Method for estimating parameter γ in a two-dimensional approximate furrow infiltration model
•The range of parameter γ is 0.60–0.94.•The edge effect’s relative contribution to the total furrow infiltration is 21.0%–41.7%.•A GWO–BPNN–AdaBoost model is proposed for estimating γ. This study expands the analysis of the parameter γ in the approximate furrow infiltration model (FIM) proposed by B...
Saved in:
Published in | Computers and electronics in agriculture Vol. 235; p. 110403 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The range of parameter γ is 0.60–0.94.•The edge effect’s relative contribution to the total furrow infiltration is 21.0%–41.7%.•A GWO–BPNN–AdaBoost model is proposed for estimating γ.
This study expands the analysis of the parameter γ in the approximate furrow infiltration model (FIM) proposed by Bautista et al. On the basis of the obtained results, a gray wolf optimization (GWO)–backpropagation neural network (BPNN)–adaptive boosting (AdaBoost) regression model was developed, and its γ prediction performance was compared with that of a BPNN model and BPNN–AdaBoost model. The results indicated that furrow cross section, soil texture, and water depth (h0) considerably influence the edge effect (ΔI) and γ, with γ ranging from 0.60 to 0.94. Moreover, the edge effect’s relative contribution to the total furrow infiltration is 21.0 %–41.7 %. Three performance measures, namely Bias, root mean square error (RMSE), and coefficient of determination (R2), were employed to evaluate the performance of the proposed models. The results revealed that γ values of Bias, RMSE, and R2 were –0.0009, 0.062, and 0.851 for the GWO–BPNN–AdaBoost model has the high accuracy, respectively, with furrow depth (D), bottom width (B), top width (T), n, α, saturated hydraulic conductivity (Ks), h0, effective saturation (Se) as input factors. The two-dimensional cumulative infiltration was calculated using the γ values predicted by the models. Among these predictions, those produced by the GWO–BPNN–AdaBoost model most closely aligned with the simulated values acquired using Hydrus-2D, with the Bias, RMSE, and R2 values being –0.53, 1.41 cm, and 0.993, respectively. Based on analysis of the obtained results, it is evident that GWO–BPNN–AdaBoost can estimate γ more accurately. |
---|---|
AbstractList | This study expands the analysis of the parameter γ in the approximate furrow infiltration model (FIM) proposed by Bautista et al. On the basis of the obtained results, a gray wolf optimization (GWO)–backpropagation neural network (BPNN)–adaptive boosting (AdaBoost) regression model was developed, and its γ prediction performance was compared with that of a BPNN model and BPNN–AdaBoost model. The results indicated that furrow cross section, soil texture, and water depth (h₀) considerably influence the edge effect (ΔI) and γ, with γ ranging from 0.60 to 0.94. Moreover, the edge effect’s relative contribution to the total furrow infiltration is 21.0 %–41.7 %. Three performance measures, namely Bias, root mean square error (RMSE), and coefficient of determination (R²), were employed to evaluate the performance of the proposed models. The results revealed that γ values of Bias, RMSE, and R² were –0.0009, 0.062, and 0.851 for the GWO–BPNN–AdaBoost model has the high accuracy, respectively, with furrow depth (D), bottom width (B), top width (T), n, α, saturated hydraulic conductivity (Kₛ), h₀, effective saturation (Sₑ) as input factors. The two-dimensional cumulative infiltration was calculated using the γ values predicted by the models. Among these predictions, those produced by the GWO–BPNN–AdaBoost model most closely aligned with the simulated values acquired using Hydrus-2D, with the Bias, RMSE, and R² values being –0.53, 1.41 cm, and 0.993, respectively. Based on analysis of the obtained results, it is evident that GWO–BPNN–AdaBoost can estimate γ more accurately. •The range of parameter γ is 0.60–0.94.•The edge effect’s relative contribution to the total furrow infiltration is 21.0%–41.7%.•A GWO–BPNN–AdaBoost model is proposed for estimating γ. This study expands the analysis of the parameter γ in the approximate furrow infiltration model (FIM) proposed by Bautista et al. On the basis of the obtained results, a gray wolf optimization (GWO)–backpropagation neural network (BPNN)–adaptive boosting (AdaBoost) regression model was developed, and its γ prediction performance was compared with that of a BPNN model and BPNN–AdaBoost model. The results indicated that furrow cross section, soil texture, and water depth (h0) considerably influence the edge effect (ΔI) and γ, with γ ranging from 0.60 to 0.94. Moreover, the edge effect’s relative contribution to the total furrow infiltration is 21.0 %–41.7 %. Three performance measures, namely Bias, root mean square error (RMSE), and coefficient of determination (R2), were employed to evaluate the performance of the proposed models. The results revealed that γ values of Bias, RMSE, and R2 were –0.0009, 0.062, and 0.851 for the GWO–BPNN–AdaBoost model has the high accuracy, respectively, with furrow depth (D), bottom width (B), top width (T), n, α, saturated hydraulic conductivity (Ks), h0, effective saturation (Se) as input factors. The two-dimensional cumulative infiltration was calculated using the γ values predicted by the models. Among these predictions, those produced by the GWO–BPNN–AdaBoost model most closely aligned with the simulated values acquired using Hydrus-2D, with the Bias, RMSE, and R2 values being –0.53, 1.41 cm, and 0.993, respectively. Based on analysis of the obtained results, it is evident that GWO–BPNN–AdaBoost can estimate γ more accurately. |
ArticleNumber | 110403 |
Author | Li, Ge Li, Yuchen Nie, Weibo Zhang, Wei |
Author_xml | – sequence: 1 givenname: Ge surname: Li fullname: Li, Ge – sequence: 2 givenname: Weibo surname: Nie fullname: Nie, Weibo email: nwbo2000@163.com – sequence: 3 givenname: Yuchen surname: Li fullname: Li, Yuchen – sequence: 4 givenname: Wei surname: Zhang fullname: Zhang, Wei |
BookMark | eNp9UDtOAzEQdREkEuAGFC5pdrH3l3WDhCJ-UhANlMjy2uPgaNdebIfAubgHZ8LRUlONZt5H894CzayzgNA5JTkltLnc5tINo9jkBSnqnFJSkXKG5glqM9owdowWIWxJ2lm7nKPXR4hvTmHtPIYQzSCisRs8Ci8GiODxzzc2Fgsc9y5TZgAbjLOix2Icvfs88AHrnfdun3ja9NEnB2fx4BT0p-hIiz7A2d88QS-3N8-r-2z9dPewul5nsmAkZpKUrCNFRZlmqoOK0CUBIbWWuitpWylS10KzdG5UtWzbUnd1kQCtaEeFYOUJuph800_vu5SDDyZI6Hthwe0CLwvSUFawskzUaqJK70LwoPnoUwr_xSnhhwb5lk8N8kODfGowya4mGaQYHwY8D9KAlaCMBxm5cuZ_g1--GYGm |
Cites_doi | 10.1029/2006WR004975 10.1016/j.catena.2015.06.001 10.1016/j.jfoodeng.2015.01.006 10.1029/TR018i002p00361 10.13031/2013.40068 10.1061/(ASCE)0733-9437(1992)118:5(791) 10.1080/03650340.2021.2022124 10.1016/j.egyr.2020.03.003 10.1029/WR020i008p01099 10.1029/WR012i001p00057 10.1029/WR012i003p00564 10.1007/s00163-002-0026-9 10.1016/0378-3774(81)90010-X 10.1061/(ASCE)IR.1943-4774.0000753 10.1002/ird.2332 10.1061/(ASCE)0733-9437(2004)130:5(349) 10.1016/j.catena.2023.107583 10.1371/journal.pone.0234480 10.1007/s12145-022-00830-7 10.1061/(ASCE)0733-9437(1993)119:3(443) 10.1061/JYCEAJ.0003829 10.1038/s41598-024-63490-1 10.1016/j.jhydrol.2024.132453 10.1016/j.advengsoft.2013.12.007 10.1029/WR024i005p00755 10.1061/(ASCE)0733-9437(1998)124:2(73) 10.1016/j.renene.2018.12.088 10.1175/JHM-D-12-0149.1 10.1097/00010694-199005000-00006 10.1007/s10040-021-02444-7 10.1161/JAHA.124.039221 10.1029/WR023i008p01514 10.1016/j.engappai.2023.107559 10.2136/sssaj1980.03615995004400050002x 10.1002/ird.2092 10.3390/app142411792 10.2136/sssaj1998.03615995006200030005x 10.1016/j.catena.2019.104396 10.1061/(ASCE)IR.1943-4774.0001366 10.1061/(ASCE)0733-9437(1987)113:2(266) 10.1007/s12145-023-01131-3 10.1029/94WR01788 10.1029/WR023i008p01633 10.1007/s12161-014-9954-z 10.1002/ird.2722 10.1080/01621459.1973.10482433 10.1061/(ASCE)0733-9437(1984)110:2(208) 10.4310/SII.2009.v2.n3.a8 10.1016/j.agwat.2022.108042 10.1002/ird.2392 10.1061/(ASCE)0733-9437(2007)133:4(307) 10.1080/00401706.1991.10484804 10.2166/wqrjc.2015.025 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.compag.2025.110403 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_compag_2025_110403 S0168169925005095 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABMAC ABMZM ABRWV ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACIWK ACMHX ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADQTV ADSLC AEBSH AEFWE AEIPS AEKER AENEX AEQOU AEUPX AEXOQ AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGWPP AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAYXX CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c290t-c039b02419f9dbe40170eacffcfb3184d055af90176d47883fb52318fd1b1aa93 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Fri Jul 11 17:31:06 EDT 2025 Thu Jul 03 08:37:13 EDT 2025 Sat Jul 05 17:12:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Furrow irrigation Gray wolf optimization (GWO) Adaptive boosting (AdaBoost) Backpropagation neural network (BPNN) Edge effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c290t-c039b02419f9dbe40170eacffcfb3184d055af90176d47883fb52318fd1b1aa93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3206192933 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3206192933 crossref_primary_10_1016_j_compag_2025_110403 elsevier_sciencedirect_doi_10_1016_j_compag_2025_110403 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 20250801 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Fok, Chiang (b0120) 1984; 110 Haverkamp, Parlange, Starr, Schmitz, Fuentes (b0145) 1990; 149 Bautista, Schlegel, Clemmens (b0030) 2015; 142 Warrick, Lazarovitch, Urman, Zerihun (b0410) 2007; 133 Zhang, Zhang, Yu, Cheng, Dong (b0450) 2018; 44 Mahakur, Mahakur, Samantaray, Ghose (b0240) 2025; 8 Warrick, Lazarovitch (b0405) 2007; 43 Zeng, Wang, Fan (b0440) 2010; 26 Dai, Shangguan, Duan, Liu, Niu (b0070) 2013; 14 White, Sully (b0415) 1987; 23 Valipour, Montazar (b0385) 2012; 6 Liu, Huang (b0225) 2017; 48 Šimunek Jirka, Šaito, Šakai, van Genuchten (b0345) 2008; 3 Sepahvand, Golkarian, Billa, Wang, Rezaie, Panahi, Samadianfard, Khosravi (b0330) 2022; 15 Akbar, Ahmad, Khan, Asif (b0005) 2017; 66 Dialameh, Ebrahimian, Parsinejad (b0080) 2022; 71 Zhang, Cai, Wang (b0455) 2005; 21 Samantaray, Sahoo, Baliarsingh (b0305) 2024; 1 Narasimhan, Witherspoon (b0260) 1976; 12 Mirjalili, Mirjalili, Lewis (b0245) 2014; 69 Singh, He, Yu (b0355) 1987; 113 Eduardo, Naftali (b0090) 2024; 150 Neuman (b0265) 1973; 99 Zhao, Wang, Wu, Feng, Wu (b0460) 2004; 20 Morris (b0255) 1991; 33 Frey, Engelhardt, Greitzer (b0125) 2003; 14 Feng, Nie, Yu, Xu, Ma (b0110) 2022; 38 Costabile, Costanzo, Gangi, De Gaetani, Rossi, Gandolfi, Masseroni (b0065) 2023; 275 Schmitz (b0325) 1993; 119 Ma, Lin, Xu (b0235) 2020; 57 Huang, Chen, Li, Huang, Ouyang, Zhao (b0170) 2015; 154 Xing, Wang, Luo, Wang, Bai, Fan (b0435) 2019; 136 Hou, Pan, Tong, Li, Zheng, Kang (b0160) 2022; 30 Nie, Fei, Ma (b0275) 2015; 26 Christiansen, Bishop, Kiefer, Fok (b0055) 1966; 9 Esmaeil, Sobhan, Parham (b0100) 2018; 72 Shen, Li, Wei, Fu, Zhang, Qu, Chen, Wang (b0340) 2022; 9 Vogel, Hopmans (b0395) 1992; 118 Samantaray, Sahoo, Yaseen, Al-Suwaiyan (b0315) 2025; 649 Šimunek Jirka, Šejna, van Genuchten (b0350) 1998 Su, Guo, Tao, Zhang, Shan, Wang (b0365) 2023; 54 Wöhling, Singh, Schmitz (b0425) 2004; 130 Liu, Xie, Gao, Feng (b0220) 2008; 29 Lal, Mishra, Pandey (b0195) 2015; 133 Jia, Weng, Yan, Peng, Dong (b0180) 2024; 234 Moravejalahkami (b0250) 2020; 69 Pullan, Collins (b0295) 1987; 23 Dong, Zhao, Zhu, Yuan, Ye, Chen (b0085) 2017; 48 van Genuchten (b0390) 1980; 44 Samantaray, Sahoo, Satapathy, Oudah, Yaseen (b0310) 2024; 14 Huyakorn, Thomas, Thompson (b0175) 1984; 20 Pan, Zhao, Chen, Zhang (b0280) 2015; 8 Salahou, Jiao, Lv, Guo (b0300) 2020; 15 Feng, Nie (b0115) 2023; 69 Panahi, Khosravi, Ahmad, Panahi, Heddam, Melesse, Omidvar, Lee (b0285) 2021; 35 Clemmens (b0060) 1981; 4 Neuman (b0270) 1976; 12 Shao, Horton (b0335) 1998; 62 Walker, Skogerboe (b0400) 1987 Li, Eisenberg, Beaton, Lee, Aljabri, Al-Omran, Wijeysundera, Rotstein, Lindsay, de Mestral, Mamdani, Roche-Nagle, Al-Omran (b0205) 2025; 14 Carsel, Parrish (b0045) 1988; 24 Thomée (b0375) 2006 Cao, Bu (b0040) 2023 Ma, Zhang, Zhen, Zhang (b0230) 2015; 51 Bakhshi, Alamdari, Heidari, Mohammadi (b0010) 2023; 16 Daniel (b0075) 1973; 68 Lewis (b0200) 1937; 18 Wu, Ke, Chen, Liang, Zhao, Hong (b0430) 2020; 187 Zhang, Jiang, Li, Zhu (b0445) 2019; 47 Green, Ampt (b0130) 1911; 4 Huang, Jun, Li, Li, Jiang (b0165) 2016; 47 Haverkamp, Ross, Smettem, Parlange (b0150) 1994; 30 Li, Lu, Liang, Chen, Da (b0210) 2024; 14 Hastie, Rosset, Zhu, Zou (b0140) 2009; 2 Kumar, Sihag (b0190) 2019; 68 Guzmán-Rojo, Bautista, Gonzalez-Trinidad, Bronson (b0135) 2019; 145 Holland (b0155) 1975 Bautista, Warrick, Strelkoff (b0025) 2014; 140 Tao, Abba, Al-Areeq, Tangang, Samantaray, Sahoo, Siqueira, Maroufpoor, Demir, Dhanraj Bokde, Goliatt, Jamei, Ahmadianfar, Bhagat, Halder, Guo, Helman, Ali, Sattar, Al-Khafaji, Shahid, Yaseen (b0370) 2024; 129 Tian, Yu, Zhao (b0380) 2020; 6 Enciso-Medina, Martin, Eisenhauer (b0095) 1998; 124 Hastie (10.1016/j.compag.2025.110403_b0140) 2009; 2 Frey (10.1016/j.compag.2025.110403_b0125) 2003; 14 Moravejalahkami (10.1016/j.compag.2025.110403_b0250) 2020; 69 Esmaeil (10.1016/j.compag.2025.110403_b0100) 2018; 72 Liu (10.1016/j.compag.2025.110403_b0220) 2008; 29 Šimunek Jirka (10.1016/j.compag.2025.110403_b0345) 2008; 3 Christiansen (10.1016/j.compag.2025.110403_b0055) 1966; 9 Feng (10.1016/j.compag.2025.110403_b0115) 2023; 69 Liu (10.1016/j.compag.2025.110403_b0225) 2017; 48 Guzmán-Rojo (10.1016/j.compag.2025.110403_b0135) 2019; 145 Samantaray (10.1016/j.compag.2025.110403_b0310) 2024; 14 Thomée (10.1016/j.compag.2025.110403_b0375) 2006 Warrick (10.1016/j.compag.2025.110403_b0410) 2007; 133 Narasimhan (10.1016/j.compag.2025.110403_b0260) 1976; 12 Bautista (10.1016/j.compag.2025.110403_b0030) 2015; 142 Holland (10.1016/j.compag.2025.110403_b0155) 1975 Zhang (10.1016/j.compag.2025.110403_b0450) 2018; 44 Pullan (10.1016/j.compag.2025.110403_b0295) 1987; 23 Samantaray (10.1016/j.compag.2025.110403_b0305) 2024; 1 Warrick (10.1016/j.compag.2025.110403_b0405) 2007; 43 Tao (10.1016/j.compag.2025.110403_b0370) 2024; 129 Bautista (10.1016/j.compag.2025.110403_b0025) 2014; 140 Cao (10.1016/j.compag.2025.110403_b0040) 2023 Huyakorn (10.1016/j.compag.2025.110403_b0175) 1984; 20 White (10.1016/j.compag.2025.110403_b0415) 1987; 23 Schmitz (10.1016/j.compag.2025.110403_b0325) 1993; 119 Panahi (10.1016/j.compag.2025.110403_b0285) 2021; 35 Tian (10.1016/j.compag.2025.110403_b0380) 2020; 6 Shao (10.1016/j.compag.2025.110403_b0335) 1998; 62 Haverkamp (10.1016/j.compag.2025.110403_b0150) 1994; 30 Zhang (10.1016/j.compag.2025.110403_b0455) 2005; 21 Huang (10.1016/j.compag.2025.110403_b0165) 2016; 47 Mirjalili (10.1016/j.compag.2025.110403_b0245) 2014; 69 Valipour (10.1016/j.compag.2025.110403_b0385) 2012; 6 Eduardo (10.1016/j.compag.2025.110403_b0090) 2024; 150 Morris (10.1016/j.compag.2025.110403_b0255) 1991; 33 Akbar (10.1016/j.compag.2025.110403_b0005) 2017; 66 Hou (10.1016/j.compag.2025.110403_b0160) 2022; 30 van Genuchten (10.1016/j.compag.2025.110403_b0390) 1980; 44 Vogel (10.1016/j.compag.2025.110403_b0395) 1992; 118 Daniel (10.1016/j.compag.2025.110403_b0075) 1973; 68 Clemmens (10.1016/j.compag.2025.110403_b0060) 1981; 4 Huang (10.1016/j.compag.2025.110403_b0170) 2015; 154 Lal (10.1016/j.compag.2025.110403_b0195) 2015; 133 Shen (10.1016/j.compag.2025.110403_b0340) 2022; 9 Dong (10.1016/j.compag.2025.110403_b0085) 2017; 48 Green (10.1016/j.compag.2025.110403_b0130) 1911; 4 Mahakur (10.1016/j.compag.2025.110403_b0240) 2025; 8 Wu (10.1016/j.compag.2025.110403_b0430) 2020; 187 Haverkamp (10.1016/j.compag.2025.110403_b0145) 1990; 149 Su (10.1016/j.compag.2025.110403_b0365) 2023; 54 Lewis (10.1016/j.compag.2025.110403_b0200) 1937; 18 Nie (10.1016/j.compag.2025.110403_b0275) 2015; 26 Bakhshi (10.1016/j.compag.2025.110403_b0010) 2023; 16 Li (10.1016/j.compag.2025.110403_b0205) 2025; 14 Feng (10.1016/j.compag.2025.110403_b0110) 2022; 38 Walker (10.1016/j.compag.2025.110403_b0400) 1987 Dai (10.1016/j.compag.2025.110403_b0070) 2013; 14 Ma (10.1016/j.compag.2025.110403_b0235) 2020; 57 Zhao (10.1016/j.compag.2025.110403_b0460) 2004; 20 Costabile (10.1016/j.compag.2025.110403_b0065) 2023; 275 Singh (10.1016/j.compag.2025.110403_b0355) 1987; 113 Carsel (10.1016/j.compag.2025.110403_b0045) 1988; 24 Dialameh (10.1016/j.compag.2025.110403_b0080) 2022; 71 Samantaray (10.1016/j.compag.2025.110403_b0315) 2025; 649 Šimunek Jirka (10.1016/j.compag.2025.110403_b0350) 1998 Li (10.1016/j.compag.2025.110403_b0210) 2024; 14 Ma (10.1016/j.compag.2025.110403_b0230) 2015; 51 Zhang (10.1016/j.compag.2025.110403_b0445) 2019; 47 Neuman (10.1016/j.compag.2025.110403_b0265) 1973; 99 Sepahvand (10.1016/j.compag.2025.110403_b0330) 2022; 15 Neuman (10.1016/j.compag.2025.110403_b0270) 1976; 12 Pan (10.1016/j.compag.2025.110403_b0280) 2015; 8 Xing (10.1016/j.compag.2025.110403_b0435) 2019; 136 Zeng (10.1016/j.compag.2025.110403_b0440) 2010; 26 Salahou (10.1016/j.compag.2025.110403_b0300) 2020; 15 Enciso-Medina (10.1016/j.compag.2025.110403_b0095) 1998; 124 Jia (10.1016/j.compag.2025.110403_b0180) 2024; 234 Wöhling (10.1016/j.compag.2025.110403_b0425) 2004; 130 Kumar (10.1016/j.compag.2025.110403_b0190) 2019; 68 Fok (10.1016/j.compag.2025.110403_b0120) 1984; 110 |
References_xml | – volume: 30 start-page: 637 year: 2022 end-page: 651 ident: b0160 article-title: High-efficiency and high-resolution numerical modeling for two-dimensional infiltration processes, accelerated by a graphics processing unit publication-title: Hydrogeol. J. – volume: 24 start-page: 755 year: 1988 end-page: 769 ident: b0045 article-title: Developing joint probability distributions of soil water retention characteristics publication-title: Water Resour. Res. – volume: 44 start-page: 107 year: 2018 end-page: 115 ident: b0450 article-title: Sensitivity analysis for parameters of crop growth simulation model publication-title: Agric. Life Sci. – volume: 9 start-page: 266 year: 2022 end-page: 275 ident: b0340 article-title: Assessment of dairy cow feed intake based on BP neural network with polynomial decay learning rate publication-title: Inf. Process. Agric. – volume: 140 year: 2014 ident: b0025 article-title: New results for an approximate method for calculating two-dimensional furrow infiltration publication-title: J. Irrig. Drain. Eng. – volume: 47 start-page: 32 year: 2019 end-page: 40 ident: b0445 article-title: Parameter sensitivity analysis of VG model in the varying-head infiltration based on HYDRUS-1D simulation publication-title: J. Hohai Univ. Nat. Sci. – volume: 154 start-page: 69 year: 2015 end-page: 75 ident: b0170 article-title: Non-destructively sensing pork’s freshness indicator using near infrared multispectral imaging technique publication-title: J. Food Eng. – volume: 48 start-page: 1293 year: 2017 end-page: 1302 ident: b0225 article-title: Parameter estimation for furrow infiltration model with Gene Expression Programming publication-title: J. Hydraul. Eng. – volume: 12 start-page: 57 year: 1976 end-page: 64 ident: b0260 article-title: An integrated finite difference method for analyzing fluid flow in porous media publication-title: Water Resour. Res. – volume: 142 year: 2015 ident: b0030 article-title: The SRFR 5 modeling system for surface irrigation publication-title: J. Irrig. Drain. Eng. – volume: 234 year: 2024 ident: b0180 article-title: The effects of different factors on soil water infiltration properties in high mountain Asia: a meta-analysis publication-title: Catena – volume: 51 start-page: 33 year: 2015 end-page: 41 ident: b0230 article-title: Effect of soil texture on water infiltration in semiarid reclaimed land publication-title: Water Qual. Res. J. – volume: 30 start-page: 2931 year: 1994 end-page: 2935 ident: b0150 article-title: Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation publication-title: Water Resour. Res. – volume: 8 start-page: 265 year: 2025 end-page: 275 ident: b0240 article-title: Prediction of runoff at ungauged areas employing interpolation techniques and deep learning algorithm publication-title: Hydro Res. – volume: 62 start-page: 585 year: 1998 end-page: 592 ident: b0335 article-title: Integral method for estimating soil hydraulic properties publication-title: Soil Sci. Soc. Am. J. – volume: 187 year: 2020 ident: b0430 article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping publication-title: Catena – volume: 14 start-page: 869 year: 2013 end-page: 887 ident: b0070 article-title: Development of a china dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling publication-title: J. Hydrometeor. – volume: 21 start-page: 38 year: 2005 end-page: 41 ident: b0455 article-title: Experimental study on influence factors of two-dimensional infiltration in furrow irrigation publication-title: Trans. CSAE – start-page: 787 year: 2023 end-page: 792 ident: b0040 article-title: GWO-BP-AdaBoost: enhancing classification performance of bp neural networks through gwo-based optimization and adaboost integration publication-title: 2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems (ICPICS) – volume: 119 start-page: 443 year: 1993 end-page: 457 ident: b0325 article-title: Transient infiltration from cavities. i: theory publication-title: J. Irrig. Drain. Eng. – volume: 136 start-page: 104 year: 2019 end-page: 114 ident: b0435 article-title: Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF) publication-title: Renew. Energy – volume: 9 start-page: 671 year: 1966 end-page: 674 ident: b0055 article-title: Evaluation of intake rate constants as related to advance of water in surface irrigation publication-title: Trans. ASAE – volume: 99 start-page: 2233 year: 1973 end-page: 2250 ident: b0265 article-title: Saturated-unsaturated seepage by finite elements publication-title: J. Hydraul. Div. – volume: 43 year: 2007 ident: b0405 article-title: Infiltration from a strip source publication-title: Water Resour. Res. – volume: 649 year: 2025 ident: b0315 article-title: River discharge prediction based multivariate climatological variables using hybridized long short-term memory with nature inspired algorithm publication-title: J. Hydrol. – volume: 118 start-page: 791 year: 1992 end-page: 806 ident: b0395 article-title: Two-dimensional analysis of furrow infiltration publication-title: J. Irrig. Drain. Eng. – volume: 23 start-page: 1633 year: 1987 end-page: 1644 ident: b0295 article-title: Two- and three-dimensional steady quasi-linear infiltration from buried and surface cavities using boundary element techniques publication-title: Water Resour. Res. – volume: 14 start-page: 12889 year: 2024 ident: b0310 article-title: Suspended sediment load prediction using sparrow search algorithm-based support vector machine model publication-title: Sci. Rep. – volume: 2 start-page: 349 year: 2009 end-page: 360 ident: b0140 article-title: Multi-class AdaBoost publication-title: Statist. Interf. – volume: 68 start-page: 588 year: 2019 end-page: 601 ident: b0190 article-title: Assessment of infiltration rate of soil using empirical and machine learning-based models publication-title: Irrig. Drain. – volume: 29 start-page: 259 year: 2008 end-page: 263 ident: b0220 article-title: Sensitivity analysis on parameters of ALMANAC crop model publication-title: Chinese J. Agrometeorol. – volume: 149 year: 1990 ident: b0145 article-title: Infiltration under ponded conditions: 3. a predictive equation based on physical parameters publication-title: Soil Sci. – volume: 145 year: 2019 ident: b0135 article-title: Variability of furrow infiltration and estimated infiltration parameters in a macroporous soil publication-title: J. Irrig. Drain. Eng. – year: 2006 ident: b0375 article-title: Galerkin Finite Element Method for Parabolic Problems – volume: 4 start-page: 251 year: 1981 end-page: 267 ident: b0060 article-title: Evaluation of infiltration measurements for border irrigation publication-title: Agric. Water Manage. – volume: 69 start-page: 632 year: 2023 end-page: 647 ident: b0115 article-title: Scaling of kostiakov-lewis equation and estimation of scaling factors at field scale publication-title: Arch. Agron. Soil Sci. – volume: 12 start-page: 564 year: 1976 end-page: 566 ident: b0270 article-title: Wetting front pressure head in the infiltration model of green and ampt publication-title: Water Resour. Res. – volume: 3 start-page: 1 year: 2008 end-page: 240 ident: b0345 article-title: The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media publication-title: University of California-Riverside Research Reports – volume: 4 start-page: 1 year: 1911 end-page: 24 ident: b0130 article-title: Studies in soil physics: I. The flow of air and water through soils publication-title: J Agric Sci. – volume: 26 start-page: 24 year: 2010 end-page: 30 ident: b0440 article-title: Effect of initial water content on vertical line-source infiltration characteristics of soil publication-title: Trans. CSAE – volume: 124 start-page: 73 year: 1998 end-page: 80 ident: b0095 article-title: Infiltration model for furrow irrigation publication-title: J. Irrig. Drain. Eng. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0245 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. – volume: 133 start-page: 318 year: 2015 end-page: 327 ident: b0195 article-title: Physical verification of the effect of land features and antecedent moisture on runoff curve number publication-title: CATENA – volume: 1 year: 2024 ident: b0305 article-title: Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm publication-title: Clean. Water – volume: 14 start-page: 65 year: 2003 end-page: 74 ident: b0125 article-title: A role for “one-factor-at-a-time” experimentation in parameter design publication-title: Res. Eng. Des. – volume: 6 start-page: 132 year: 2012 end-page: 137 ident: b0385 article-title: Optimize of all effective infiltration parameters in furrow irrigation using visual basic and genetic algorithm programming publication-title: Aust. J. Basic Appl. Sci. – volume: 48 start-page: 1000 year: 2017 end-page: 1298 ident: b0085 article-title: Parameter optimization of black tea fermentation machine based on RSM and BP-AdaBoost-GA publication-title: Trans. Chinese Soc. Agric. Mach. – volume: 44 start-page: 892 year: 1980 end-page: 898 ident: b0390 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. – volume: 72 start-page: 1568 year: 2018 end-page: 4946 ident: b0100 article-title: A Grey Wolf Optimizer-based neural network coupled with response surface method for modeling the strength of siro-spun yarn in spinning mills publication-title: Appl. Soft Comput. – volume: 14 year: 2025 ident: b0205 article-title: Using machine learning to predict outcomes following thoracic and complex endovascular aortic aneurysm repair publication-title: J. Am. Heart Assoc. – volume: 133 start-page: 307 year: 2007 end-page: 313 ident: b0410 article-title: Explicit Infiltration Function for Furrows publication-title: J. Irrig. Drain. Eng. – volume: 15 year: 2020 ident: b0300 article-title: An improved approach to estimating the infiltration characteristics in surface irrigation systems publication-title: PLoS One – volume: 54 start-page: 324 year: 2023 end-page: 334 ident: b0365 article-title: Inversion of soil hydrodynamic parameters with richards equation based on intelligent optimization algorithm publication-title: Trans. CSAE – volume: 150 year: 2024 ident: b0090 article-title: Accounting for interference effects in furrow infiltration with moment analysis publication-title: J. Irrig. Drain. Eng. – volume: 47 start-page: 171 year: 2016 end-page: 178 ident: b0165 article-title: Influencing factors of soil infiltration rate and its estimation model at runoff-plot scale publication-title: Trans. CSAE – volume: 68 start-page: 353 year: 1973 end-page: 360 ident: b0075 article-title: One-at-a-time plans publication-title: J. Am. Stat. Assoc. – volume: 129 year: 2024 ident: b0370 article-title: Hybridized artificial intelligence models with nature-inspired algorithms for river flow modeling: A comprehensive review, assessment, and possible future research directions publication-title: Eng. Appl. Artif. Intell. – volume: 23 start-page: 1514 year: 1987 end-page: 1522 ident: b0415 article-title: Macroscopic and microscopic capillary length and time scales from field infiltration publication-title: Water Resour. Res. – start-page: 529 year: 1975 end-page: 530 ident: b0155 publication-title: Adaptation In Natural And Artificial Systems – year: 1987 ident: b0400 article-title: Surface Irrigation: Theory and practice – volume: 66 start-page: 218 year: 2017 end-page: 226 ident: b0005 article-title: Furrow lateral wetting potential for optimizing bed width in silty clay publication-title: Irrig. Drain. – volume: 38 start-page: 64 year: 2022 end-page: 75 ident: b0110 article-title: Multiple scale variability of soil infiltration characteristics and establishment of pedo-transfer function publication-title: Trans. Chinese Soc. Agric. Eng. – volume: 33 start-page: 161 year: 1991 end-page: 174 ident: b0255 article-title: Factorial sampling plans for preliminary computational experiments publication-title: Technometrics – volume: 14 start-page: 11792 year: 2024 ident: b0210 article-title: Performance evaluation of hybrid PSO-BPNN-AdaBoost and PSO-BPNN-XGBoost models for rockburst prediction with imbalanced datasets publication-title: Appl. Sci. – volume: 69 start-page: 52 year: 2020 end-page: 62 ident: b0250 article-title: Methods of infiltration estimation for furrow irrigation publication-title: Irrig. Drain. – year: 1998 ident: b0350 article-title: The HYDRUS-2D software package for simulating water flow and solute transport in two dimensional variably saturated media Version 2.0 – volume: 6 start-page: 620 year: 2020 end-page: 627 ident: b0380 article-title: Predictive model of energy consumption for office building by using improved GWO-BP publication-title: Energy Rep. – volume: 18 start-page: 361 year: 1937 end-page: 368 ident: b0200 article-title: The rate of infiltration of water in irrigation practice. Trans publication-title: Am. Geophys. Union – volume: 20 start-page: 48 year: 2004 end-page: 50 ident: b0460 article-title: Artificial neural network model for soil infiltration in slope farmland publication-title: Trans. Chinese Soc. Agric. Eng. – volume: 15 start-page: 1861 year: 2022 end-page: 1877 ident: b0330 article-title: Evaluation of deep machine learning-based models of soil cumulative infiltration publication-title: Earth Sci. Inform. – volume: 16 start-page: 3839 year: 2023 end-page: 3860 ident: b0010 article-title: Estimating soil–water characteristic curve (SWCC) using machine learning and soil micro-porosity analysis publication-title: Earth Sci. Inform. – volume: 26 start-page: 801 year: 2015 end-page: 810 ident: b0275 article-title: Simplified calculating method for cumulative infiltration of furrow irrigation publication-title: Adv. Water Sci. – volume: 71 start-page: 1180 year: 2022 end-page: 1194 ident: b0080 article-title: Field evaluation of an explicit infiltration function for conventional and alternate furrow irrigation publication-title: Irrig. Drain. – volume: 8 start-page: 749 year: 2015 end-page: 757 ident: b0280 article-title: Simultaneous and rapid measurement of main compositions in black tea infusion using a developed spectroscopy system combined with multivariate calibration publication-title: Food Anal. Methods – volume: 113 start-page: 266 year: 1987 end-page: 278 ident: b0355 article-title: 1‐D, 2‐D, and 3‐D Infiltration for Irrigation publication-title: J. Irrig. Drain. Eng. – volume: 20 start-page: 1099 year: 1984 end-page: 1115 ident: b0175 article-title: Techniques for making finite elements competitve in modeling flow in variably saturated porous media publication-title: Water Resour. Res. – volume: 57 start-page: 347 year: 2020 end-page: 358 ident: b0235 article-title: Water infiltration characteristics of layered soil under influences of different factors and estimation of hydraulic parameters publication-title: Acta Pedol. Sin. – volume: 130 start-page: 349 year: 2004 end-page: 356 ident: b0425 article-title: Physically based modeling of interacting surface–subsurface flow during furrow irrigation advance publication-title: J. Irrig. Drain. Eng. – volume: 110 start-page: 208 year: 1984 end-page: 217 ident: b0120 article-title: 2‐D Infiltration equations for furrow irrigation publication-title: J. Irrig. Drain. Eng. – volume: 35 year: 2021 ident: b0285 article-title: Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: a study in Western Iran publication-title: J. Hydrol. Stud. – volume: 275 year: 2023 ident: b0065 article-title: High-resolution 2D modelling for simulating and improving the management of border irrigation publication-title: Agric. Water Manag. – volume: 43 year: 2007 ident: 10.1016/j.compag.2025.110403_b0405 article-title: Infiltration from a strip source publication-title: Water Resour. Res. doi: 10.1029/2006WR004975 – volume: 133 start-page: 318 year: 2015 ident: 10.1016/j.compag.2025.110403_b0195 article-title: Physical verification of the effect of land features and antecedent moisture on runoff curve number publication-title: CATENA doi: 10.1016/j.catena.2015.06.001 – volume: 26 start-page: 24 year: 2010 ident: 10.1016/j.compag.2025.110403_b0440 article-title: Effect of initial water content on vertical line-source infiltration characteristics of soil publication-title: Trans. CSAE – volume: 72 start-page: 1568 year: 2018 ident: 10.1016/j.compag.2025.110403_b0100 article-title: A Grey Wolf Optimizer-based neural network coupled with response surface method for modeling the strength of siro-spun yarn in spinning mills publication-title: Appl. Soft Comput. – volume: 47 start-page: 171 year: 2016 ident: 10.1016/j.compag.2025.110403_b0165 article-title: Influencing factors of soil infiltration rate and its estimation model at runoff-plot scale publication-title: Trans. CSAE – volume: 154 start-page: 69 year: 2015 ident: 10.1016/j.compag.2025.110403_b0170 article-title: Non-destructively sensing pork’s freshness indicator using near infrared multispectral imaging technique publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2015.01.006 – volume: 18 start-page: 361 year: 1937 ident: 10.1016/j.compag.2025.110403_b0200 article-title: The rate of infiltration of water in irrigation practice. Trans publication-title: Am. Geophys. Union doi: 10.1029/TR018i002p00361 – start-page: 529 year: 1975 ident: 10.1016/j.compag.2025.110403_b0155 – year: 1998 ident: 10.1016/j.compag.2025.110403_b0350 – volume: 9 start-page: 671 year: 1966 ident: 10.1016/j.compag.2025.110403_b0055 article-title: Evaluation of intake rate constants as related to advance of water in surface irrigation publication-title: Trans. ASAE doi: 10.13031/2013.40068 – volume: 118 start-page: 791 year: 1992 ident: 10.1016/j.compag.2025.110403_b0395 article-title: Two-dimensional analysis of furrow infiltration publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(1992)118:5(791) – volume: 69 start-page: 632 year: 2023 ident: 10.1016/j.compag.2025.110403_b0115 article-title: Scaling of kostiakov-lewis equation and estimation of scaling factors at field scale publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2021.2022124 – volume: 6 start-page: 620 year: 2020 ident: 10.1016/j.compag.2025.110403_b0380 article-title: Predictive model of energy consumption for office building by using improved GWO-BP publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.03.003 – volume: 20 start-page: 1099 year: 1984 ident: 10.1016/j.compag.2025.110403_b0175 article-title: Techniques for making finite elements competitve in modeling flow in variably saturated porous media publication-title: Water Resour. Res. doi: 10.1029/WR020i008p01099 – volume: 12 start-page: 57 year: 1976 ident: 10.1016/j.compag.2025.110403_b0260 article-title: An integrated finite difference method for analyzing fluid flow in porous media publication-title: Water Resour. Res. doi: 10.1029/WR012i001p00057 – volume: 1 year: 2024 ident: 10.1016/j.compag.2025.110403_b0305 article-title: Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm publication-title: Clean. Water – volume: 150 year: 2024 ident: 10.1016/j.compag.2025.110403_b0090 article-title: Accounting for interference effects in furrow infiltration with moment analysis publication-title: J. Irrig. Drain. Eng. – volume: 12 start-page: 564 year: 1976 ident: 10.1016/j.compag.2025.110403_b0270 article-title: Wetting front pressure head in the infiltration model of green and ampt publication-title: Water Resour. Res. doi: 10.1029/WR012i003p00564 – volume: 142 year: 2015 ident: 10.1016/j.compag.2025.110403_b0030 article-title: The SRFR 5 modeling system for surface irrigation publication-title: J. Irrig. Drain. Eng. – start-page: 787 year: 2023 ident: 10.1016/j.compag.2025.110403_b0040 article-title: GWO-BP-AdaBoost: enhancing classification performance of bp neural networks through gwo-based optimization and adaboost integration – volume: 14 start-page: 65 year: 2003 ident: 10.1016/j.compag.2025.110403_b0125 article-title: A role for “one-factor-at-a-time” experimentation in parameter design publication-title: Res. Eng. Des. doi: 10.1007/s00163-002-0026-9 – volume: 4 start-page: 251 year: 1981 ident: 10.1016/j.compag.2025.110403_b0060 article-title: Evaluation of infiltration measurements for border irrigation publication-title: Agric. Water Manage. doi: 10.1016/0378-3774(81)90010-X – volume: 48 start-page: 1000 year: 2017 ident: 10.1016/j.compag.2025.110403_b0085 article-title: Parameter optimization of black tea fermentation machine based on RSM and BP-AdaBoost-GA publication-title: Trans. Chinese Soc. Agric. Mach. – volume: 140 year: 2014 ident: 10.1016/j.compag.2025.110403_b0025 article-title: New results for an approximate method for calculating two-dimensional furrow infiltration publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000753 – volume: 68 start-page: 588 year: 2019 ident: 10.1016/j.compag.2025.110403_b0190 article-title: Assessment of infiltration rate of soil using empirical and machine learning-based models publication-title: Irrig. Drain. doi: 10.1002/ird.2332 – volume: 130 start-page: 349 year: 2004 ident: 10.1016/j.compag.2025.110403_b0425 article-title: Physically based modeling of interacting surface–subsurface flow during furrow irrigation advance publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2004)130:5(349) – volume: 234 year: 2024 ident: 10.1016/j.compag.2025.110403_b0180 article-title: The effects of different factors on soil water infiltration properties in high mountain Asia: a meta-analysis publication-title: Catena doi: 10.1016/j.catena.2023.107583 – volume: 15 year: 2020 ident: 10.1016/j.compag.2025.110403_b0300 article-title: An improved approach to estimating the infiltration characteristics in surface irrigation systems publication-title: PLoS One doi: 10.1371/journal.pone.0234480 – volume: 15 start-page: 1861 year: 2022 ident: 10.1016/j.compag.2025.110403_b0330 article-title: Evaluation of deep machine learning-based models of soil cumulative infiltration publication-title: Earth Sci. Inform. doi: 10.1007/s12145-022-00830-7 – volume: 44 start-page: 107 year: 2018 ident: 10.1016/j.compag.2025.110403_b0450 article-title: Sensitivity analysis for parameters of crop growth simulation model publication-title: Agric. Life Sci. – volume: 119 start-page: 443 year: 1993 ident: 10.1016/j.compag.2025.110403_b0325 article-title: Transient infiltration from cavities. i: theory publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(1993)119:3(443) – volume: 99 start-page: 2233 year: 1973 ident: 10.1016/j.compag.2025.110403_b0265 article-title: Saturated-unsaturated seepage by finite elements publication-title: J. Hydraul. Div. doi: 10.1061/JYCEAJ.0003829 – volume: 14 start-page: 12889 year: 2024 ident: 10.1016/j.compag.2025.110403_b0310 article-title: Suspended sediment load prediction using sparrow search algorithm-based support vector machine model publication-title: Sci. Rep. doi: 10.1038/s41598-024-63490-1 – volume: 649 year: 2025 ident: 10.1016/j.compag.2025.110403_b0315 article-title: River discharge prediction based multivariate climatological variables using hybridized long short-term memory with nature inspired algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132453 – volume: 47 start-page: 32 year: 2019 ident: 10.1016/j.compag.2025.110403_b0445 article-title: Parameter sensitivity analysis of VG model in the varying-head infiltration based on HYDRUS-1D simulation publication-title: J. Hohai Univ. Nat. Sci. – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.compag.2025.110403_b0245 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 24 start-page: 755 year: 1988 ident: 10.1016/j.compag.2025.110403_b0045 article-title: Developing joint probability distributions of soil water retention characteristics publication-title: Water Resour. Res. doi: 10.1029/WR024i005p00755 – volume: 124 start-page: 73 year: 1998 ident: 10.1016/j.compag.2025.110403_b0095 article-title: Infiltration model for furrow irrigation publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(1998)124:2(73) – volume: 54 start-page: 324 year: 2023 ident: 10.1016/j.compag.2025.110403_b0365 article-title: Inversion of soil hydrodynamic parameters with richards equation based on intelligent optimization algorithm publication-title: Trans. CSAE – volume: 136 start-page: 104 year: 2019 ident: 10.1016/j.compag.2025.110403_b0435 article-title: Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF) publication-title: Renew. Energy doi: 10.1016/j.renene.2018.12.088 – volume: 14 start-page: 869 year: 2013 ident: 10.1016/j.compag.2025.110403_b0070 article-title: Development of a china dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-12-0149.1 – volume: 3 start-page: 1 year: 2008 ident: 10.1016/j.compag.2025.110403_b0345 article-title: The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media publication-title: University of California-Riverside Research Reports – volume: 149 year: 1990 ident: 10.1016/j.compag.2025.110403_b0145 article-title: Infiltration under ponded conditions: 3. a predictive equation based on physical parameters publication-title: Soil Sci. doi: 10.1097/00010694-199005000-00006 – volume: 30 start-page: 637 year: 2022 ident: 10.1016/j.compag.2025.110403_b0160 article-title: High-efficiency and high-resolution numerical modeling for two-dimensional infiltration processes, accelerated by a graphics processing unit publication-title: Hydrogeol. J. doi: 10.1007/s10040-021-02444-7 – year: 2006 ident: 10.1016/j.compag.2025.110403_b0375 – volume: 14 year: 2025 ident: 10.1016/j.compag.2025.110403_b0205 article-title: Using machine learning to predict outcomes following thoracic and complex endovascular aortic aneurysm repair publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.124.039221 – volume: 9 start-page: 266 year: 2022 ident: 10.1016/j.compag.2025.110403_b0340 article-title: Assessment of dairy cow feed intake based on BP neural network with polynomial decay learning rate publication-title: Inf. Process. Agric. – volume: 23 start-page: 1514 year: 1987 ident: 10.1016/j.compag.2025.110403_b0415 article-title: Macroscopic and microscopic capillary length and time scales from field infiltration publication-title: Water Resour. Res. doi: 10.1029/WR023i008p01514 – volume: 21 start-page: 38 year: 2005 ident: 10.1016/j.compag.2025.110403_b0455 article-title: Experimental study on influence factors of two-dimensional infiltration in furrow irrigation publication-title: Trans. CSAE – volume: 129 year: 2024 ident: 10.1016/j.compag.2025.110403_b0370 article-title: Hybridized artificial intelligence models with nature-inspired algorithms for river flow modeling: A comprehensive review, assessment, and possible future research directions publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107559 – volume: 44 start-page: 892 year: 1980 ident: 10.1016/j.compag.2025.110403_b0390 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400050002x – volume: 66 start-page: 218 year: 2017 ident: 10.1016/j.compag.2025.110403_b0005 article-title: Furrow lateral wetting potential for optimizing bed width in silty clay publication-title: Irrig. Drain. doi: 10.1002/ird.2092 – volume: 14 start-page: 11792 year: 2024 ident: 10.1016/j.compag.2025.110403_b0210 article-title: Performance evaluation of hybrid PSO-BPNN-AdaBoost and PSO-BPNN-XGBoost models for rockburst prediction with imbalanced datasets publication-title: Appl. Sci. doi: 10.3390/app142411792 – volume: 62 start-page: 585 year: 1998 ident: 10.1016/j.compag.2025.110403_b0335 article-title: Integral method for estimating soil hydraulic properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1998.03615995006200030005x – year: 1987 ident: 10.1016/j.compag.2025.110403_b0400 – volume: 187 year: 2020 ident: 10.1016/j.compag.2025.110403_b0430 article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2019.104396 – volume: 145 issue: 2 year: 2019 ident: 10.1016/j.compag.2025.110403_b0135 article-title: Variability of furrow infiltration and estimated infiltration parameters in a macroporous soil publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0001366 – volume: 113 start-page: 266 year: 1987 ident: 10.1016/j.compag.2025.110403_b0355 article-title: 1‐D, 2‐D, and 3‐D Infiltration for Irrigation publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(1987)113:2(266) – volume: 16 start-page: 3839 year: 2023 ident: 10.1016/j.compag.2025.110403_b0010 article-title: Estimating soil–water characteristic curve (SWCC) using machine learning and soil micro-porosity analysis publication-title: Earth Sci. Inform. doi: 10.1007/s12145-023-01131-3 – volume: 35 year: 2021 ident: 10.1016/j.compag.2025.110403_b0285 article-title: Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: a study in Western Iran publication-title: J. Hydrol. Stud. – volume: 48 start-page: 1293 year: 2017 ident: 10.1016/j.compag.2025.110403_b0225 article-title: Parameter estimation for furrow infiltration model with Gene Expression Programming publication-title: J. Hydraul. Eng. – volume: 30 start-page: 2931 year: 1994 ident: 10.1016/j.compag.2025.110403_b0150 article-title: Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation publication-title: Water Resour. Res. doi: 10.1029/94WR01788 – volume: 23 start-page: 1633 year: 1987 ident: 10.1016/j.compag.2025.110403_b0295 article-title: Two- and three-dimensional steady quasi-linear infiltration from buried and surface cavities using boundary element techniques publication-title: Water Resour. Res. doi: 10.1029/WR023i008p01633 – volume: 8 start-page: 749 year: 2015 ident: 10.1016/j.compag.2025.110403_b0280 article-title: Simultaneous and rapid measurement of main compositions in black tea infusion using a developed spectroscopy system combined with multivariate calibration publication-title: Food Anal. Methods doi: 10.1007/s12161-014-9954-z – volume: 71 start-page: 1180 year: 2022 ident: 10.1016/j.compag.2025.110403_b0080 article-title: Field evaluation of an explicit infiltration function for conventional and alternate furrow irrigation publication-title: Irrig. Drain. doi: 10.1002/ird.2722 – volume: 68 start-page: 353 year: 1973 ident: 10.1016/j.compag.2025.110403_b0075 article-title: One-at-a-time plans publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1973.10482433 – volume: 6 start-page: 132 year: 2012 ident: 10.1016/j.compag.2025.110403_b0385 article-title: Optimize of all effective infiltration parameters in furrow irrigation using visual basic and genetic algorithm programming publication-title: Aust. J. Basic Appl. Sci. – volume: 38 start-page: 64 year: 2022 ident: 10.1016/j.compag.2025.110403_b0110 article-title: Multiple scale variability of soil infiltration characteristics and establishment of pedo-transfer function publication-title: Trans. Chinese Soc. Agric. Eng. – volume: 110 start-page: 208 year: 1984 ident: 10.1016/j.compag.2025.110403_b0120 article-title: 2‐D Infiltration equations for furrow irrigation publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(1984)110:2(208) – volume: 57 start-page: 347 year: 2020 ident: 10.1016/j.compag.2025.110403_b0235 article-title: Water infiltration characteristics of layered soil under influences of different factors and estimation of hydraulic parameters publication-title: Acta Pedol. Sin. – volume: 20 start-page: 48 year: 2004 ident: 10.1016/j.compag.2025.110403_b0460 article-title: Artificial neural network model for soil infiltration in slope farmland publication-title: Trans. Chinese Soc. Agric. Eng. – volume: 2 start-page: 349 year: 2009 ident: 10.1016/j.compag.2025.110403_b0140 article-title: Multi-class AdaBoost publication-title: Statist. Interf. doi: 10.4310/SII.2009.v2.n3.a8 – volume: 275 year: 2023 ident: 10.1016/j.compag.2025.110403_b0065 article-title: High-resolution 2D modelling for simulating and improving the management of border irrigation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.108042 – volume: 69 start-page: 52 year: 2020 ident: 10.1016/j.compag.2025.110403_b0250 article-title: Methods of infiltration estimation for furrow irrigation publication-title: Irrig. Drain. doi: 10.1002/ird.2392 – volume: 26 start-page: 801 year: 2015 ident: 10.1016/j.compag.2025.110403_b0275 article-title: Simplified calculating method for cumulative infiltration of furrow irrigation publication-title: Adv. Water Sci. – volume: 29 start-page: 259 year: 2008 ident: 10.1016/j.compag.2025.110403_b0220 article-title: Sensitivity analysis on parameters of ALMANAC crop model publication-title: Chinese J. Agrometeorol. – volume: 133 start-page: 307 year: 2007 ident: 10.1016/j.compag.2025.110403_b0410 article-title: Explicit Infiltration Function for Furrows publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:4(307) – volume: 8 start-page: 265 year: 2025 ident: 10.1016/j.compag.2025.110403_b0240 article-title: Prediction of runoff at ungauged areas employing interpolation techniques and deep learning algorithm publication-title: Hydro Res. – volume: 33 start-page: 161 year: 1991 ident: 10.1016/j.compag.2025.110403_b0255 article-title: Factorial sampling plans for preliminary computational experiments publication-title: Technometrics doi: 10.1080/00401706.1991.10484804 – volume: 4 start-page: 1 year: 1911 ident: 10.1016/j.compag.2025.110403_b0130 article-title: Studies in soil physics: I. The flow of air and water through soils publication-title: J Agric Sci. – volume: 51 start-page: 33 year: 2015 ident: 10.1016/j.compag.2025.110403_b0230 article-title: Effect of soil texture on water infiltration in semiarid reclaimed land publication-title: Water Qual. Res. J. doi: 10.2166/wqrjc.2015.025 |
SSID | ssj0016987 |
Score | 2.4354453 |
Snippet | •The range of parameter γ is 0.60–0.94.•The edge effect’s relative contribution to the total furrow infiltration is 21.0%–41.7%.•A GWO–BPNN–AdaBoost model is... This study expands the analysis of the parameter γ in the approximate furrow infiltration model (FIM) proposed by Bautista et al. On the basis of the obtained... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 110403 |
SubjectTerms | Adaptive boosting (AdaBoost) agriculture algorithms Backpropagation neural network (BPNN) Edge effect edge effects electronics Furrow irrigation furrows Gray wolf optimization (GWO) hydraulic conductivity prediction regression analysis soil texture |
Title | Method for estimating parameter γ in a two-dimensional approximate furrow infiltration model |
URI | https://dx.doi.org/10.1016/j.compag.2025.110403 https://www.proquest.com/docview/3206192933 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8xibZTTY5lmKpir1ooRdZstndUtG01BY9-af8H_4mZzaJoB4EjwmzS5jdeZFvviHkLFTMWggdnsiZ9TjXYFI2BXMHZyl0FgqhHUB2GA9G_GocjRukV_fCIKyy8v2lT3feunrTqbTZmU-nnVtIVpIgTlMI4khigo3mnAu85edvXzAPEEjKlukYqiWQrtvnHMbL4bwnUCWGEeLheT0663d4-uGoXfTpb5HNKm2k3fLLtknDFDtkoztZVNQZZpfc37hh0BSyUIrUGZiKFhOK3N5PiHmhH-90WtCMLl9mnkZS_5KQgzpa8VeUN9SukJMR5Oz0sSLUpW5Yzh4Z9S_uegOvGp7g5WHqL73cZ6mCAByA6rUyHHlywMlam1sFdsy1H0UZnEogYo0U-swqqEmDxOpABVmWsn3SLGaFOSBUsEhwFWgr8hDW-SpJeGCUb1RidJylLeLVOpPzkiND1uCxB1nqWKKOZanjFhG1YuW3s5bgxv9YeVqfgwQzwH8bWWFmq2fJQh9LwZSxw3_vfkTW8amE9x2T5nKxMieQcixV292pNlnrXl4Php9QX9fw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFLUqGIAB8RTlaSQYQ_Nw4mRgQEBVKHQBJBZk4tiuiiBFtFVh4af4D76Je50ECRiQkFgTO7KOr-9DOT6XkB1fBsZA6HB4FhiHMQVHyiRw3MFZcpX6nCtLkO1ErSt2eh1e18hbdRcGaZWl7y98uvXW5ZNGiWbjsddrXECyEntRkkAQRxGTilnZ1i9jqNsG-ydHsMm7vt88vjxsOWVrASfzE3foZG6QSAhPHixMSc1QRQZckDGZkWDlTLlhmMKaPR4pFJgPjISKzYuN8qSXpqjABH5_koG7wLYJe6-fvBJYUVzc0Y6gPIPlVff1LKnMEsu7UJb6IRLwWdWr62c8_BYZbLhrzpHZMk-lBwUU86Sm8wUyc9B9KrU69CK5ObfdpymkvRS1OjD3zbsUxcQfkGRD399oL6cpHY77jsIuAoUCCLU65s84XlMzQhFIGGd696WCL7XdeZbI1b9Aukwm8n6uVwjlQciZ9JThmQ_zXBnHzNPS1TLWKkqTOnEqzMRjIcohKrbanSgwFoixKDCuE14BK74Yl4C48cvM7WofBJw7_JmS5ro_GojAd7H2TIJg9c9f3yJTrcvzM3F20mmvkWl8U3AL18nE8GmkNyDfGcpNa1-U3P63QX8ACG4Tqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+estimating+parameter+%CE%B3+in+a+two-dimensional+approximate+furrow+infiltration+model&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Li%2C+Ge&rft.au=Nie%2C+Weibo&rft.au=Li%2C+Yuchen&rft.au=Zhang%2C+Wei&rft.date=2025-08-01&rft.issn=0168-1699&rft.volume=235&rft.spage=110403&rft_id=info:doi/10.1016%2Fj.compag.2025.110403&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2025_110403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |