Global Mild Solutions of the Landau and Non‐Cutoff Boltzmann Equations
This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobo...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 74; no. 5; pp. 932 - 1020 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons Australia, Ltd
01.05.2021
John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobolev spaces which in particular are regular in the spatial variables, it still remains an open problem to obtain global solutions in an Lx,v∞ framework, similar to that in [49], for the Boltzmann equation with the cutoff assumption in general bounded domains. One main difficulty arises from the interaction between the transport operator and the velocity‐diffusion‐type collision operator in the non‐cutoff Boltzmann and Landau equations; another major difficulty is the potential formation of singularities for solutions to the boundary value problem.
In the present work we introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the LT∞Lv2 norm, in velocity and time, of the distribution function is in the Wiener algebra A(Ω) in the spatial variables. Besides the construction of global solutions in these function spaces, we additionally study the large‐time behavior of solutions for both hard and soft potentials, and we further justify the property of propagation of regularity of solutions in the spatial variables. © 2019 Wiley Periodicals, Inc. |
---|---|
AbstractList | This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobolev spaces which in particular are regular in the spatial variables, it still remains an open problem to obtain global solutions in an Lx,v∞ framework, similar to that in [49], for the Boltzmann equation with the cutoff assumption in general bounded domains. One main difficulty arises from the interaction between the transport operator and the velocity‐diffusion‐type collision operator in the non‐cutoff Boltzmann and Landau equations; another major difficulty is the potential formation of singularities for solutions to the boundary value problem.In the present work we introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the LT∞Lv2 norm, in velocity and time, of the distribution function is in the Wiener algebra A(Ω) in the spatial variables. Besides the construction of global solutions in these function spaces, we additionally study the large‐time behavior of solutions for both hard and soft potentials, and we further justify the property of propagation of regularity of solutions in the spatial variables. © 2019 Wiley Periodicals, Inc. This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobolev spaces which in particular are regular in the spatial variables, it still remains an open problem to obtain global solutions in an Lx,v∞ framework, similar to that in [49], for the Boltzmann equation with the cutoff assumption in general bounded domains. One main difficulty arises from the interaction between the transport operator and the velocity‐diffusion‐type collision operator in the non‐cutoff Boltzmann and Landau equations; another major difficulty is the potential formation of singularities for solutions to the boundary value problem. In the present work we introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the LT∞Lv2 norm, in velocity and time, of the distribution function is in the Wiener algebra A(Ω) in the spatial variables. Besides the construction of global solutions in these function spaces, we additionally study the large‐time behavior of solutions for both hard and soft potentials, and we further justify the property of propagation of regularity of solutions in the spatial variables. © 2019 Wiley Periodicals, Inc. This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well‐known works [45] and [3, 43] on the construction of classical solutions in smooth Sobolev spaces which in particular are regular in the spatial variables, it still remains an open problem to obtain global solutions in an framework, similar to that in [49], for the Boltzmann equation with the cutoff assumption in general bounded domains. One main difficulty arises from the interaction between the transport operator and the velocity‐diffusion‐type collision operator in the non‐cutoff Boltzmann and Landau equations; another major difficulty is the potential formation of singularities for solutions to the boundary value problem. In the present work we introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the norm, in velocity and time, of the distribution function is in the Wiener algebra A (Ω) in the spatial variables. Besides the construction of global solutions in these function spaces, we additionally study the large‐time behavior of solutions for both hard and soft potentials, and we further justify the property of propagation of regularity of solutions in the spatial variables. © 2019 Wiley Periodicals, Inc. |
Author | Strain, Robert M. Duan, Renjun Sakamoto, Shota Liu, Shuangqian |
Author_xml | – sequence: 1 givenname: Renjun surname: Duan fullname: Duan, Renjun email: rjduan@math.cuhk.edu.hk organization: The Chinese University of Hong Kong – sequence: 2 givenname: Shuangqian surname: Liu fullname: Liu, Shuangqian email: tsqliu@jnu.edu.cn organization: Jinan Unviersity – sequence: 3 givenname: Shota surname: Sakamoto fullname: Sakamoto, Shota email: shota.sakamoto.e1@tohoku.ac.jp organization: Tohoku University – sequence: 4 givenname: Robert M. surname: Strain fullname: Strain, Robert M. email: strain@math.upenn.edu organization: University of Pennsylvania, David Rittenhouse Lab |
BookMark | eNp1kMtOAkEQRTsGEwFd-AeduHIBVPcMTM8SJwom-EjUdaemH3FI0w3ziMGVn-A3-iWOwMropiqVnHvr5vZIxwdvCDlnMGQAfKTWOOQs5XBEugzSZAAR4x3SBWAwiCYxnJBeVS3bk8Ui6pL5zIUcHb0rnKZPwTV1EXxFg6X1q6EL9Bob2k56H_zXx2fW1MFaehVc_b5C7-n1psGd5JQcW3SVOTvsPnm5uX7O5oPFw-w2my4GiqdtBJbnqVVouRIJimicIlqtlci1jvPcctAssUobLpDrWIxNImyiIRaAkdBaR31ysfddl2HTmKqWy9CUvn0p-RggTXnCJi012lOqDFVVGitVUe-C1iUWTjKQP3XJti65q6tVXP5SrMtiheX2T_bg_lY4s_0flNnjdK_4BlR-fPU |
CitedBy_id | crossref_primary_10_1090_qam_1689 crossref_primary_10_1016_j_aim_2023_109234 crossref_primary_10_1016_j_nonrwa_2022_103806 crossref_primary_10_2140_paa_2024_6_253 crossref_primary_10_1016_j_aim_2021_108122 crossref_primary_10_1007_s00205_021_01642_7 crossref_primary_10_1007_s10473_024_0410_x crossref_primary_10_1137_23M1560148 crossref_primary_10_3934_mine_2023034 crossref_primary_10_1088_1361_6544_acc3f0 crossref_primary_10_1016_j_jde_2024_02_024 crossref_primary_10_3934_krm_2022003 crossref_primary_10_1007_s00220_024_05157_6 crossref_primary_10_1137_23M1567060 crossref_primary_10_3390_math10091576 crossref_primary_10_1016_j_chaos_2024_114882 crossref_primary_10_1007_s10473_024_0205_0 crossref_primary_10_1063_5_0095310 crossref_primary_10_1137_22M1515963 crossref_primary_10_1007_s10955_023_03208_1 crossref_primary_10_1007_s10955_022_02886_7 crossref_primary_10_1137_22M1533232 crossref_primary_10_1016_j_chaos_2022_112726 crossref_primary_10_1016_j_jde_2024_09_019 crossref_primary_10_1080_03605302_2021_1999975 crossref_primary_10_1007_s11425_021_1886_9 crossref_primary_10_1090_jams_1014 crossref_primary_10_1063_5_0132586 crossref_primary_10_1016_j_aim_2021_108159 crossref_primary_10_1007_s40818_022_00137_2 crossref_primary_10_3934_dcdsb_2023157 crossref_primary_10_1007_s00208_024_03046_w crossref_primary_10_1063_5_0185948 crossref_primary_10_3390_sym17010100 crossref_primary_10_1007_s00220_022_04519_2 crossref_primary_10_1016_j_jde_2025_01_087 crossref_primary_10_1016_j_matpur_2023_06_007 crossref_primary_10_1007_s00205_020_01496_5 crossref_primary_10_1007_s10473_024_0617_x crossref_primary_10_1016_j_nonrwa_2022_103799 crossref_primary_10_1016_j_jfa_2022_109641 crossref_primary_10_1088_1361_6544_ad351b crossref_primary_10_1016_j_matpur_2023_06_004 crossref_primary_10_1016_j_nonrwa_2025_104343 |
Cites_doi | 10.1007/s00222-016-0670-8 10.1016/j.jfa.2016.08.017 10.1007/s00205-017-1107-2 10.3934/dcds.2019088 10.1080/03605300500361545 10.1016/j.jde.2016.06.017 10.3792/pja/1195519027 10.1063/1.1705434 10.1007/s00220-011-1242-9 10.3792/pjaa.53.3 10.2422/2036-2145.201702_001 10.1007/BF01197752 10.1007/s00220-013-1766-2 10.1007/s00205-019-01374-9 10.1002/cpa.20361 10.1007/s10955-017-1814-y 10.24033/msmf.461 10.1002/cpa.20121 10.1007/s00220-016-2757-x 10.1016/S1874-5792(02)80004-0 10.1007/978-3-642-45892-7_3 10.1007/s002050050106 10.1016/j.jde.2016.09.014 10.1007/BF01837113 10.1007/s00205-007-0067-3 10.1016/S0168-2024(08)70128-0 10.1007/BF01197579 10.1016/0022-247X(70)90160-5 10.1007/s00205-015-0940-4 10.1016/j.physd.2003.07.011 10.1007/s00220-011-1355-1 10.1007/s00205-016-1038-3 10.1007/s00220-002-0729-9 10.2307/1971423 10.1007/s00205-009-0285-y 10.1007/s40818-017-0037-5 10.1007/s00222-004-0389-9 10.1016/j.matpur.2007.03.003 10.1016/j.aim.2014.04.012 10.3934/krm.2018051 10.1016/j.aim.2018.11.007 10.1063/1.1664621 10.1007/s00205-003-0262-9 10.1007/s00205-013-0658-0 10.1142/9789813272880_0146 10.1007/s002050000083 10.1007/978-1-4419-8524-8_1 10.1007/s40818-017-0021-0 10.1353/ajm.2016.0044 10.1142/S0219530506000784 10.1007/s11425-016-9083-x 10.3934/krm.2012.5.583 10.1007/BF00375670 10.1007/BF02183355 10.3934/krm.2013.6.159 10.4171/JEMS/928 10.1063/1.1705405 10.4171/IFB/417 10.3934/krm.2013.6.1011 10.1016/j.aim.2019.01.017 10.1006/jdeq.1995.1131 10.1007/BF02099789 10.1137/1.9781611971477 10.1098/rsta.1994.0018 10.1007/BF01223204 10.4171/JEMS/360 10.1090/S0894-0347-2011-00697-8 10.1002/cpa.21705 10.57262/ade/1366896020 10.1512/iumj.2004.53.2574 10.1080/03605302.2017.1321661 10.1002/cpa.10012 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.21920 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 1020 |
ExternalDocumentID | 10_1002_cpa_21920 CPA21920 |
Genre | article |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c2910-1bb9fcaf2c87a8359aafddc8bdd4bbf20d17fcde28a2d485e78f7d0480a38ddd3 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 19:21:11 EDT 2025 Tue Jul 01 02:50:31 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Wed Jan 22 16:29:50 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2910-1bb9fcaf2c87a8359aafddc8bdd4bbf20d17fcde28a2d485e78f7d0480a38ddd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://hdl.handle.net/2324/7174347 |
PQID | 2500992716 |
PQPubID | 48818 |
PageCount | 89 |
ParticipantIDs | proquest_journals_2500992716 crossref_citationtrail_10_1002_cpa_21920 crossref_primary_10_1002_cpa_21920 wiley_primary_10_1002_cpa_21920_CPA21920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationYear | 2021 |
Publisher | John Wiley & Sons Australia, Ltd John Wiley and Sons, Limited |
Publisher_xml | – name: John Wiley & Sons Australia, Ltd – name: John Wiley and Sons, Limited |
References | 1968; 9 2017; 42 2006; 31 2002; 231 1974; 50 1995; 78 2002; 55 2013; 323 2016; 220 2017; 272 2016; 348 1970; 30 1893 2008; 187 2013; 6 2016; 261 2017; 207 2013; 15 1994; 346 2019; 21 1992; 116 2011; 64 1986 2010; 197 1992; 119 2011; 24 1996; 1 2018; 71 1995; 121 2003; 169 2017; 168 2019; 233 2004; 188 2012; 262 2011 2005; 159 2006; 59 2019; 39 1996 2000; 152 2019; 345 1994 1988; 120 2006; 4 2018; 61 2002 1958 2019; 343 1967; 8 2004; 53 2011; 304 1994; 160 2011; 308 2013; 210 1963 2018 1977; 53 2016; 138 2014; 261 2020; 22 2018; 11 1998; 143 2017; 223 2012; 5 2017; 225 e_1_2_1_60_1 e_1_2_1_81_1 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_66_1 e_1_2_1_68_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_62_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_64_1 e_1_2_1_85_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 e_1_2_1_71_1 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_77_1 e_1_2_1_8_1 e_1_2_1_56_1 e_1_2_1_79_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_73_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_75_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_58_1 e_1_2_1_18_1 e_1_2_1_80_1 e_1_2_1_82_1 e_1_2_1_42_1 e_1_2_1_65_1 e_1_2_1_40_1 e_1_2_1_67_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_84_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_69_1 e_1_2_1_29_1 Alexandre R. (e_1_2_1_4_1) 2012; 262 e_1_2_1_70_1 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_76_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_78_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_72_1 Villani C. (e_1_2_1_83_1) 1996; 1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_74_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – year: 2011 – volume: 6 start-page: 1011 issue: 4 year: 2013 end-page: 1041 article-title: Local existence with mild regularity for the Boltzmann equation publication-title: Kinet. Relat. Models – volume: 261 start-page: 4073 issue: 7 year: 2016 end-page: 4134 article-title: Global solutions in the critical Besov space for the non‐cutoff Boltzmann equation publication-title: J. Differential Equations – volume: 220 start-page: 711 issue: 2 year: 2016 end-page: 745 article-title: Global well‐posedness in spatially critical Besov space for the Boltzmann equation publication-title: Arch. Ration. Mech. Anal. – volume: 160 start-page: 49 issue: 1 year: 1994 end-page: 80 article-title: Hydrodynamic limit of the stationary Boltzmann equation in a slab publication-title: Comm. Math. Phys. – year: 2018 – volume: 138 start-page: 1455 issue: 6 year: 2016 end-page: 1494 article-title: On the Muskat problem: global in time results in 2D and 3D publication-title: Amer. J. Math. – volume: 6 start-page: 159 issue: 1 year: 2013 end-page: 204 article-title: Stability of the nonrelativistic Vlasov‐Maxwell‐Boltzmann system for angular non‐cutoff potentials publication-title: Kinet. Relat. Models – year: 1994 – volume: 231 start-page: 391 issue: 3 year: 2002 end-page: 434 article-title: The Landau equation in a periodic box publication-title: Comm. Math. Phys. – volume: 272 start-page: 2038 issue: 5 year: 2017 end-page: 2057 article-title: The Boltzmann equation with weakly inhomogeneous data in bounded domain publication-title: J. Funct. Anal. – volume: 323 start-page: 177 issue: 1 year: 2013 end-page: 239 article-title: Non‐isothermal boundary in the Boltzmann theory and Fourier law publication-title: Comm. Math. Phys. – volume: 152 start-page: 327 issue: 4 year: 2000 end-page: 355 article-title: Entropy dissipation and long‐range interactions publication-title: Arch. Ration. Mech. Anal. – volume: 30 start-page: 264 year: 1970 end-page: 279 article-title: Spectra of perturbed semigroups with applications to transport theory publication-title: J. Math. Anal. Appl. – year: 1986 – volume: 31 start-page: 417 issue: 1‐3 year: 2006 end-page: 429 article-title: Almost exponential decay near Maxwellian publication-title: Comm. Partial Differential Equations – volume: 59 start-page: 626 issue: 5 year: 2006 end-page: 687 article-title: Boltzmann diffusive limit beyond the Navier‐Stokes approximation publication-title: Comm. Pure Appl. Math. – volume: 119 start-page: 309 issue: 4 year: 1992 end-page: 353 article-title: Initial‐boundary value problems for the Boltzmann equation: global existence of weak solutions publication-title: Arch. Rational Mech. Anal. – volume: 22 start-page: 507 issue: 2 year: 2020 end-page: 592 article-title: The weak Harnack inequality for the Boltzmann equation without cut‐off publication-title: J. Eur. Math. Soc. – volume: 42 start-page: 977 issue: 6 year: 2017 end-page: 999 article-title: Large time decay estimates for the Muskat equation publication-title: Comm. Partial Differential Equations – volume: 304 start-page: 513 issue: 2 year: 2011 end-page: 581 article-title: Global existence and full regularity of the Boltzmann equation without angular cutoff publication-title: Comm. Math. Phys. – volume: 225 start-page: 375 issue: 1 year: 2017 end-page: 424 article-title: Global well‐posedness of the Boltzmann equation with large amplitude initial data publication-title: Arch. Ration. Mech. Anal. – volume: 1 start-page: 793 issue: 5 year: 1996 end-page: 816 article-title: On the Cauchy problem for Landau equation: sequential stability, global existence publication-title: Adv. Differential Equations – volume: 168 start-page: 535 issue: 3 year: 2017 end-page: 548 article-title: On the rate of relaxation for the Landau kinetic equation and related models publication-title: J. Stat. Phys. – volume: 159 start-page: 245 issue: 2 year: 2005 end-page: 316 article-title: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation publication-title: Invent. Math. – volume: 346 start-page: 191 issue: 1679 year: 1994 end-page: 204 article-title: On Boltzmann and Landau equations publication-title: Philos. Trans. Roy. Soc. London Ser. A – volume: 261 start-page: 274 year: 2014 end-page: 332 article-title: The Boltzmann equation, Besov spaces, and optimal time decay rates in publication-title: Adv. Math. – volume: 233 start-page: 1027 issue: 3 year: 2019 end-page: 1130 article-title: Global strong solutions of the Vlasov‐Poisson‐Boltzmann system in bounded domains publication-title: Arch. Ration. Mech. Anal. – year: 1958 – volume: 39 start-page: 2101 issue: 4 year: 2019 end-page: 2131 article-title: Global existence and decay to equilibrium for some crystal surface models publication-title: Discrete Contin. Dyn. Syst. – volume: 64 start-page: 1297 issue: 9 year: 2011 end-page: 1304 article-title: Global mild solutions of Navier‐Stokes equations publication-title: Comm. Pure Appl. Math. – volume: 116 start-page: 307 issue: 4 year: 1992 end-page: 315 article-title: On the initial‐boundary value problem for the Boltzmann equation publication-title: Arch. Rational Mech. Anal. – volume: 15 start-page: 201 issue: 1 year: 2013 end-page: 227 article-title: On the global existence for the Muskat problem publication-title: J. Eur. Math. Soc. (JEMS) – volume: 188 start-page: 178 issue: 3‐4 year: 2004 end-page: 192 article-title: Energy method for Boltzmann equation publication-title: Phys. D – volume: 169 start-page: 305 issue: 4 year: 2003 end-page: 353 article-title: Classical solutions to the Boltzmann equation for molecules with an angular cutoff publication-title: Arch. Ration. Mech. Anal. – volume: 197 start-page: 713 issue: 3 year: 2010 end-page: 809 article-title: Decay and continuity of the Boltzmann equation in bounded domains publication-title: Arch. Ration. Mech. Anal. – year: 1893 – volume: 343 start-page: 36 year: 2019 end-page: 109 article-title: The Boltzmann equation with large‐amplitude initial data in bounded domains publication-title: Adv. Math. – year: 1996 – volume: 50 start-page: 179 year: 1974 end-page: 184 article-title: On the existence of global solutions of mixed problem for non‐linear Boltzmann equation publication-title: Proc. Japan Acad. – volume: 187 start-page: 287 issue: 2 year: 2008 end-page: 339 article-title: Exponential decay for soft potentials near Maxwellian publication-title: Arch. Ration. Mech. Anal. – volume: 24 start-page: 771 issue: 3 year: 2011 end-page: 847 article-title: Global classical solutions of the Boltzmann equation without angular cut‐off publication-title: J. Amer. Math. Soc. – volume: 71 start-page: 411 issue: 3 year: 2018 end-page: 504 article-title: The Boltzmann equation with specular boundary condition in convex domains publication-title: Comm. Pure Appl. Math. – volume: 348 start-page: 69 issue: 1 year: 2016 end-page: 100 article-title: A new regularization mechanism for the Boltzmann equation without cut‐off publication-title: Comm. Math. Phys. – volume: 55 start-page: 30 issue: 1 year: 2002 end-page: 70 article-title: On the Boltzmann equation for long‐range interactions publication-title: Comm. Pure Appl. Math. – volume: 53 start-page: 3 issue: 1 year: 1977 end-page: 5 article-title: Global solutions of the Boltzmann equation in a bounded convex domain publication-title: Proc. Japan Acad. Ser. A Math. Sci. – volume: 121 start-page: 314 issue: 2 year: 1995 end-page: 328 article-title: Flot de champs de vecteurs non lipschitziens et équations de Navier‐Stokes publication-title: J. Differential Equations – volume: 4 start-page: 263 issue: 3 year: 2006 end-page: 310 article-title: The Boltzmann equation in the space : global and time‐periodic solutions publication-title: Anal. Appl. (Singap.) – volume: 210 start-page: 615 issue: 2 year: 2013 end-page: 671 article-title: The Vlasov‐Poisson‐Landau system in publication-title: Arch. Ration. Mech. Anal. – volume: 9 start-page: 633 issue: 4 year: 1968 end-page: 639 article-title: Existence, uniqueness, and convergence of the solutions of models in kinetic theory publication-title: J. Mathematical Phys. – year: 1963 – volume: 143 start-page: 273 issue: 3 year: 1998 end-page: 307 article-title: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations publication-title: Arch. Rational Mech. Anal. – volume: 5 start-page: 583 issue: 3 year: 2012 end-page: 613 article-title: Optimal time decay of the non cut‐off Boltzmann equation in the whole space publication-title: Kinet. Relat. Models – volume: 78 start-page: 389 issue: 1‐2 year: 1995 end-page: 412 article-title: The Navier‐Stokes limit of stationary solutions of the nonlinear Boltzmann equation publication-title: J. Statist. Phys. – volume: 11 start-page: 1301 issue: 6 year: 2018 end-page: 1331 article-title: Solution to the Boltzmann equation in velocity‐weighted Chemin‐Lerner type spaces publication-title: Kinet. Relat. Models – volume: 8 start-page: 1653 issue: 8 year: 1967 end-page: 1656 article-title: Existence and uniqueness in the large for boundary value problems in kinetic theory publication-title: J. Mathematical Phys. – volume: 21 start-page: 61 issue: 1 year: 2019 end-page: 86 article-title: Global stability for solutions to the exponential PDE describing epitaxial growth publication-title: Interfaces Free Bound. – year: 2002 – volume: 345 start-page: 552 year: 2019 end-page: 597 article-title: On the Muskat problem with viscosity jump: global in time results publication-title: Adv. Math. – volume: 207 start-page: 115 issue: 1 year: 2017 end-page: 290 article-title: Regularity of the Boltzmann equation in convex domains publication-title: Invent. Math. – volume: 53 start-page: 1081 issue: 4 year: 2004 end-page: 1094 article-title: The Boltzmann equation in the whole space publication-title: Indiana Univ. Math. J. – volume: 261 start-page: 7000 issue: 12 year: 2016 end-page: 7079 article-title: Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions publication-title: J. Differential Equations – volume: 61 start-page: 111 issue: 1 year: 2018 end-page: 136 article-title: The non‐cutoff Vlasov‐Maxwell‐Boltzmann system with weak angular singularity publication-title: Sci. China Math. – volume: 308 start-page: 641 issue: 3 year: 2011 end-page: 701 article-title: Formation and propagation of discontinuity for Boltzmann equation in non‐convex domains publication-title: Comm. Math. Phys. – volume: 223 start-page: 463 issue: 1 year: 2017 end-page: 541 article-title: The initial boundary value problem for the Boltzmann equation with soft potential publication-title: Arch. Ration. Mech. Anal. – volume: 262 start-page: 915 issue: 3 year: 2012 end-page: 1010 article-title: The Boltzmann equation without angular cutoff in the whole space: I publication-title: Global existence for soft potential. J. Funct. Anal. – volume: 120 start-page: 1 issue: 1 year: 1988 end-page: 23 article-title: On the Fokker‐Planck‐Boltzmann equation publication-title: Comm. Math. Phys. – ident: e_1_2_1_51_1 doi: 10.1007/s00222-016-0670-8 – ident: e_1_2_1_21_1 – ident: e_1_2_1_52_1 doi: 10.1016/j.jfa.2016.08.017 – ident: e_1_2_1_27_1 doi: 10.1007/s00205-017-1107-2 – ident: e_1_2_1_43_1 doi: 10.3934/dcds.2019088 – ident: e_1_2_1_76_1 doi: 10.1080/03605300500361545 – ident: e_1_2_1_66_1 doi: 10.1016/j.jde.2016.06.017 – ident: e_1_2_1_79_1 doi: 10.3792/pja/1195519027 – ident: e_1_2_1_70_1 doi: 10.1063/1.1705434 – ident: e_1_2_1_3_1 doi: 10.1007/s00220-011-1242-9 – ident: e_1_2_1_72_1 doi: 10.3792/pjaa.53.3 – ident: e_1_2_1_40_1 doi: 10.2422/2036-2145.201702_001 – ident: e_1_2_1_13_1 doi: 10.1007/BF01197752 – ident: e_1_2_1_33_1 doi: 10.1007/s00220-013-1766-2 – ident: e_1_2_1_14_1 doi: 10.1007/s00205-019-01374-9 – ident: e_1_2_1_61_1 doi: 10.1002/cpa.20361 – ident: e_1_2_1_10_1 doi: 10.1007/s10955-017-1814-y – ident: e_1_2_1_42_1 – ident: e_1_2_1_45_1 doi: 10.24033/msmf.461 – ident: e_1_2_1_49_1 doi: 10.1002/cpa.20121 – ident: e_1_2_1_73_1 doi: 10.1007/s00220-016-2757-x – ident: e_1_2_1_85_1 doi: 10.1016/S1874-5792(02)80004-0 – ident: e_1_2_1_41_1 doi: 10.1007/978-3-642-45892-7_3 – ident: e_1_2_1_84_1 doi: 10.1007/s002050050106 – ident: e_1_2_1_8_1 – ident: e_1_2_1_11_1 doi: 10.1016/j.jde.2016.09.014 – ident: e_1_2_1_53_1 doi: 10.1007/BF01837113 – ident: e_1_2_1_56_1 – ident: e_1_2_1_77_1 doi: 10.1007/s00205-007-0067-3 – ident: e_1_2_1_80_1 doi: 10.1016/S0168-2024(08)70128-0 – ident: e_1_2_1_12_1 doi: 10.1007/BF01197579 – ident: e_1_2_1_82_1 doi: 10.1016/0022-247X(70)90160-5 – ident: e_1_2_1_29_1 doi: 10.1007/s00205-015-0940-4 – ident: e_1_2_1_65_1 doi: 10.1016/j.physd.2003.07.011 – ident: e_1_2_1_58_1 doi: 10.1007/s00220-011-1355-1 – ident: e_1_2_1_64_1 doi: 10.1007/s00205-016-1038-3 – ident: e_1_2_1_46_1 doi: 10.1007/s00220-002-0729-9 – ident: e_1_2_1_26_1 doi: 10.2307/1971423 – ident: e_1_2_1_50_1 doi: 10.1007/s00205-009-0285-y – ident: e_1_2_1_34_1 doi: 10.1007/s40818-017-0037-5 – ident: e_1_2_1_24_1 doi: 10.1007/s00222-004-0389-9 – ident: e_1_2_1_68_1 doi: 10.1016/j.matpur.2007.03.003 – ident: e_1_2_1_74_1 doi: 10.1016/j.aim.2014.04.012 – ident: e_1_2_1_31_1 doi: 10.3934/krm.2018051 – ident: e_1_2_1_32_1 doi: 10.1016/j.aim.2018.11.007 – ident: e_1_2_1_17_1 doi: 10.1063/1.1664621 – ident: e_1_2_1_47_1 doi: 10.1007/s00205-003-0262-9 – ident: e_1_2_1_78_1 doi: 10.1007/s00205-013-0658-0 – ident: e_1_2_1_7_1 – ident: e_1_2_1_67_1 doi: 10.1142/9789813272880_0146 – ident: e_1_2_1_2_1 doi: 10.1007/s002050000083 – ident: e_1_2_1_69_1 – ident: e_1_2_1_19_1 doi: 10.1007/978-1-4419-8524-8_1 – ident: e_1_2_1_15_1 doi: 10.1007/s40818-017-0021-0 – ident: e_1_2_1_22_1 doi: 10.1353/ajm.2016.0044 – ident: e_1_2_1_81_1 doi: 10.1142/S0219530506000784 – ident: e_1_2_1_37_1 doi: 10.1007/s11425-016-9083-x – ident: e_1_2_1_75_1 doi: 10.3934/krm.2012.5.583 – ident: e_1_2_1_18_1 doi: 10.1007/BF00375670 – ident: e_1_2_1_36_1 doi: 10.1007/BF02183355 – ident: e_1_2_1_54_1 – ident: e_1_2_1_30_1 doi: 10.3934/krm.2013.6.159 – ident: e_1_2_1_57_1 doi: 10.4171/JEMS/928 – ident: e_1_2_1_16_1 doi: 10.1063/1.1705405 – volume: 262 start-page: 915 issue: 3 year: 2012 ident: e_1_2_1_4_1 article-title: The Boltzmann equation without angular cutoff in the whole space: I publication-title: Global existence for soft potential. J. Funct. Anal. – ident: e_1_2_1_63_1 doi: 10.4171/IFB/417 – ident: e_1_2_1_5_1 doi: 10.3934/krm.2013.6.1011 – ident: e_1_2_1_38_1 doi: 10.1016/j.aim.2019.01.017 – ident: e_1_2_1_20_1 doi: 10.1006/jdeq.1995.1131 – ident: e_1_2_1_35_1 doi: 10.1007/BF02099789 – ident: e_1_2_1_39_1 doi: 10.1137/1.9781611971477 – ident: e_1_2_1_62_1 doi: 10.1098/rsta.1994.0018 – ident: e_1_2_1_25_1 doi: 10.1007/BF01223204 – ident: e_1_2_1_23_1 doi: 10.4171/JEMS/360 – ident: e_1_2_1_44_1 doi: 10.1090/S0894-0347-2011-00697-8 – ident: e_1_2_1_59_1 doi: 10.1002/cpa.21705 – volume: 1 start-page: 793 issue: 5 year: 1996 ident: e_1_2_1_83_1 article-title: On the Cauchy problem for Landau equation: sequential stability, global existence publication-title: Adv. Differential Equations doi: 10.57262/ade/1366896020 – ident: e_1_2_1_48_1 doi: 10.1512/iumj.2004.53.2574 – ident: e_1_2_1_9_1 – ident: e_1_2_1_55_1 – ident: e_1_2_1_71_1 doi: 10.1080/03605302.2017.1321661 – ident: e_1_2_1_6_1 doi: 10.1002/cpa.10012 – ident: e_1_2_1_28_1 – ident: e_1_2_1_60_1 |
SSID | ssj0011483 |
Score | 2.5644367 |
Snippet | This paper proves the existence of small‐amplitude global‐in‐time unique mild solutions to both the Landau equation including the Coulomb potential and the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 932 |
SubjectTerms | Boltzmann transport equation Boundary conditions Boundary value problems Coulomb potential Distribution functions Domains Function space Mathematical analysis Operators (mathematics) Regularity Sobolev space Specular reflection Toruses Variables |
Title | Global Mild Solutions of the Landau and Non‐Cutoff Boltzmann Equations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21920 https://www.proquest.com/docview/2500992716 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarLOLBS9pks3nhqZaWIraIWOhBCPsEsSbVJJee_An-Rn-Ju3lVRUG8hBwmr9mZ3W8ms98AcIYti1qUmoaKBYiBhTJjwoVpmIS4mvJOmkTnIccTdzTFVzNn1gAX1V6Ygh-iTrhpz8jna-3ghCbdFWkoW5COcjek43Vdq6UB0W1NHaVhfvF3Wc8zLjYrViETdesrv65FK4D5Gabm68xwE9xXb1iUlzx2spR22PIbeeM_P2ELbJT4E_YKg9kGDRHtgPVxTd6a7IJR0QcAjh_mHNZpMxhLqITgtU49ZFAd4SSO3l_f-lkaSwkv43m6fCJRBAfPBX14sgemw8Fdf2SUDRcMhgJdpUFpIBmRiPkeUdAsIERyznzKOaZUIpNbnmRcIJ8gjn1HeL70uN6VTmyfc27vg2YUR-IAQEcF3Q5GjNrUxLZQpkKZcF2JNUNZQJwWOK9UH7KSjVw3xZiHBY8yCpVywlw5LXBaiy4KCo6fhNrV-IWlFyahgncKACMVEqrH5QPx-w3C_k0vPzn8u-gRWEO6xCWvf2yDZvqSiWOFUVJ6khvjB25U4w8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BOQAHdsSOhUDiktZ10zQ5cIACKtBWCIHELXiVECUBmgrRE5_Ah_Ar_ARfgp2NRSBx4cAlymHkJJ4Z-81k_AZg3S6XWZkxbOlYgFq21GZMhcQWptQxlHcKU5OHbLWdxpl9eF49H4Dn7CxMwg-RJ9yMZ8TrtXFwk5AuvbOG8hta1P5GcFpSeSQf7nXA1t062NXa3SBkf--03rDSngIWJ54pRGDMU5wqwt0a1ejDo1QJwV0mhM2YIliUa4oLSVxKhO1WZc1VNWEOXtOKK4So6HEHYch0EDdM_bsnOVmVCSyS_9lmZXNsnPEYYVLKX_Xz7vcOaT8C43hn2x-Hl2xOkoKWq2IvYkXe_0IX-V8mbQLGUoiNthOfmIQBGUzBaCvnp-1OQyNpdYBalx2B8swgChXSQqhpsis9pK-oHQavj0_1XhQqhXbCTtS_pkGA9m4ThvTuDJz9yafMQiEIAzkHqOph0z6YswrDdkVqb2BcOo6yDQmbR6vzsJnp2ucp4brp-9HxE6po4mtl-LEy5mEtF71JWEa-E1rKDMZPF5qurxGsxvhER736cbHmfx7Arx9vxzcLvxddheHGaavpNw_aR4swQkxFT1zuuQSF6K4nlzUki9hK7AkILv7ait4AXNVF_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RkFA5lEeLgAa6QlTqxWGzWTv2oQfIQ-GRCFVF4ubuU0IEOxBbVXPiJ_A_-lf4Ff0l3fUrULVSLxy4WD6M1vbOzO4349lvAPZoo8EbnGPHxALMocqYMZMKO5gxz1LeacxsHnIw9Prn9PjCvZiDn-VZmJwfokq4Wc_I1mvr4GOp92ekoWLM6sbdCC4qKk_Uj-8mXpt8PuoY5X4kpNf92u47RUsBR5DA1iFwHmjBNBF-ixnwETCmpRQ-l5JyrgmWjZYWUhGfEUl9V7V83ZL23DVr-lLKphn3FSxQDwe2T0TnS8VVZeOK_He2Xdg8iksaI0z2q1d9uvnNEO1jXJxtbL1leCinJK9nuaqnCa-L6R9skS9kzlbgTQGw0UHuEaswp6I1WBpU7LSTt9DPGx2gweVIoioviGKNjBA6tbmVFJkrGsbRr7v7dprEWqPDeJRMr1kUoe5Nzo8-eQfnz_Ip6zAfxZHaAOQG2DYPFrzJMW0q4wtcKM_T1FKwBczdhE-lqkNR0K3brh-jMCeKJqFRRpgpYxN2K9FxzjHyN6FaaS9hscxMQoNfDcInJuY1j8sU_-8BwvbZQXaz9f-iH2DxrNMLT4-GJ-_hNbHlPFmtZw3mk9tUbRs8lvCdzA8QfHtuI_oNOzlErQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Mild+Solutions+of+the+Landau+and+Non%E2%80%90Cutoff+Boltzmann+Equations&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Duan%2C+Renjun&rft.au=Liu%2C+Shuangqian&rft.au=Sakamoto%2C+Shota&rft.au=Strain%2C+Robert+M.&rft.date=2021-05-01&rft.pub=John+Wiley+%26+Sons+Australia%2C+Ltd&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=74&rft.issue=5&rft.spage=932&rft.epage=1020&rft_id=info:doi/10.1002%2Fcpa.21920&rft.externalDBID=10.1002%252Fcpa.21920&rft.externalDocID=CPA21920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |