjyXD_DYRdGOOWWvEVuf_4-Mu2KMGgVS-9pmwEzSl8AqB0Ma-Tjb_CwMuBto
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLKu_QgozECSkiyTi2c6oKoqqQ4ESlvUV-lpVKdrvbIsGvZ8ZxQhcQVzsHyzPj-eaRbxh7LWsPMTooPZpTKWTrSutbWQI6ayIPoTFw1G3xWZ6eiY-LdpETbtvcVjm9iemh9itHOfK3NA8L0Qs6-KP1ZUlTo6i6mkdo3GZ36qaSpNVqoeYcS0Ocl3U3FTOJKbqRgFE-LKh1skqcpjfcUWLt_xfU_LNj8oYLOtln9zN25MejsB-wW2F4yO5-ytXxR2xNseTECDuc8-XcUGgvAo8hcXhucZm7NMsh5wH59nodNiVuZTXk36hLj_5X-cG_Lw3fpHn1m-XP4PkFYtPhio8G8pidnXz48v60zBMVSod3IcoIqjXKSYzRtPUVAJgGMILUGnzlO43gIKBqQaMRFRghlIytltF5JYJ2eG9P2N6wGsIzxkVswCphOqKMk2CMtRVEYpeh51O5gr2ZLrZfj8QZ_dhRpvq_pFCwd3T184fEeZ0WVpvzPptQb53QMlS1t1ALJYRpXQ3GGedElCrIgh1OguuzIW7732pTsFfzNpoQ1UXMEFbX6Rv0CYgbu4I9HeU8nwQ6IKZU3NE7GrBz1N2dYfk10XRjpFlrRFjP_3-uA3avQaA0pnUO2R4qSXiBQOfKvkza_AuzS_1q
  priority: 102
  providerName: ProQuest
Title Reconstructing interpretable features in computational super-resolution microscopy via regularized latent search
URI https://www.ncbi.nlm.nih.gov/pubmed/39314829
https://www.proquest.com/docview/3103115551
https://www.proquest.com/docview/3108764359
https://pubmed.ncbi.nlm.nih.gov/PMC11418082
https://doaj.org/article/bc486e01db314744a5c13acacc4f67e6
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB2SFEovJf2Mm3RRoaeCs7ZHluRjEhJCISGUBvZmJFlODbveZTcpJL--I9ledpueerVsENKT54309Abgq0grrGuLcUXLKeYit7GpchEjBWtvHuLLwHm1xbW4vOXfJ_lkB8RwFyaI9q1pjtvp7LhtfgVt5WJmx4NObHxzdUYcPlUUu8a7sEsI3cjR_f83806XaTEcYXp_6Ewg5fY48YLJJDiZbgSh4NX_L4L5t05yI_Bc7MPrnjGyk65nb2DHtW_h5VV_Jv4OFj6DHHxg2zvWrGWEZupY7YJz54oeMxsqOPS7f2z1sHDLmJp68LGZ1-b5WyqP7Hej2TJUqV82T65iU2Kk7T3rlsV7uL04_3l2Gfd1FGJLY8HjGmWupRWUmSlTJYioM6S8USmskqpQRAkcAQozRVxAcy5FnStR20pypyyN2wfYa-etOwDG6wyN5LrwRnECtTYmwdp7yvifprQRfBsGtlx0dhllpyOT5bNZiODUD_36Re90HR7Ml3dlP9-lsVwJl6SVwZRLznVuU9RWW8trIZ2I4GiYuLJffqvSF08jqktsMIIv62ZaOP40RLdu_hDeoUhAbLGI4GM3z-ueYIHeH5Va1BYCtrq63UJYDebcAzY__f-nh_AqI-rUbfQcwR4ByH0m6nNvRoT3iRzBi9Pz65sfo7CBMAro_wOeTQin
link.rule.ids 230,315,730,783,787,867,888,2109,4032,12069,21401,27936,27937,27938,31732,31733,33757,33758,43323,43818,53805,53807,74080,74637
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSNAL4k2ggJE4IUUkGcd2TggQ1QJtT620t8ivlJVKdrvbIsGvZ8ZxQhcQVzsHyzPj-eaRbxh7JUsPXecg92hOuZC1y62vZQ7orIk8hMbAUbfFkZydiM_zep4SbpvUVjm-ifGh9ktHOfI3NA8L0Qs6-Ler85ymRlF1NY3QuM5uEA8X6bmaqynHUhHnZdmMxUxiiq4kYJQPc2qdLCKn6RV3FFn7_wU1_-yYvOKC9u-w2wk78neDsO-ya6G_x24epur4fbaiWHJkhO1P-WJqKLRngXchcnhucJm7OMsh5QH55nIV1jluJTXk36hLj_5X-cG_Lwxfx3n168XP4PkZYtP-gg8G8oCd7H88_jDL00SF3OFdiLwDVRvlJMZo2voCAEwFGEFqDb7wjUZwEFC1oNKICowQSna1lp3zSgTt8N4esp1-2YfHjIuuAquEaYgyToIx1hbQEbsMPZ_KZez1eLHtaiDOaIeOMtX-JYWMvaernz4kzuu4sFyftsmEWuuElqEovYVSKCFM7UowzjgnOqmCzNjeKLg2GeKm_a02GXs5baMJUV3E9GF5Gb9Bn4C4scnYo0HO00mgAWJKxR29pQFbR93e6RdfI003RpqlRoT15P_nesFuzY4PD9qDT0dfnrLdCkHTkOLZYzuoMOEZgp4L-zxq9i-uhwBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVqq4IN4EChiJE1LUJHZs54QodFVeqwpRaW-R40e7Uskuuy0S_HpmEid0AXG1LcWyZzzf2F--AXghc8dDsDx16E6pkKVNG1fKlGOwJvEQKgNHbIuZPDoR7-flPPKfNpFWOZyJ3UHtlpbuyPepHhaiFwzw-yHSIo7fTl-tvqVUQYpeWmM5jeuwowR-ZwI7B4ez48_jjUtBCph5NTxtkm50ITnm_HxORMqsUzi9Epw6Df9_Ac8_-ZNXAtL0FtyMSJK97rf-Nlzz7R3Y_RTfyu_CijLLQR-2PWWLkV7YnHsWfKfoucFmZrvKDvFWkG0uV36dYlc0SvaVOHv098oP9n1h2LqrXr9e_PSOnSNSbS9Y7y734GR6-OXNURrrK6QW10KkgavSKCsxY9ONyzjnpuCYT2rNXeYqjVDBo6HxQiNGMEIoGUotg3VKeG1x3e7DpF22_iEwEQreKGEqEpCT3JimyXggrRk6TJVN4OWwsPWql9Goe36Zqv_ahQQOaOnHgaSA3TUs16d1dKi6sUJLn-Wu4blQQpjS5txYY60IUnmZwN6wcXV0y03924gSeD52o0PRK4lp_fKyG4MRAlFklcCDfp_HmfCKk24q9ugtC9ia6nZPuzjrRLsx78w14q1H_5_XM9hFs64_vpt9eAw3CkRQ_X3PHkzQXvwTREAXzdNo2r8AE0kGAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstructing+interpretable+features+in+computational+super-resolution+microscopy+via+regularized+latent+search&rft.jtitle=Biological+imaging+%28Cambridge%2C+England%29&rft.au=Gheisari%2C+Marzieh&rft.au=Genovesio%2C+Auguste&rft.date=2024&rft.pub=Cambridge+University+Press&rft.eissn=2633-903X&rft.volume=4&rft_id=info:doi/10.1017%2FS2633903X24000084&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-903X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-903X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-903X&client=summon