Homogeneity pursuit and variable selection in regression models for multivariate abundance data

When building regression models for multivariate abundance data in ecology, it is important to allow for the fact that the species are correlated with each other. Moreover, there is often evidence species exhibit some degree of homogeneity in their responses to each environmental predictor, and that...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 80; no. 1
Main Authors Hui, Francis K C, Maestrini, Luca, Welsh, Alan H
Format Journal Article
LanguageEnglish
Published United States 29.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When building regression models for multivariate abundance data in ecology, it is important to allow for the fact that the species are correlated with each other. Moreover, there is often evidence species exhibit some degree of homogeneity in their responses to each environmental predictor, and that most species are informed by only a subset of predictors. We propose a generalized estimating equation (GEE) approach for simultaneous homogeneity pursuit (ie, grouping species with similar coefficient values while allowing differing groups for different covariates) and variable selection in regression models for multivariate abundance data. Using GEEs allows us to straightforwardly account for between-response correlations through a (reduced-rank) working correlation matrix. We augment the GEE with both adaptive fused lasso- and adaptive lasso-type penalties, which aim to cluster the species-specific coefficients within each covariate and encourage differing levels of sparsity across the covariates, respectively. Numerical studies demonstrate the strong finite sample performance of the proposed method relative to several existing approaches for modeling multivariate abundance data. Applying the proposed method to presence-absence records collected along the Great Barrier Reef in Australia reveals both a substantial degree of homogeneity and sparsity in species-environmental relationships. We show this leads to a more parsimonious model for understanding the environmental drivers of seabed biodiversity, and results in stronger out-of-sample predictive performance relative to methods that do not accommodate such features.
AbstractList When building regression models for multivariate abundance data in ecology, it is important to allow for the fact that the species are correlated with each other. Moreover, there is often evidence species exhibit some degree of homogeneity in their responses to each environmental predictor, and that most species are informed by only a subset of predictors. We propose a generalized estimating equation (GEE) approach for simultaneous homogeneity pursuit (ie, grouping species with similar coefficient values while allowing differing groups for different covariates) and variable selection in regression models for multivariate abundance data. Using GEEs allows us to straightforwardly account for between-response correlations through a (reduced-rank) working correlation matrix. We augment the GEE with both adaptive fused lasso- and adaptive lasso-type penalties, which aim to cluster the species-specific coefficients within each covariate and encourage differing levels of sparsity across the covariates, respectively. Numerical studies demonstrate the strong finite sample performance of the proposed method relative to several existing approaches for modeling multivariate abundance data. Applying the proposed method to presence-absence records collected along the Great Barrier Reef in Australia reveals both a substantial degree of homogeneity and sparsity in species-environmental relationships. We show this leads to a more parsimonious model for understanding the environmental drivers of seabed biodiversity, and results in stronger out-of-sample predictive performance relative to methods that do not accommodate such features.
ABSTRACT When building regression models for multivariate abundance data in ecology, it is important to allow for the fact that the species are correlated with each other. Moreover, there is often evidence species exhibit some degree of homogeneity in their responses to each environmental predictor, and that most species are informed by only a subset of predictors. We propose a generalized estimating equation (GEE) approach for simultaneous homogeneity pursuit (ie, grouping species with similar coefficient values while allowing differing groups for different covariates) and variable selection in regression models for multivariate abundance data. Using GEEs allows us to straightforwardly account for between-response correlations through a (reduced-rank) working correlation matrix. We augment the GEE with both adaptive fused lasso- and adaptive lasso-type penalties, which aim to cluster the species-specific coefficients within each covariate and encourage differing levels of sparsity across the covariates, respectively. Numerical studies demonstrate the strong finite sample performance of the proposed method relative to several existing approaches for modeling multivariate abundance data. Applying the proposed method to presence–absence records collected along the Great Barrier Reef in Australia reveals both a substantial degree of homogeneity and sparsity in species-environmental relationships. We show this leads to a more parsimonious model for understanding the environmental drivers of seabed biodiversity, and results in stronger out-of-sample predictive performance relative to methods that do not accommodate such features.
When building regression models for multivariate abundance data in ecology, it is important to allow for the fact that the species are correlated with each other. Moreover, there is often evidence species exhibit some degree of homogeneity in their responses to each environmental predictor, and that most species are informed by only a subset of predictors. We propose a generalized estimating equation (GEE) approach for simultaneous homogeneity pursuit (ie, grouping species with similar coefficient values while allowing differing groups for different covariates) and variable selection in regression models for multivariate abundance data. Using GEEs allows us to straightforwardly account for between-response correlations through a (reduced-rank) working correlation matrix. We augment the GEE with both adaptive fused lasso- and adaptive lasso-type penalties, which aim to cluster the species-specific coefficients within each covariate and encourage differing levels of sparsity across the covariates, respectively. Numerical studies demonstrate the strong finite sample performance of the proposed method relative to several existing approaches for modeling multivariate abundance data. Applying the proposed method to presence-absence records collected along the Great Barrier Reef in Australia reveals both a substantial degree of homogeneity and sparsity in species-environmental relationships. We show this leads to a more parsimonious model for understanding the environmental drivers of seabed biodiversity, and results in stronger out-of-sample predictive performance relative to methods that do not accommodate such features.
Author Hui, Francis K C
Maestrini, Luca
Welsh, Alan H
Author_xml – sequence: 1
  givenname: Francis K C
  orcidid: 0000-0003-0765-3533
  surname: Hui
  fullname: Hui, Francis K C
  organization: Research School of Finance, Actuarial Studies and Statistics, Australian National University, Canberra, ACT 2601, Australia
– sequence: 2
  givenname: Luca
  surname: Maestrini
  fullname: Maestrini, Luca
  organization: Research School of Finance, Actuarial Studies and Statistics, Australian National University, Canberra, ACT 2601, Australia
– sequence: 3
  givenname: Alan H
  surname: Welsh
  fullname: Welsh, Alan H
  organization: Research School of Finance, Actuarial Studies and Statistics, Australian National University, Canberra, ACT 2601, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38364807$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtLAzEUhYNU7EO3LiVLN2NvJpnXUopaoeBGwd2QmdwpKTNJzUPov3dqq6vDge-cxTcnE2MNEnLL4IFBxZeNtkNol3EnFQC7IDOWCZaASGFCZgCQJ1ywzymZe78ba5VBekWmvOS5KKGYkXptB7tFgzoc6D46H3Wg0ij6LZ2WTY_UY49t0NZQbajDrUPvj22wCntPO-voEPugfwcBqWyiUdK0SJUM8ppcdrL3eHPOBfl4fnpfrZPN28vr6nGTtGkFIVGYN23DuYCmgxRyJTOueFmpqmwxZw0XqSxlkRUgFANRYt4VHWSQdVCIbIQX5P70u3f2K6IP9aB9i30vDdro67RKy1TkIPIRfTihrbPeO-zqvdODdIeaQX2UWp-k1mep4-Du_B2bAdU__meR_wCNQHhX
Cites_doi 10.1111/biom.12118
10.1080/10618600.2022.2058002
10.1371/journal.pone.0236067
10.1007/s11222-014-9458-0
10.1016/j.jmva.2017.12.002
10.1111/biom.13333
10.1016/j.jmva.2015.10.012
10.1016/j.ecolmodel.2010.11.030
10.1080/01621459.2021.1987251
10.1198/016214506000000735
10.1371/journal.pcbi.1008108
10.1093/bioinformatics/bti623
10.1016/j.tree.2015.09.007
10.1111/j.1541-0420.2010.01438.x
10.1002/bimj.202000336
10.5670/oceanog.2021.217
10.1007/s13253-017-0304-7
10.1111/biom.12888
10.1111/j.1541-0420.2011.01678.x
10.1002/env.2440
10.1007/s00180-018-0827-6
10.1111/ele.12757
10.1080/01621459.2018.1529595
10.1111/1467-9868.00293
10.1093/biomet/73.1.13
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1093/biomtc/ujad001
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
ExternalDocumentID 10_1093_biomtc_ujad001
38364807
Genre Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: DE200100435
GroupedDBID ---
-~X
.3N
.DC
.GA
05W
0R~
10A
1OC
23N
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AAPXW
AAUAY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEJV
ABEML
ABFAN
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXVV
ABYWD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFGKR
AFPWT
AFVYC
AFZJQ
AGTJU
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DXH
EAP
EBS
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
HZI
HZ~
IX1
J0M
JAC
K48
KOP
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NPM
O66
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
ROX
RX1
RXW
SUPJJ
TN5
UB1
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c290t-de6bcb3340bf0206da53d389d98ce61b342a8a75704d1048e6f7f0505f0745a53
ISSN 0006-341X
IngestDate Fri Oct 25 01:25:07 EDT 2024
Thu Sep 26 17:59:32 EDT 2024
Sat Nov 02 12:18:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords penalization
sparsity
correlated data analysis
generalized estimating equations
regularization
Language English
License The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c290t-de6bcb3340bf0206da53d389d98ce61b342a8a75704d1048e6f7f0505f0745a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0765-3533
OpenAccessLink https://academic.oup.com/biometrics/article-pdf/80/1/ujad001/56675558/ujad001.pdf
PMID 38364807
PQID 2928246046
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2928246046
crossref_primary_10_1093_biomtc_ujad001
pubmed_primary_38364807
PublicationCentury 2000
PublicationDate 2024-Jan-29
2024-01-29
20240129
PublicationDateYYYYMMDD 2024-01-29
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2024
References Tang (2024041211225540600_bib22) 2019; 34
Warton (2024041211225540600_bib26) 2011; 67
Warton (2024041211225540600_bib27) 2015; 30
Scharf (2024041211225540600_bib17) 2021
Chen (2024041211225540600_bib1) 2020; 16
Cho (2024041211225540600_bib2) 2016; 143
Niku (2024041211225540600_bib12) 2017; 22
Sing (2024041211225540600_bib18) 2005; 21
Stoklosa (2024041211225540600_bib19) 2014; 70
Zou (2024041211225540600_bib28) 2006; 101
Ovaskainen (2024041211225540600_bib13) 2017; 20
Popovic (2024041211225540600_bib15) 2018; 165
Wang (2024041211225540600_bib25) 2012; 68
Tang (2024041211225540600_bib20) 2016; 17
Rognstad (2024041211225540600_bib16) 2021; 34
Hui (2024041211225540600_bib6) 2022; 31
Johnson (2024041211225540600_bib9) 2017; 28
Dunstan (2024041211225540600_bib3) 2011; 222
Hui (2024041211225540600_bib8) 2018; 74
Li (2024041211225540600_bib10) 2019; 114
Variyath (2024041211225540600_bib24) 2020; 15
Huang (2024041211225540600_bib5) 2022; 64
Tibshirani (2024041211225540600_bib23) 2001; 63
Liang (2024041211225540600_bib11) 1986; 73
Hirose (2024041211225540600_bib4) 2015; 25
Hui (2024041211225540600_bib7) 2023; 118
Pitcher (2024041211225540600_bib14) 2007
Tang (2024041211225540600_bib21) 2021; 77
References_xml – volume: 70
  start-page: 110
  year: 2014
  ident: 2024041211225540600_bib19
  article-title: Fast forward selection for generalized estimating equations with a large number of predictor variables
  publication-title: Biometrics
  doi: 10.1111/biom.12118
  contributor:
    fullname: Stoklosa
– volume: 31
  start-page: 1013
  year: 2022
  ident: 2024041211225540600_bib6
  article-title: GEE-assisted forward regression for spatial latent variable models
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2022.2058002
  contributor:
    fullname: Hui
– volume: 15
  start-page: e0236067
  year: 2020
  ident: 2024041211225540600_bib24
  article-title: Variable selection in multivariate multiple regression
  publication-title: PloS One
  doi: 10.1371/journal.pone.0236067
  contributor:
    fullname: Variyath
– volume: 25
  start-page: 863
  year: 2015
  ident: 2024041211225540600_bib4
  article-title: Sparse estimation via nonconcave penalized likelihood in factor analysis model
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-014-9458-0
  contributor:
    fullname: Hirose
– volume: 165
  start-page: 86
  year: 2018
  ident: 2024041211225540600_bib15
  article-title: A general algorithm for covariance modeling of discrete data
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2017.12.002
  contributor:
    fullname: Popovic
– volume: 77
  start-page: 914
  year: 2021
  ident: 2024041211225540600_bib21
  article-title: Poststratification fusion learning in longitudinal data analysis
  publication-title: Biometrics
  doi: 10.1111/biom.13333
  contributor:
    fullname: Tang
– volume: 143
  start-page: 481
  year: 2016
  ident: 2024041211225540600_bib2
  article-title: The analysis of multivariate longitudinal data using multivariate marginal models
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2015.10.012
  contributor:
    fullname: Cho
– volume: 222
  start-page: 955
  year: 2011
  ident: 2024041211225540600_bib3
  article-title: Model based grouping of species across environmental gradients
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2010.11.030
  contributor:
    fullname: Dunstan
– volume: 118
  start-page: 1252
  year: 2023
  ident: 2024041211225540600_bib7
  article-title: GEE-assisted variable selection for latent variable models with multivariate binary data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2021.1987251
  contributor:
    fullname: Hui
– volume: 101
  start-page: 1418
  year: 2006
  ident: 2024041211225540600_bib28
  article-title: The adaptive Lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000000735
  contributor:
    fullname: Zou
– volume: 16
  start-page: e1008108
  year: 2020
  ident: 2024041211225540600_bib1
  article-title: Generalized estimating equation modeling on correlated microbiome sequencing data with longitudinal measures
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1008108
  contributor:
    fullname: Chen
– volume: 21
  start-page: 7881
  year: 2005
  ident: 2024041211225540600_bib18
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
  contributor:
    fullname: Sing
– volume: 30
  start-page: 766
  year: 2015
  ident: 2024041211225540600_bib27
  article-title: So many variables: joint modeling in community ecology
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2015.09.007
  contributor:
    fullname: Warton
– volume: 67
  start-page: 116
  year: 2011
  ident: 2024041211225540600_bib26
  article-title: Regularized sandwich estimators for analysis of high-dimensional data using generalized estimating equations
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01438.x
  contributor:
    fullname: Warton
– volume-title: Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area
  year: 2007
  ident: 2024041211225540600_bib14
  contributor:
    fullname: Pitcher
– volume: 64
  start-page: 57
  year: 2022
  ident: 2024041211225540600_bib5
  article-title: Penalized joint generalized estimating equations for longitudinal binary data
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.202000336
  contributor:
    fullname: Huang
– volume: 34
  start-page: 92
  year: 2021
  ident: 2024041211225540600_bib16
  article-title: Species archetype models of kelp forest communities reveal diverse responses to environmental gradients
  publication-title: Oceanography
  doi: 10.5670/oceanog.2021.217
  contributor:
    fullname: Rognstad
– volume: 22
  start-page: 498
  year: 2017
  ident: 2024041211225540600_bib12
  article-title: Generalized linear latent variable models for multivariate count and biomass data in ecology
  publication-title: Journal of Agricultural, Biological and Environmental Statistics
  doi: 10.1007/s13253-017-0304-7
  contributor:
    fullname: Niku
– volume: 17
  start-page: 3915
  year: 2016
  ident: 2024041211225540600_bib20
  article-title: Fused lasso approach in regression coefficients clustering: learning parameter heterogeneity in data integration
  publication-title: The Journal of Machine Learning Research
  contributor:
    fullname: Tang
– start-page: 1427
  volume-title: Biometrics
  year: 2021
  ident: 2024041211225540600_bib17
  article-title: Multivariate Bayesian clustering using covariate-informed components with application to boreal vegetation sensitivity
  contributor:
    fullname: Scharf
– volume: 74
  start-page: 1311
  year: 2018
  ident: 2024041211225540600_bib8
  article-title: Order selection and sparsity in latent variable models via the ordered factor LASSO
  publication-title: Biometrics
  doi: 10.1111/biom.12888
  contributor:
    fullname: Hui
– volume: 68
  start-page: 353
  year: 2012
  ident: 2024041211225540600_bib25
  article-title: Penalized generalized estimating equations for high-dimensional longitudinal data analysis
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01678.x
  contributor:
    fullname: Wang
– volume: 28
  start-page: e2440
  year: 2017
  ident: 2024041211225540600_bib9
  article-title: Modeling joint abundance of multiple species using Dirichlet process mixtures
  publication-title: Environmetrics
  doi: 10.1002/env.2440
  contributor:
    fullname: Johnson
– volume: 34
  start-page: 395
  year: 2019
  ident: 2024041211225540600_bib22
  article-title: Fusion learning algorithm to combine partially heterogeneous Cox models
  publication-title: Computational Statistics
  doi: 10.1007/s00180-018-0827-6
  contributor:
    fullname: Tang
– volume: 20
  start-page: 561
  year: 2017
  ident: 2024041211225540600_bib13
  article-title: How to make more out of community data? A conceptual framework and its implementation as models and software
  publication-title: Ecology Letters
  doi: 10.1111/ele.12757
  contributor:
    fullname: Ovaskainen
– volume: 114
  start-page: 1050
  year: 2019
  ident: 2024041211225540600_bib10
  article-title: Spatial homogeneity pursuit of regression coefficients for large datasets
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2018.1529595
  contributor:
    fullname: Li
– volume: 63
  start-page: 411
  year: 2001
  ident: 2024041211225540600_bib23
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00293
  contributor:
    fullname: Tibshirani
– volume: 73
  start-page: 13
  year: 1986
  ident: 2024041211225540600_bib11
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
  contributor:
    fullname: Liang
SSID ssj0009502
Score 2.4551153
Snippet When building regression models for multivariate abundance data in ecology, it is important to allow for the fact that the species are correlated with each...
ABSTRACT When building regression models for multivariate abundance data in ecology, it is important to allow for the fact that the species are correlated with...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
Title Homogeneity pursuit and variable selection in regression models for multivariate abundance data
URI https://www.ncbi.nlm.nih.gov/pubmed/38364807
https://search.proquest.com/docview/2928246046
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7alJbtobTbR7YvVCj0ENx4ZVlaHUtIWFq2h5LQ3Ixly8kG4l1iO9D--s5Y8iO0gbYXYSzZAs3n8Yw03wzAe0qTNVeqCKTRtHWTS8oBGQdaq0JrQ1xKIjivvsrlifh8Gp921ew9u6Q2H7Off-SV_I9U8R7KlViy_yDZ_qV4A69RvtiihLH9KxkvN5cb7LRkSW_R7W_WLl78Gh3glhJVtVVufDjjlT1zQa-lq3_TZmJwEYXtA7XdSw0RQ-hb95y14cCXaPqUzb8agLDuLN9sXe19GfZbV6mlaiClI143QzDQd5z03NFqUK0sxzsOnKJUAr8tYb2WFPMAv_ZwrEZdQaYxXH7Tzi5zFeUVoPLtR81FmofhjaG4vtvLVlroOUuiuw__qT56sOu6C_c4qpf2cP4bH6Vappgtn54z2nfT7fvJJvCge_ymJXKLe9GaGceP4ZH3D9gnJ-wncMeWU7jvKob-mMLDVZ9mt5rChFwFl2n7KSQjNDCPBoZoYB0aWI8Gti7ZgAbm0MAQDWyMBtajgREansHJ0eHxwTLw5TOCjOuwDnIrTWaiSISmQKdA5mkc5Wif5nqRWTk3keDpIlWxCkWOTvnCykIVVNiwQLMyxsHPYafclHYXmIqUKHAQug9GxIobzQv8L6Yc3fV5nokZfOiWMtm6LCmJi26IErf-iV__GbzrVjpBRUanU2lpN02VcI3ev5ChkDN44UTQv6sT2ctbe17BZIDqa9iprxr7Bs3F2rxt0fELvDpuvQ
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogeneity+pursuit+and+variable+selection+in+regression+models+for+multivariate+abundance+data&rft.jtitle=Biometrics&rft.au=Hui%2C+Francis+K+C&rft.au=Maestrini%2C+Luca&rft.au=Welsh%2C+Alan+H&rft.date=2024-01-29&rft.eissn=1541-0420&rft.volume=80&rft.issue=1&rft_id=info:doi/10.1093%2Fbiomtc%2Fujad001&rft_id=info%3Apmid%2F38364807&rft.externalDocID=38364807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon