Global Mild Solutions of the Landau and Non‐Cutoff Boltzmann Equations

This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobo...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 74; no. 5; pp. 932 - 1020
Main Authors Duan, Renjun, Liu, Shuangqian, Sakamoto, Shota, Strain, Robert M.
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons Australia, Ltd 01.05.2021
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobolev spaces which in particular are regular in the spatial variables, it still remains an open problem to obtain global solutions in an Lx,v∞ framework, similar to that in [49], for the Boltzmann equation with the cutoff assumption in general bounded domains. One main difficulty arises from the interaction between the transport operator and the velocity‐diffusion‐type collision operator in the non‐cutoff Boltzmann and Landau equations; another major difficulty is the potential formation of singularities for solutions to the boundary value problem. In the present work we introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the LT∞Lv2 norm, in velocity and time, of the distribution function is in the Wiener algebra A(Ω) in the spatial variables. Besides the construction of global solutions in these function spaces, we additionally study the large‐time behavior of solutions for both hard and soft potentials, and we further justify the property of propagation of regularity of solutions in the spatial variables. © 2019 Wiley Periodicals, Inc.
AbstractList This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobolev spaces which in particular are regular in the spatial variables, it still remains an open problem to obtain global solutions in an Lx,v∞ framework, similar to that in [49], for the Boltzmann equation with the cutoff assumption in general bounded domains. One main difficulty arises from the interaction between the transport operator and the velocity‐diffusion‐type collision operator in the non‐cutoff Boltzmann and Landau equations; another major difficulty is the potential formation of singularities for solutions to the boundary value problem.In the present work we introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the LT∞Lv2 norm, in velocity and time, of the distribution function is in the Wiener algebra A(Ω) in the spatial variables. Besides the construction of global solutions in these function spaces, we additionally study the large‐time behavior of solutions for both hard and soft potentials, and we further justify the property of propagation of regularity of solutions in the spatial variables. © 2019 Wiley Periodicals, Inc.
This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobolev spaces which in particular are regular in the spatial variables, it still remains an open problem to obtain global solutions in an Lx,v∞ framework, similar to that in [49], for the Boltzmann equation with the cutoff assumption in general bounded domains. One main difficulty arises from the interaction between the transport operator and the velocity‐diffusion‐type collision operator in the non‐cutoff Boltzmann and Landau equations; another major difficulty is the potential formation of singularities for solutions to the boundary value problem. In the present work we introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the LT∞Lv2 norm, in velocity and time, of the distribution function is in the Wiener algebra A(Ω) in the spatial variables. Besides the construction of global solutions in these function spaces, we additionally study the large‐time behavior of solutions for both hard and soft potentials, and we further justify the property of propagation of regularity of solutions in the spatial variables. © 2019 Wiley Periodicals, Inc.
This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobolev spaces which in particular are regular in the spatial variables, it still remains an open problem to obtain global solutions in an framework, similar to that in [49], for the Boltzmann equation with the cutoff assumption in general bounded domains. One main difficulty arises from the interaction between the transport operator and the velocity‐diffusion‐type collision operator in the non‐cutoff Boltzmann and Landau equations; another major difficulty is the potential formation of singularities for solutions to the boundary value problem. In the present work we introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the norm, in velocity and time, of the distribution function is in the Wiener algebra A (Ω) in the spatial variables. Besides the construction of global solutions in these function spaces, we additionally study the large‐time behavior of solutions for both hard and soft potentials, and we further justify the property of propagation of regularity of solutions in the spatial variables. © 2019 Wiley Periodicals, Inc.
Author Strain, Robert M.
Duan, Renjun
Sakamoto, Shota
Liu, Shuangqian
Author_xml – sequence: 1
  givenname: Renjun
  surname: Duan
  fullname: Duan, Renjun
  email: rjduan@math.cuhk.edu.hk
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Shuangqian
  surname: Liu
  fullname: Liu, Shuangqian
  email: tsqliu@jnu.edu.cn
  organization: Jinan Unviersity
– sequence: 3
  givenname: Shota
  surname: Sakamoto
  fullname: Sakamoto, Shota
  email: shota.sakamoto.e1@tohoku.ac.jp
  organization: Tohoku University
– sequence: 4
  givenname: Robert M.
  surname: Strain
  fullname: Strain, Robert M.
  email: strain@math.upenn.edu
  organization: University of Pennsylvania, David Rittenhouse Lab
BookMark eNp1kMtOAkEQRTsGEwFd-AeduHIBVPcMTM8SJwom-EjUdaemH3FI0w3ziMGVn-A3-iWOwMropiqVnHvr5vZIxwdvCDlnMGQAfKTWOOQs5XBEugzSZAAR4x3SBWAwiCYxnJBeVS3bk8Ui6pL5zIUcHb0rnKZPwTV1EXxFg6X1q6EL9Bob2k56H_zXx2fW1MFaehVc_b5C7-n1psGd5JQcW3SVOTvsPnm5uX7O5oPFw-w2my4GiqdtBJbnqVVouRIJimicIlqtlci1jvPcctAssUobLpDrWIxNImyiIRaAkdBaR31ysfddl2HTmKqWy9CUvn0p-RggTXnCJi012lOqDFVVGitVUe-C1iUWTjKQP3XJti65q6tVXP5SrMtiheX2T_bg_lY4s_0flNnjdK_4BlR-fPU
CitedBy_id crossref_primary_10_1090_qam_1689
crossref_primary_10_1016_j_aim_2023_109234
crossref_primary_10_1016_j_nonrwa_2022_103806
crossref_primary_10_2140_paa_2024_6_253
crossref_primary_10_1016_j_aim_2021_108122
crossref_primary_10_1007_s00205_021_01642_7
crossref_primary_10_1007_s10473_024_0410_x
crossref_primary_10_1137_23M1560148
crossref_primary_10_3934_mine_2023034
crossref_primary_10_1088_1361_6544_acc3f0
crossref_primary_10_1016_j_jde_2024_02_024
crossref_primary_10_3934_krm_2022003
crossref_primary_10_1007_s00220_024_05157_6
crossref_primary_10_1137_23M1567060
crossref_primary_10_3390_math10091576
crossref_primary_10_1016_j_chaos_2024_114882
crossref_primary_10_1007_s10473_024_0205_0
crossref_primary_10_1063_5_0095310
crossref_primary_10_1137_22M1515963
crossref_primary_10_1007_s10955_023_03208_1
crossref_primary_10_1007_s10955_022_02886_7
crossref_primary_10_1137_22M1533232
crossref_primary_10_1016_j_chaos_2022_112726
crossref_primary_10_1016_j_jde_2024_09_019
crossref_primary_10_1080_03605302_2021_1999975
crossref_primary_10_1007_s11425_021_1886_9
crossref_primary_10_1090_jams_1014
crossref_primary_10_1063_5_0132586
crossref_primary_10_1016_j_aim_2021_108159
crossref_primary_10_1007_s40818_022_00137_2
crossref_primary_10_3934_dcdsb_2023157
crossref_primary_10_1007_s00208_024_03046_w
crossref_primary_10_1063_5_0185948
crossref_primary_10_3390_sym17010100
crossref_primary_10_1007_s00220_022_04519_2
crossref_primary_10_1016_j_jde_2025_01_087
crossref_primary_10_1016_j_matpur_2023_06_007
crossref_primary_10_1007_s00205_020_01496_5
crossref_primary_10_1007_s10473_024_0617_x
crossref_primary_10_1016_j_nonrwa_2022_103799
crossref_primary_10_1016_j_jfa_2022_109641
crossref_primary_10_1088_1361_6544_ad351b
crossref_primary_10_1016_j_matpur_2023_06_004
crossref_primary_10_1016_j_nonrwa_2025_104343
Cites_doi 10.1007/s00222-016-0670-8
10.1016/j.jfa.2016.08.017
10.1007/s00205-017-1107-2
10.3934/dcds.2019088
10.1080/03605300500361545
10.1016/j.jde.2016.06.017
10.3792/pja/1195519027
10.1063/1.1705434
10.1007/s00220-011-1242-9
10.3792/pjaa.53.3
10.2422/2036-2145.201702_001
10.1007/BF01197752
10.1007/s00220-013-1766-2
10.1007/s00205-019-01374-9
10.1002/cpa.20361
10.1007/s10955-017-1814-y
10.24033/msmf.461
10.1002/cpa.20121
10.1007/s00220-016-2757-x
10.1016/S1874-5792(02)80004-0
10.1007/978-3-642-45892-7_3
10.1007/s002050050106
10.1016/j.jde.2016.09.014
10.1007/BF01837113
10.1007/s00205-007-0067-3
10.1016/S0168-2024(08)70128-0
10.1007/BF01197579
10.1016/0022-247X(70)90160-5
10.1007/s00205-015-0940-4
10.1016/j.physd.2003.07.011
10.1007/s00220-011-1355-1
10.1007/s00205-016-1038-3
10.1007/s00220-002-0729-9
10.2307/1971423
10.1007/s00205-009-0285-y
10.1007/s40818-017-0037-5
10.1007/s00222-004-0389-9
10.1016/j.matpur.2007.03.003
10.1016/j.aim.2014.04.012
10.3934/krm.2018051
10.1016/j.aim.2018.11.007
10.1063/1.1664621
10.1007/s00205-003-0262-9
10.1007/s00205-013-0658-0
10.1142/9789813272880_0146
10.1007/s002050000083
10.1007/978-1-4419-8524-8_1
10.1007/s40818-017-0021-0
10.1353/ajm.2016.0044
10.1142/S0219530506000784
10.1007/s11425-016-9083-x
10.3934/krm.2012.5.583
10.1007/BF00375670
10.1007/BF02183355
10.3934/krm.2013.6.159
10.4171/JEMS/928
10.1063/1.1705405
10.4171/IFB/417
10.3934/krm.2013.6.1011
10.1016/j.aim.2019.01.017
10.1006/jdeq.1995.1131
10.1007/BF02099789
10.1137/1.9781611971477
10.1098/rsta.1994.0018
10.1007/BF01223204
10.4171/JEMS/360
10.1090/S0894-0347-2011-00697-8
10.1002/cpa.21705
10.57262/ade/1366896020
10.1512/iumj.2004.53.2574
10.1080/03605302.2017.1321661
10.1002/cpa.10012
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
JQ2
DOI 10.1002/cpa.21920
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 1020
ExternalDocumentID 10_1002_cpa_21920
CPA21920
Genre article
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c2910-1bb9fcaf2c87a8359aafddc8bdd4bbf20d17fcde28a2d485e78f7d0480a38ddd3
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 19:21:11 EDT 2025
Tue Jul 01 02:50:31 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Wed Jan 22 16:29:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2910-1bb9fcaf2c87a8359aafddc8bdd4bbf20d17fcde28a2d485e78f7d0480a38ddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/2324/7174347
PQID 2500992716
PQPubID 48818
PageCount 89
ParticipantIDs proquest_journals_2500992716
crossref_citationtrail_10_1002_cpa_21920
crossref_primary_10_1002_cpa_21920
wiley_primary_10_1002_cpa_21920_CPA21920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationYear 2021
Publisher John Wiley & Sons Australia, Ltd
John Wiley and Sons, Limited
Publisher_xml – name: John Wiley & Sons Australia, Ltd
– name: John Wiley and Sons, Limited
References 1968; 9
2017; 42
2006; 31
2002; 231
1974; 50
1995; 78
2002; 55
2013; 323
2016; 220
2017; 272
2016; 348
1970; 30
1893
2008; 187
2013; 6
2016; 261
2017; 207
2013; 15
1994; 346
2019; 21
1992; 116
2011; 64
1986
2010; 197
1992; 119
2011; 24
1996; 1
2018; 71
1995; 121
2003; 169
2017; 168
2019; 233
2004; 188
2012; 262
2011
2005; 159
2006; 59
2019; 39
1996
2000; 152
2019; 345
1994
1988; 120
2006; 4
2018; 61
2002
1958
2019; 343
1967; 8
2004; 53
2011; 304
1994; 160
2011; 308
2013; 210
1963
2018
1977; 53
2016; 138
2014; 261
2020; 22
2018; 11
1998; 143
2017; 223
2012; 5
2017; 225
e_1_2_1_60_1
e_1_2_1_81_1
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_68_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_64_1
e_1_2_1_85_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
e_1_2_1_71_1
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_77_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_79_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_73_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_75_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_58_1
e_1_2_1_18_1
e_1_2_1_80_1
e_1_2_1_82_1
e_1_2_1_42_1
e_1_2_1_65_1
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_84_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_69_1
e_1_2_1_29_1
Alexandre R. (e_1_2_1_4_1) 2012; 262
e_1_2_1_70_1
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_76_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_78_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_72_1
Villani C. (e_1_2_1_83_1) 1996; 1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_74_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – year: 2011
– volume: 6
  start-page: 1011
  issue: 4
  year: 2013
  end-page: 1041
  article-title: Local existence with mild regularity for the Boltzmann equation
  publication-title: Kinet. Relat. Models
– volume: 261
  start-page: 4073
  issue: 7
  year: 2016
  end-page: 4134
  article-title: Global solutions in the critical Besov space for the non‐cutoff Boltzmann equation
  publication-title: J. Differential Equations
– volume: 220
  start-page: 711
  issue: 2
  year: 2016
  end-page: 745
  article-title: Global well‐posedness in spatially critical Besov space for the Boltzmann equation
  publication-title: Arch. Ration. Mech. Anal.
– volume: 160
  start-page: 49
  issue: 1
  year: 1994
  end-page: 80
  article-title: Hydrodynamic limit of the stationary Boltzmann equation in a slab
  publication-title: Comm. Math. Phys.
– year: 2018
– volume: 138
  start-page: 1455
  issue: 6
  year: 2016
  end-page: 1494
  article-title: On the Muskat problem: global in time results in 2D and 3D
  publication-title: Amer. J. Math.
– volume: 6
  start-page: 159
  issue: 1
  year: 2013
  end-page: 204
  article-title: Stability of the nonrelativistic Vlasov‐Maxwell‐Boltzmann system for angular non‐cutoff potentials
  publication-title: Kinet. Relat. Models
– year: 1994
– volume: 231
  start-page: 391
  issue: 3
  year: 2002
  end-page: 434
  article-title: The Landau equation in a periodic box
  publication-title: Comm. Math. Phys.
– volume: 272
  start-page: 2038
  issue: 5
  year: 2017
  end-page: 2057
  article-title: The Boltzmann equation with weakly inhomogeneous data in bounded domain
  publication-title: J. Funct. Anal.
– volume: 323
  start-page: 177
  issue: 1
  year: 2013
  end-page: 239
  article-title: Non‐isothermal boundary in the Boltzmann theory and Fourier law
  publication-title: Comm. Math. Phys.
– volume: 152
  start-page: 327
  issue: 4
  year: 2000
  end-page: 355
  article-title: Entropy dissipation and long‐range interactions
  publication-title: Arch. Ration. Mech. Anal.
– volume: 30
  start-page: 264
  year: 1970
  end-page: 279
  article-title: Spectra of perturbed semigroups with applications to transport theory
  publication-title: J. Math. Anal. Appl.
– year: 1986
– volume: 31
  start-page: 417
  issue: 1‐3
  year: 2006
  end-page: 429
  article-title: Almost exponential decay near Maxwellian
  publication-title: Comm. Partial Differential Equations
– volume: 59
  start-page: 626
  issue: 5
  year: 2006
  end-page: 687
  article-title: Boltzmann diffusive limit beyond the Navier‐Stokes approximation
  publication-title: Comm. Pure Appl. Math.
– volume: 119
  start-page: 309
  issue: 4
  year: 1992
  end-page: 353
  article-title: Initial‐boundary value problems for the Boltzmann equation: global existence of weak solutions
  publication-title: Arch. Rational Mech. Anal.
– volume: 22
  start-page: 507
  issue: 2
  year: 2020
  end-page: 592
  article-title: The weak Harnack inequality for the Boltzmann equation without cut‐off
  publication-title: J. Eur. Math. Soc.
– volume: 42
  start-page: 977
  issue: 6
  year: 2017
  end-page: 999
  article-title: Large time decay estimates for the Muskat equation
  publication-title: Comm. Partial Differential Equations
– volume: 304
  start-page: 513
  issue: 2
  year: 2011
  end-page: 581
  article-title: Global existence and full regularity of the Boltzmann equation without angular cutoff
  publication-title: Comm. Math. Phys.
– volume: 225
  start-page: 375
  issue: 1
  year: 2017
  end-page: 424
  article-title: Global well‐posedness of the Boltzmann equation with large amplitude initial data
  publication-title: Arch. Ration. Mech. Anal.
– volume: 1
  start-page: 793
  issue: 5
  year: 1996
  end-page: 816
  article-title: On the Cauchy problem for Landau equation: sequential stability, global existence
  publication-title: Adv. Differential Equations
– volume: 168
  start-page: 535
  issue: 3
  year: 2017
  end-page: 548
  article-title: On the rate of relaxation for the Landau kinetic equation and related models
  publication-title: J. Stat. Phys.
– volume: 159
  start-page: 245
  issue: 2
  year: 2005
  end-page: 316
  article-title: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation
  publication-title: Invent. Math.
– volume: 346
  start-page: 191
  issue: 1679
  year: 1994
  end-page: 204
  article-title: On Boltzmann and Landau equations
  publication-title: Philos. Trans. Roy. Soc. London Ser. A
– volume: 261
  start-page: 274
  year: 2014
  end-page: 332
  article-title: The Boltzmann equation, Besov spaces, and optimal time decay rates in
  publication-title: Adv. Math.
– volume: 233
  start-page: 1027
  issue: 3
  year: 2019
  end-page: 1130
  article-title: Global strong solutions of the Vlasov‐Poisson‐Boltzmann system in bounded domains
  publication-title: Arch. Ration. Mech. Anal.
– year: 1958
– volume: 39
  start-page: 2101
  issue: 4
  year: 2019
  end-page: 2131
  article-title: Global existence and decay to equilibrium for some crystal surface models
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 64
  start-page: 1297
  issue: 9
  year: 2011
  end-page: 1304
  article-title: Global mild solutions of Navier‐Stokes equations
  publication-title: Comm. Pure Appl. Math.
– volume: 116
  start-page: 307
  issue: 4
  year: 1992
  end-page: 315
  article-title: On the initial‐boundary value problem for the Boltzmann equation
  publication-title: Arch. Rational Mech. Anal.
– volume: 15
  start-page: 201
  issue: 1
  year: 2013
  end-page: 227
  article-title: On the global existence for the Muskat problem
  publication-title: J. Eur. Math. Soc. (JEMS)
– volume: 188
  start-page: 178
  issue: 3‐4
  year: 2004
  end-page: 192
  article-title: Energy method for Boltzmann equation
  publication-title: Phys. D
– volume: 169
  start-page: 305
  issue: 4
  year: 2003
  end-page: 353
  article-title: Classical solutions to the Boltzmann equation for molecules with an angular cutoff
  publication-title: Arch. Ration. Mech. Anal.
– volume: 197
  start-page: 713
  issue: 3
  year: 2010
  end-page: 809
  article-title: Decay and continuity of the Boltzmann equation in bounded domains
  publication-title: Arch. Ration. Mech. Anal.
– year: 1893
– volume: 343
  start-page: 36
  year: 2019
  end-page: 109
  article-title: The Boltzmann equation with large‐amplitude initial data in bounded domains
  publication-title: Adv. Math.
– year: 1996
– volume: 50
  start-page: 179
  year: 1974
  end-page: 184
  article-title: On the existence of global solutions of mixed problem for non‐linear Boltzmann equation
  publication-title: Proc. Japan Acad.
– volume: 187
  start-page: 287
  issue: 2
  year: 2008
  end-page: 339
  article-title: Exponential decay for soft potentials near Maxwellian
  publication-title: Arch. Ration. Mech. Anal.
– volume: 24
  start-page: 771
  issue: 3
  year: 2011
  end-page: 847
  article-title: Global classical solutions of the Boltzmann equation without angular cut‐off
  publication-title: J. Amer. Math. Soc.
– volume: 71
  start-page: 411
  issue: 3
  year: 2018
  end-page: 504
  article-title: The Boltzmann equation with specular boundary condition in convex domains
  publication-title: Comm. Pure Appl. Math.
– volume: 348
  start-page: 69
  issue: 1
  year: 2016
  end-page: 100
  article-title: A new regularization mechanism for the Boltzmann equation without cut‐off
  publication-title: Comm. Math. Phys.
– volume: 55
  start-page: 30
  issue: 1
  year: 2002
  end-page: 70
  article-title: On the Boltzmann equation for long‐range interactions
  publication-title: Comm. Pure Appl. Math.
– volume: 53
  start-page: 3
  issue: 1
  year: 1977
  end-page: 5
  article-title: Global solutions of the Boltzmann equation in a bounded convex domain
  publication-title: Proc. Japan Acad. Ser. A Math. Sci.
– volume: 121
  start-page: 314
  issue: 2
  year: 1995
  end-page: 328
  article-title: Flot de champs de vecteurs non lipschitziens et équations de Navier‐Stokes
  publication-title: J. Differential Equations
– volume: 4
  start-page: 263
  issue: 3
  year: 2006
  end-page: 310
  article-title: The Boltzmann equation in the space : global and time‐periodic solutions
  publication-title: Anal. Appl. (Singap.)
– volume: 210
  start-page: 615
  issue: 2
  year: 2013
  end-page: 671
  article-title: The Vlasov‐Poisson‐Landau system in
  publication-title: Arch. Ration. Mech. Anal.
– volume: 9
  start-page: 633
  issue: 4
  year: 1968
  end-page: 639
  article-title: Existence, uniqueness, and convergence of the solutions of models in kinetic theory
  publication-title: J. Mathematical Phys.
– year: 1963
– volume: 143
  start-page: 273
  issue: 3
  year: 1998
  end-page: 307
  article-title: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations
  publication-title: Arch. Rational Mech. Anal.
– volume: 5
  start-page: 583
  issue: 3
  year: 2012
  end-page: 613
  article-title: Optimal time decay of the non cut‐off Boltzmann equation in the whole space
  publication-title: Kinet. Relat. Models
– volume: 78
  start-page: 389
  issue: 1‐2
  year: 1995
  end-page: 412
  article-title: The Navier‐Stokes limit of stationary solutions of the nonlinear Boltzmann equation
  publication-title: J. Statist. Phys.
– volume: 11
  start-page: 1301
  issue: 6
  year: 2018
  end-page: 1331
  article-title: Solution to the Boltzmann equation in velocity‐weighted Chemin‐Lerner type spaces
  publication-title: Kinet. Relat. Models
– volume: 8
  start-page: 1653
  issue: 8
  year: 1967
  end-page: 1656
  article-title: Existence and uniqueness in the large for boundary value problems in kinetic theory
  publication-title: J. Mathematical Phys.
– volume: 21
  start-page: 61
  issue: 1
  year: 2019
  end-page: 86
  article-title: Global stability for solutions to the exponential PDE describing epitaxial growth
  publication-title: Interfaces Free Bound.
– year: 2002
– volume: 345
  start-page: 552
  year: 2019
  end-page: 597
  article-title: On the Muskat problem with viscosity jump: global in time results
  publication-title: Adv. Math.
– volume: 207
  start-page: 115
  issue: 1
  year: 2017
  end-page: 290
  article-title: Regularity of the Boltzmann equation in convex domains
  publication-title: Invent. Math.
– volume: 53
  start-page: 1081
  issue: 4
  year: 2004
  end-page: 1094
  article-title: The Boltzmann equation in the whole space
  publication-title: Indiana Univ. Math. J.
– volume: 261
  start-page: 7000
  issue: 12
  year: 2016
  end-page: 7079
  article-title: Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions
  publication-title: J. Differential Equations
– volume: 61
  start-page: 111
  issue: 1
  year: 2018
  end-page: 136
  article-title: The non‐cutoff Vlasov‐Maxwell‐Boltzmann system with weak angular singularity
  publication-title: Sci. China Math.
– volume: 308
  start-page: 641
  issue: 3
  year: 2011
  end-page: 701
  article-title: Formation and propagation of discontinuity for Boltzmann equation in non‐convex domains
  publication-title: Comm. Math. Phys.
– volume: 223
  start-page: 463
  issue: 1
  year: 2017
  end-page: 541
  article-title: The initial boundary value problem for the Boltzmann equation with soft potential
  publication-title: Arch. Ration. Mech. Anal.
– volume: 262
  start-page: 915
  issue: 3
  year: 2012
  end-page: 1010
  article-title: The Boltzmann equation without angular cutoff in the whole space: I
  publication-title: Global existence for soft potential. J. Funct. Anal.
– volume: 120
  start-page: 1
  issue: 1
  year: 1988
  end-page: 23
  article-title: On the Fokker‐Planck‐Boltzmann equation
  publication-title: Comm. Math. Phys.
– ident: e_1_2_1_51_1
  doi: 10.1007/s00222-016-0670-8
– ident: e_1_2_1_21_1
– ident: e_1_2_1_52_1
  doi: 10.1016/j.jfa.2016.08.017
– ident: e_1_2_1_27_1
  doi: 10.1007/s00205-017-1107-2
– ident: e_1_2_1_43_1
  doi: 10.3934/dcds.2019088
– ident: e_1_2_1_76_1
  doi: 10.1080/03605300500361545
– ident: e_1_2_1_66_1
  doi: 10.1016/j.jde.2016.06.017
– ident: e_1_2_1_79_1
  doi: 10.3792/pja/1195519027
– ident: e_1_2_1_70_1
  doi: 10.1063/1.1705434
– ident: e_1_2_1_3_1
  doi: 10.1007/s00220-011-1242-9
– ident: e_1_2_1_72_1
  doi: 10.3792/pjaa.53.3
– ident: e_1_2_1_40_1
  doi: 10.2422/2036-2145.201702_001
– ident: e_1_2_1_13_1
  doi: 10.1007/BF01197752
– ident: e_1_2_1_33_1
  doi: 10.1007/s00220-013-1766-2
– ident: e_1_2_1_14_1
  doi: 10.1007/s00205-019-01374-9
– ident: e_1_2_1_61_1
  doi: 10.1002/cpa.20361
– ident: e_1_2_1_10_1
  doi: 10.1007/s10955-017-1814-y
– ident: e_1_2_1_42_1
– ident: e_1_2_1_45_1
  doi: 10.24033/msmf.461
– ident: e_1_2_1_49_1
  doi: 10.1002/cpa.20121
– ident: e_1_2_1_73_1
  doi: 10.1007/s00220-016-2757-x
– ident: e_1_2_1_85_1
  doi: 10.1016/S1874-5792(02)80004-0
– ident: e_1_2_1_41_1
  doi: 10.1007/978-3-642-45892-7_3
– ident: e_1_2_1_84_1
  doi: 10.1007/s002050050106
– ident: e_1_2_1_8_1
– ident: e_1_2_1_11_1
  doi: 10.1016/j.jde.2016.09.014
– ident: e_1_2_1_53_1
  doi: 10.1007/BF01837113
– ident: e_1_2_1_56_1
– ident: e_1_2_1_77_1
  doi: 10.1007/s00205-007-0067-3
– ident: e_1_2_1_80_1
  doi: 10.1016/S0168-2024(08)70128-0
– ident: e_1_2_1_12_1
  doi: 10.1007/BF01197579
– ident: e_1_2_1_82_1
  doi: 10.1016/0022-247X(70)90160-5
– ident: e_1_2_1_29_1
  doi: 10.1007/s00205-015-0940-4
– ident: e_1_2_1_65_1
  doi: 10.1016/j.physd.2003.07.011
– ident: e_1_2_1_58_1
  doi: 10.1007/s00220-011-1355-1
– ident: e_1_2_1_64_1
  doi: 10.1007/s00205-016-1038-3
– ident: e_1_2_1_46_1
  doi: 10.1007/s00220-002-0729-9
– ident: e_1_2_1_26_1
  doi: 10.2307/1971423
– ident: e_1_2_1_50_1
  doi: 10.1007/s00205-009-0285-y
– ident: e_1_2_1_34_1
  doi: 10.1007/s40818-017-0037-5
– ident: e_1_2_1_24_1
  doi: 10.1007/s00222-004-0389-9
– ident: e_1_2_1_68_1
  doi: 10.1016/j.matpur.2007.03.003
– ident: e_1_2_1_74_1
  doi: 10.1016/j.aim.2014.04.012
– ident: e_1_2_1_31_1
  doi: 10.3934/krm.2018051
– ident: e_1_2_1_32_1
  doi: 10.1016/j.aim.2018.11.007
– ident: e_1_2_1_17_1
  doi: 10.1063/1.1664621
– ident: e_1_2_1_47_1
  doi: 10.1007/s00205-003-0262-9
– ident: e_1_2_1_78_1
  doi: 10.1007/s00205-013-0658-0
– ident: e_1_2_1_7_1
– ident: e_1_2_1_67_1
  doi: 10.1142/9789813272880_0146
– ident: e_1_2_1_2_1
  doi: 10.1007/s002050000083
– ident: e_1_2_1_69_1
– ident: e_1_2_1_19_1
  doi: 10.1007/978-1-4419-8524-8_1
– ident: e_1_2_1_15_1
  doi: 10.1007/s40818-017-0021-0
– ident: e_1_2_1_22_1
  doi: 10.1353/ajm.2016.0044
– ident: e_1_2_1_81_1
  doi: 10.1142/S0219530506000784
– ident: e_1_2_1_37_1
  doi: 10.1007/s11425-016-9083-x
– ident: e_1_2_1_75_1
  doi: 10.3934/krm.2012.5.583
– ident: e_1_2_1_18_1
  doi: 10.1007/BF00375670
– ident: e_1_2_1_36_1
  doi: 10.1007/BF02183355
– ident: e_1_2_1_54_1
– ident: e_1_2_1_30_1
  doi: 10.3934/krm.2013.6.159
– ident: e_1_2_1_57_1
  doi: 10.4171/JEMS/928
– ident: e_1_2_1_16_1
  doi: 10.1063/1.1705405
– volume: 262
  start-page: 915
  issue: 3
  year: 2012
  ident: e_1_2_1_4_1
  article-title: The Boltzmann equation without angular cutoff in the whole space: I
  publication-title: Global existence for soft potential. J. Funct. Anal.
– ident: e_1_2_1_63_1
  doi: 10.4171/IFB/417
– ident: e_1_2_1_5_1
  doi: 10.3934/krm.2013.6.1011
– ident: e_1_2_1_38_1
  doi: 10.1016/j.aim.2019.01.017
– ident: e_1_2_1_20_1
  doi: 10.1006/jdeq.1995.1131
– ident: e_1_2_1_35_1
  doi: 10.1007/BF02099789
– ident: e_1_2_1_39_1
  doi: 10.1137/1.9781611971477
– ident: e_1_2_1_62_1
  doi: 10.1098/rsta.1994.0018
– ident: e_1_2_1_25_1
  doi: 10.1007/BF01223204
– ident: e_1_2_1_23_1
  doi: 10.4171/JEMS/360
– ident: e_1_2_1_44_1
  doi: 10.1090/S0894-0347-2011-00697-8
– ident: e_1_2_1_59_1
  doi: 10.1002/cpa.21705
– volume: 1
  start-page: 793
  issue: 5
  year: 1996
  ident: e_1_2_1_83_1
  article-title: On the Cauchy problem for Landau equation: sequential stability, global existence
  publication-title: Adv. Differential Equations
  doi: 10.57262/ade/1366896020
– ident: e_1_2_1_48_1
  doi: 10.1512/iumj.2004.53.2574
– ident: e_1_2_1_9_1
– ident: e_1_2_1_55_1
– ident: e_1_2_1_71_1
  doi: 10.1080/03605302.2017.1321661
– ident: e_1_2_1_6_1
  doi: 10.1002/cpa.10012
– ident: e_1_2_1_28_1
– ident: e_1_2_1_60_1
SSID ssj0011483
Score 2.5644367
Snippet This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 932
SubjectTerms Boltzmann transport equation
Boundary conditions
Boundary value problems
Coulomb potential
Distribution functions
Domains
Function space
Mathematical analysis
Operators (mathematics)
Regularity
Sobolev space
Specular reflection
Toruses
Variables
Title Global Mild Solutions of the Landau and Non‐Cutoff Boltzmann Equations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21920
https://www.proquest.com/docview/2500992716
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarLOLBS9pks3nhqZaWIraIWOhBCPsEsSbVJJee_An-Rn-Ju3lVRUG8hBwmr9mZ3W8ms98AcIYti1qUmoaKBYiBhTJjwoVpmIS4mvJOmkTnIccTdzTFVzNn1gAX1V6Ygh-iTrhpz8jna-3ghCbdFWkoW5COcjek43Vdq6UB0W1NHaVhfvF3Wc8zLjYrViETdesrv65FK4D5Gabm68xwE9xXb1iUlzx2spR22PIbeeM_P2ELbJT4E_YKg9kGDRHtgPVxTd6a7IJR0QcAjh_mHNZpMxhLqITgtU49ZFAd4SSO3l_f-lkaSwkv43m6fCJRBAfPBX14sgemw8Fdf2SUDRcMhgJdpUFpIBmRiPkeUdAsIERyznzKOaZUIpNbnmRcIJ8gjn1HeL70uN6VTmyfc27vg2YUR-IAQEcF3Q5GjNrUxLZQpkKZcF2JNUNZQJwWOK9UH7KSjVw3xZiHBY8yCpVywlw5LXBaiy4KCo6fhNrV-IWlFyahgncKACMVEqrH5QPx-w3C_k0vPzn8u-gRWEO6xCWvf2yDZvqSiWOFUVJ6khvjB25U4w8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BOQAHdsSOhUDiktZ10zQ5cIACKtBWCIHELXiVECUBmgrRE5_Ah_Ar_ARfgp2NRSBx4cAlymHkJJ4Z-81k_AZg3S6XWZkxbOlYgFq21GZMhcQWptQxlHcKU5OHbLWdxpl9eF49H4Dn7CxMwg-RJ9yMZ8TrtXFwk5AuvbOG8hta1P5GcFpSeSQf7nXA1t062NXa3SBkf--03rDSngIWJ54pRGDMU5wqwt0a1ejDo1QJwV0mhM2YIliUa4oLSVxKhO1WZc1VNWEOXtOKK4So6HEHYch0EDdM_bsnOVmVCSyS_9lmZXNsnPEYYVLKX_Xz7vcOaT8C43hn2x-Hl2xOkoKWq2IvYkXe_0IX-V8mbQLGUoiNthOfmIQBGUzBaCvnp-1OQyNpdYBalx2B8swgChXSQqhpsis9pK-oHQavj0_1XhQqhXbCTtS_pkGA9m4ThvTuDJz9yafMQiEIAzkHqOph0z6YswrDdkVqb2BcOo6yDQmbR6vzsJnp2ucp4brp-9HxE6po4mtl-LEy5mEtF71JWEa-E1rKDMZPF5qurxGsxvhER736cbHmfx7Arx9vxzcLvxddheHGaavpNw_aR4swQkxFT1zuuQSF6K4nlzUki9hK7AkILv7ait4AXNVF_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RkFA5lEeLgAa6QlTqxWGzWTv2oQfIQ-GRCFVF4ubuU0IEOxBbVXPiJ_A_-lf4Ff0l3fUrULVSLxy4WD6M1vbOzO4349lvAPZoo8EbnGPHxALMocqYMZMKO5gxz1LeacxsHnIw9Prn9PjCvZiDn-VZmJwfokq4Wc_I1mvr4GOp92ekoWLM6sbdCC4qKk_Uj-8mXpt8PuoY5X4kpNf92u47RUsBR5DA1iFwHmjBNBF-ixnwETCmpRQ-l5JyrgmWjZYWUhGfEUl9V7V83ZL23DVr-lLKphn3FSxQDwe2T0TnS8VVZeOK_He2Xdg8iksaI0z2q1d9uvnNEO1jXJxtbL1leCinJK9nuaqnCa-L6R9skS9kzlbgTQGw0UHuEaswp6I1WBpU7LSTt9DPGx2gweVIoioviGKNjBA6tbmVFJkrGsbRr7v7dprEWqPDeJRMr1kUoe5Nzo8-eQfnz_Ip6zAfxZHaAOQG2DYPFrzJMW0q4wtcKM_T1FKwBczdhE-lqkNR0K3brh-jMCeKJqFRRpgpYxN2K9FxzjHyN6FaaS9hscxMQoNfDcInJuY1j8sU_-8BwvbZQXaz9f-iH2DxrNMLT4-GJ-_hNbHlPFmtZw3mk9tUbRs8lvCdzA8QfHtuI_oNOzlErQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Mild+Solutions+of+the+Landau+and+Non%E2%80%90Cutoff+Boltzmann+Equations&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Duan%2C+Renjun&rft.au=Liu%2C+Shuangqian&rft.au=Sakamoto%2C+Shota&rft.au=Strain%2C+Robert+M.&rft.date=2021-05-01&rft.pub=John+Wiley+%26+Sons+Australia%2C+Ltd&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=74&rft.issue=5&rft.spage=932&rft.epage=1020&rft_id=info:doi/10.1002%2Fcpa.21920&rft.externalDBID=10.1002%252Fcpa.21920&rft.externalDocID=CPA21920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon