Microgrids for Service Restoration to Critical Load in a Resilient Distribution System

Microgrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs)...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 9; no. 1; pp. 426 - 437
Main Authors Yin Xu, Chen-Ching Liu, Schneider, Kevin P., Tuffner, Francis K., Ton, Dan T.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microgrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. By introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman.
AbstractList icrogrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. By introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman.
Microgrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. By introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman.
Author Ton, Dan T.
Chen-Ching Liu
Schneider, Kevin P.
Yin Xu
Tuffner, Francis K.
Author_xml – sequence: 1
  surname: Yin Xu
  fullname: Yin Xu
  email: yxu2@eecs.wsu.edu
  organization: Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA
– sequence: 2
  surname: Chen-Ching Liu
  fullname: Chen-Ching Liu
  email: liu@eecs.wsu.edu
  organization: Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA
– sequence: 3
  givenname: Kevin P.
  surname: Schneider
  fullname: Schneider, Kevin P.
  email: kevin.schneider@pnnl.gov
  organization: Battelle Seattle Res. Center, Pacific Northwest Nat. Lab., Seattle, WA, USA
– sequence: 4
  givenname: Francis K.
  surname: Tuffner
  fullname: Tuffner, Francis K.
  email: francis.tuffner@pnnl.gov
  organization: Battelle Seattle Res. Center, Pacific Northwest Nat. Lab., Seattle, WA, USA
– sequence: 5
  givenname: Dan T.
  surname: Ton
  fullname: Ton, Dan T.
  email: dan.ton@hq.doe.gov
  organization: U.S. Dept. of Energy, Office of Electr. Delivery & Energy Reliability, Washington, DC, USA
BackLink https://www.osti.gov/biblio/1421344$$D View this record in Osti.gov
BookMark eNp9kE1LAzEQhoNUsNbeBS_Be2uy2c1ujlK1ChXBVq8hm53Vke1Gkij035t-4MGDc5lh5nmHmfeUDHrXAyHnnE05Z-pqtZxPM8blNCsULwQ_IkOucjURTPLBb12IEzIO4YOlEELITA3J6yNa7948NoG2ztMl-G-0QJ8hROdNRNfT6OjMY0RrOrpwpqHYU7MlsEPoI73BED3WXzt4uQkR1mfkuDVdgPEhj8jL3e1qdj9ZPM0fZteLic0Ui5O6lkWdMVPmspFQmdLyMk2ygnErLasq2dR5arFWFZUBEKoxuWjaui3rSjVSjMjlfq8LEXWwGMG-W9f3YKPmecZFnidI7qH0aQgeWp243WvRG-w0Z3rrok4u6q2L-uBiErI_wk-Pa-M3_0ku9hIEgF-8LNIhrBI_cfp_Sw
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1049_stg2_12021
crossref_primary_10_1109_TIE_2024_3451135
crossref_primary_10_1016_j_rser_2023_113991
crossref_primary_10_1016_j_ijepes_2021_107068
crossref_primary_10_1109_ACCESS_2020_3038133
crossref_primary_10_1002_2050_7038_12610
crossref_primary_10_1109_ACCESS_2019_2891786
crossref_primary_10_1088_1742_6596_2788_1_012003
crossref_primary_10_1109_TSG_2018_2879793
crossref_primary_10_1016_j_jclepro_2019_03_141
crossref_primary_10_1109_ACCESS_2022_3195492
crossref_primary_10_1016_j_renene_2020_08_074
crossref_primary_10_1109_TIE_2019_2956417
crossref_primary_10_1049_gtd2_12307
crossref_primary_10_1016_j_segan_2021_100464
crossref_primary_10_1109_TIA_2020_3023669
crossref_primary_10_1016_j_epsr_2023_110050
crossref_primary_10_1016_j_apenergy_2023_122424
crossref_primary_10_1109_TIE_2023_3340206
crossref_primary_10_1016_j_est_2020_101542
crossref_primary_10_3390_s23031200
crossref_primary_10_1109_TPWRS_2023_3276827
crossref_primary_10_1049_tje2_12057
crossref_primary_10_1002_2050_7038_13159
crossref_primary_10_1038_s41467_024_49207_y
crossref_primary_10_1016_j_est_2020_102086
crossref_primary_10_1109_TII_2023_3271750
crossref_primary_10_1007_s40866_024_00218_0
crossref_primary_10_1109_ACCESS_2022_3177143
crossref_primary_10_1109_TPWRS_2022_3219519
crossref_primary_10_3390_en16093953
crossref_primary_10_1016_j_ijepes_2024_109895
crossref_primary_10_1049_esi2_12067
crossref_primary_10_1109_TPWRS_2021_3137257
crossref_primary_10_1109_TSG_2018_2824820
crossref_primary_10_1109_TSG_2023_3327603
crossref_primary_10_1051_e3sconf_202340905014
crossref_primary_10_1109_TIA_2020_2972854
crossref_primary_10_1109_JSYST_2020_2965993
crossref_primary_10_1016_j_jclepro_2020_125023
crossref_primary_10_1049_rpg2_12705
crossref_primary_10_1109_TPWRS_2022_3209919
crossref_primary_10_1109_TPWRS_2022_3149524
crossref_primary_10_1109_TSG_2020_3010570
crossref_primary_10_1109_TSG_2022_3167436
crossref_primary_10_1016_j_ijepes_2024_109982
crossref_primary_10_1016_j_energy_2023_129314
crossref_primary_10_1049_iet_gtd_2018_5915
crossref_primary_10_1016_j_ijepes_2018_07_025
crossref_primary_10_1109_TAI_2023_3314395
crossref_primary_10_1016_j_epsr_2020_106873
crossref_primary_10_1016_j_epsr_2022_108454
crossref_primary_10_1016_j_scs_2022_103975
crossref_primary_10_1049_iet_gtd_2020_0531
crossref_primary_10_1109_TSMC_2020_2997794
crossref_primary_10_1016_j_apenergy_2022_120422
crossref_primary_10_1016_j_nexus_2024_100311
crossref_primary_10_1049_joe_2018_0153
crossref_primary_10_1049_joe_2018_0151
crossref_primary_10_1109_ACCESS_2022_3207772
crossref_primary_10_1109_TSG_2016_2638854
crossref_primary_10_1109_TPWRS_2022_3176024
crossref_primary_10_1049_stg2_12005
crossref_primary_10_1016_j_ijepes_2023_109210
crossref_primary_10_1088_1742_6596_2564_1_012015
crossref_primary_10_1109_ACCESS_2023_3292254
crossref_primary_10_1109_ACCESS_2018_2873615
crossref_primary_10_1109_TSUSC_2022_3227749
crossref_primary_10_1109_TSG_2021_3105234
crossref_primary_10_1049_rpg2_12842
crossref_primary_10_1109_TSTE_2020_2994174
crossref_primary_10_1016_j_rser_2021_111252
crossref_primary_10_1109_TSG_2021_3098570
crossref_primary_10_1016_j_rser_2020_110313
crossref_primary_10_1016_j_esd_2022_08_005
crossref_primary_10_1109_TPWRS_2023_3233992
crossref_primary_10_1109_TSG_2019_2953716
crossref_primary_10_1088_1742_6596_2320_1_012014
crossref_primary_10_1049_gtd2_12100
crossref_primary_10_1115_1_4053296
crossref_primary_10_1016_j_ijepes_2020_106293
crossref_primary_10_1109_TSG_2020_2994111
crossref_primary_10_1016_j_apenergy_2023_120849
crossref_primary_10_1109_ACCESS_2021_3084368
crossref_primary_10_1063_1_5066264
crossref_primary_10_1109_ACCESS_2019_2930907
crossref_primary_10_1016_j_apenergy_2021_118507
crossref_primary_10_1049_gtd2_12470
crossref_primary_10_1109_JESTIE_2023_3343291
crossref_primary_10_1016_j_rser_2020_110201
crossref_primary_10_1109_TSG_2023_3307178
crossref_primary_10_1109_TPWRS_2018_2885763
crossref_primary_10_1109_TPWRS_2021_3056543
crossref_primary_10_1016_j_epsr_2021_107238
crossref_primary_10_1109_TPWRS_2018_2849265
crossref_primary_10_1109_TSG_2022_3225557
crossref_primary_10_1016_j_apenergy_2021_118189
crossref_primary_10_1109_TSG_2019_2891419
crossref_primary_10_1109_ACCESS_2019_2922994
crossref_primary_10_1109_TSTE_2022_3199161
crossref_primary_10_2139_ssrn_4172982
crossref_primary_10_1016_j_ifacol_2024_07_457
crossref_primary_10_1109_ACCESS_2019_2900728
crossref_primary_10_1016_j_isatra_2024_08_021
crossref_primary_10_3389_fenrg_2022_992966
crossref_primary_10_1016_j_rser_2022_112567
crossref_primary_10_1109_ACCESS_2019_2933642
crossref_primary_10_1109_TSG_2019_2930012
crossref_primary_10_1109_ACCESS_2019_2952362
crossref_primary_10_1016_j_ijepes_2019_105568
crossref_primary_10_1016_j_ijepes_2024_110023
crossref_primary_10_1049_enc2_12083
crossref_primary_10_1016_j_apenergy_2019_02_055
crossref_primary_10_1109_TPEL_2020_2972321
crossref_primary_10_1049_rpg2_12635
crossref_primary_10_1049_rpg2_12757
crossref_primary_10_1109_TSG_2018_2880255
crossref_primary_10_1016_j_apenergy_2018_06_096
crossref_primary_10_1049_iet_gtd_2019_0107
crossref_primary_10_1109_ACCESS_2023_3300292
crossref_primary_10_2139_ssrn_3979444
crossref_primary_10_1109_MIE_2019_2958039
crossref_primary_10_1016_j_ijepes_2024_110371
crossref_primary_10_1109_TSG_2019_2891515
crossref_primary_10_1109_TSG_2020_2995099
crossref_primary_10_1109_TSG_2022_3227752
crossref_primary_10_1016_j_ijepes_2019_105791
crossref_primary_10_1016_j_ijepes_2019_105550
crossref_primary_10_1109_ACCESS_2024_3397892
crossref_primary_10_1080_23311916_2019_1628424
crossref_primary_10_1016_j_ijepes_2021_107901
crossref_primary_10_1049_iet_stg_2019_0175
crossref_primary_10_1109_TIFS_2019_2960657
crossref_primary_10_1016_j_apenergy_2023_121295
crossref_primary_10_1016_j_egyr_2024_03_026
crossref_primary_10_1049_iet_stg_2019_0176
crossref_primary_10_1109_TSG_2021_3123937
crossref_primary_10_1016_j_ijdrr_2021_102319
crossref_primary_10_1049_gtd2_12947
crossref_primary_10_1109_JSYST_2021_3097263
crossref_primary_10_1088_1742_6596_2166_1_012044
crossref_primary_10_1109_JESTPE_2021_3071765
crossref_primary_10_1016_j_apenergy_2024_123633
crossref_primary_10_1049_iet_gtd_2018_6866
crossref_primary_10_1002_2050_7038_12348
crossref_primary_10_1049_tje2_12334
crossref_primary_10_1109_ACCESS_2019_2917052
crossref_primary_10_1088_1742_6596_2477_1_012054
crossref_primary_10_1109_ACCESS_2019_2948372
crossref_primary_10_1016_j_tej_2020_106864
crossref_primary_10_1016_j_rser_2024_114953
crossref_primary_10_3390_en17010100
crossref_primary_10_1109_ACCESS_2020_3003325
crossref_primary_10_1109_TSG_2022_3179593
crossref_primary_10_1049_iet_gtd_2018_5883
crossref_primary_10_1109_TSG_2022_3195989
crossref_primary_10_1049_gtd2_12713
crossref_primary_10_1109_TSG_2022_3192910
crossref_primary_10_1109_ACCESS_2022_3183788
crossref_primary_10_1109_COMST_2020_3023963
crossref_primary_10_1016_j_apenergy_2021_118301
crossref_primary_10_1109_TIA_2022_3146103
crossref_primary_10_1109_ACCESS_2023_3244872
crossref_primary_10_1109_TSG_2021_3095485
crossref_primary_10_1016_j_ref_2023_06_007
crossref_primary_10_1109_TII_2019_2923714
crossref_primary_10_1016_j_apenergy_2021_117921
crossref_primary_10_1109_TPWRS_2024_3399122
crossref_primary_10_1109_TSG_2023_3322682
crossref_primary_10_1049_iet_est_2019_0145
crossref_primary_10_1016_j_ijepes_2022_108738
crossref_primary_10_1049_iet_gtd_2019_1123
crossref_primary_10_1016_j_apenergy_2024_124389
crossref_primary_10_1109_OAJPE_2023_3282188
crossref_primary_10_1109_TSG_2021_3127518
crossref_primary_10_1109_TPWRS_2020_2982795
crossref_primary_10_1016_j_segan_2023_101014
crossref_primary_10_1109_TIA_2024_3397745
crossref_primary_10_1109_TPWRS_2024_3386851
crossref_primary_10_1109_TPWRS_2017_2765600
crossref_primary_10_1016_j_rser_2024_115143
crossref_primary_10_1016_j_ijepes_2021_107234
crossref_primary_10_1016_j_ijepes_2023_109612
crossref_primary_10_1016_j_egyr_2022_01_060
crossref_primary_10_1109_JSYST_2019_2890898
crossref_primary_10_1049_iet_esi_2019_0134
crossref_primary_10_1088_1742_6596_2703_1_012030
crossref_primary_10_1016_j_ijepes_2025_110510
crossref_primary_10_1109_TSTE_2022_3148236
crossref_primary_10_1109_JESTPE_2020_2981921
crossref_primary_10_1109_TIA_2023_3336851
crossref_primary_10_1049_rpg2_12563
crossref_primary_10_1155_2020_8880661
crossref_primary_10_1109_ACCESS_2024_3411601
crossref_primary_10_1016_j_egyr_2022_12_023
crossref_primary_10_1002_2050_7038_12934
crossref_primary_10_1049_iet_gtd_2019_0973
crossref_primary_10_1109_TSG_2018_2803141
crossref_primary_10_1049_gtd2_13155
crossref_primary_10_1049_iet_rpg_2018_5237
crossref_primary_10_1109_JPROC_2017_2696878
crossref_primary_10_1109_TPWRS_2018_2822295
crossref_primary_10_1109_TSG_2020_3042111
crossref_primary_10_3390_s23062952
crossref_primary_10_1016_j_aej_2024_06_092
crossref_primary_10_2139_ssrn_4046621
crossref_primary_10_1109_JPROC_2017_2666548
crossref_primary_10_1109_TSG_2022_3144976
crossref_primary_10_1049_gtd2_12988
crossref_primary_10_1109_TSG_2021_3088006
crossref_primary_10_1049_iet_rpg_2020_0215
crossref_primary_10_1016_j_egyr_2022_02_097
crossref_primary_10_1109_TPWRD_2022_3226659
crossref_primary_10_1109_TPWRS_2022_3149463
crossref_primary_10_1109_TPWRD_2023_3269724
crossref_primary_10_3390_electronics8121485
crossref_primary_10_1080_15567036_2019_1652371
crossref_primary_10_3390_en16041918
crossref_primary_10_3390_en17215352
crossref_primary_10_1080_15325008_2018_1527868
crossref_primary_10_1109_TPWRS_2022_3225798
crossref_primary_10_1007_s40031_020_00449_6
crossref_primary_10_3390_su12062167
crossref_primary_10_3390_en15062249
crossref_primary_10_1016_j_aej_2018_03_011
crossref_primary_10_1016_j_segan_2021_100551
crossref_primary_10_1109_ACCESS_2019_2942633
crossref_primary_10_1109_TSG_2019_2928330
crossref_primary_10_1109_TSTE_2023_3251099
crossref_primary_10_1016_j_apenergy_2021_118019
crossref_primary_10_1109_TPWRS_2018_2866099
crossref_primary_10_1007_s00202_023_01832_4
crossref_primary_10_1049_gtd2_12280
crossref_primary_10_1016_j_ijepes_2020_106314
crossref_primary_10_1109_TPWRS_2019_2920123
crossref_primary_10_1109_ACCESS_2020_2980544
crossref_primary_10_1109_TSTE_2023_3316091
crossref_primary_10_1109_TSG_2025_3526789
crossref_primary_10_1007_s13369_023_08086_z
crossref_primary_10_1007_s40313_023_01013_5
crossref_primary_10_1109_TSG_2022_3208508
crossref_primary_10_1016_j_energy_2022_125597
crossref_primary_10_1109_ACCESS_2021_3103477
crossref_primary_10_1007_s42835_021_00858_7
crossref_primary_10_3390_su151511635
crossref_primary_10_1049_iet_cps_2018_5069
crossref_primary_10_1109_TPWRS_2017_2756027
crossref_primary_10_3390_en17112573
crossref_primary_10_1109_TII_2021_3078110
crossref_primary_10_1049_tje2_12279
crossref_primary_10_1109_TPWRS_2021_3123247
crossref_primary_10_1016_j_ijepes_2020_106682
crossref_primary_10_1109_TPWRS_2020_2968611
crossref_primary_10_1016_j_scs_2018_03_022
crossref_primary_10_1109_TSG_2020_3047477
crossref_primary_10_1016_j_epsr_2025_111625
crossref_primary_10_1109_TIA_2021_3116559
crossref_primary_10_1109_TCNS_2023_3337710
crossref_primary_10_1109_TSG_2023_3326063
crossref_primary_10_1080_01430750_2022_2037460
crossref_primary_10_1109_ACCESS_2019_2918407
crossref_primary_10_1109_ACCESS_2019_2921017
crossref_primary_10_1016_j_spc_2023_04_001
crossref_primary_10_23919_IEN_2022_0032
Cites_doi 10.1504/IJCIS.2008.016089
10.1109/59.192914
10.1109/MPE.2015.2397337
10.1109/TPWRS.2015.2389712
10.1109/TPWRS.2009.2036811
10.1109/TSG.2015.2418334
10.1109/TSG.2012.2233770
10.1109/TSG.2014.2385309
10.1109/TPWRS.2015.2419616
10.1109/TPWRD.2007.905412
10.1109/TPWRS.2015.2503341
10.1109/PESGM.2015.7286551
10.1109/PESGM.2016.7741723
10.1109/TPWRS.2012.2192943
10.1109/TPWRS.2006.888989
10.1109/TPWRS.2008.2009477
10.1109/TPWRD.2013.2244923
10.1109/PES.2009.5275900
10.1109/TPWRS.2014.2312424
10.1109/59.867133
10.1109/TPWRS.2007.907585
10.1109/TPWRS.2008.926471
ContentType Journal Article
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
OTOTI
DOI 10.1109/TSG.2016.2591531
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 437
ExternalDocumentID 1421344
10_1109_TSG_2016_2591531
7513408
Genre orig-research
GrantInformation_xml – fundername: Pacific Northwest National Laboratory
– fundername: Office of Electricity Delivery and Energy Reliability
  funderid: 10.13039/100006130
– fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
OTOTI
ID FETCH-LOGICAL-c290t-bb65b20a746d6e8a7c17c292501c6c0886db417c0f958aee39da43dfbf7b89d63
IEDL.DBID RIE
ISSN 1949-3053
IngestDate Thu May 18 18:38:29 EDT 2023
Tue Jul 01 02:28:59 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Aug 26 17:00:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c290t-bb65b20a746d6e8a7c17c292501c6c0886db417c0f958aee39da43dfbf7b89d63
Notes AC05-76RL01830
PNNL-SA-131372
USDOE Office of Electricity Delivery and Energy Reliability (OE)
ORCID 0000-0002-0945-9024
0000000209459024
PageCount 12
ParticipantIDs osti_scitechconnect_1421344
crossref_citationtrail_10_1109_TSG_2016_2591531
crossref_primary_10_1109_TSG_2016_2591531
ieee_primary_7513408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jan.
2018-1-00
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref18
(ref2) 2015
(ref1) 2015
(ref21) 2015
ref24
ref23
ref26
ref25
ref22
cormen (ref19) 2009
(ref20) 2015
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – year: 2015
  ident: ref20
  publication-title: U S Department of Energy at Pacific Northwest National Laboratory GridLAB-D Power Distribution Simulation Software
– ident: ref26
  doi: 10.1504/IJCIS.2008.016089
– ident: ref4
  doi: 10.1109/59.192914
– start-page: 643
  year: 2009
  ident: ref19
  article-title: Singlesource shortest paths
  publication-title: Introduction to Algorithm
– ident: ref3
  doi: 10.1109/MPE.2015.2397337
– ident: ref23
  doi: 10.1109/TPWRS.2015.2389712
– ident: ref6
  doi: 10.1109/TPWRS.2009.2036811
– ident: ref12
  doi: 10.1109/TSG.2015.2418334
– ident: ref14
  doi: 10.1109/TSG.2012.2233770
– ident: ref8
  doi: 10.1109/TSG.2014.2385309
– ident: ref16
  doi: 10.1109/TPWRS.2015.2419616
– ident: ref9
  doi: 10.1109/TPWRD.2007.905412
– ident: ref22
  doi: 10.1109/TPWRS.2015.2503341
– year: 2015
  ident: ref21
  publication-title: MATLAB software
– year: 2015
  ident: ref1
  publication-title: U S Department of Energy and National Energy Technology Laboratory Operates Resiliently Against Attack and Natural Disaster
– ident: ref17
  doi: 10.1109/PESGM.2015.7286551
– ident: ref25
  doi: 10.1109/PESGM.2016.7741723
– ident: ref27
  doi: 10.1109/TPWRS.2012.2192943
– ident: ref13
  doi: 10.1109/TPWRS.2006.888989
– ident: ref11
  doi: 10.1109/TPWRS.2008.2009477
– ident: ref5
  doi: 10.1109/TPWRD.2013.2244923
– year: 2015
  ident: ref2
  publication-title: Office of the Press Secretary of the White House Presidential Policy Directive-Critical Infrastructure Security and Resilience
– ident: ref24
  doi: 10.1109/PES.2009.5275900
– ident: ref15
  doi: 10.1109/TPWRS.2014.2312424
– ident: ref18
  doi: 10.1109/59.867133
– ident: ref10
  doi: 10.1109/TPWRS.2007.907585
– ident: ref7
  doi: 10.1109/TPWRS.2008.926471
SSID ssj0000333629
Score 2.6370158
Snippet Microgrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses...
icrogrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses...
SourceID osti
crossref
ieee
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 426
SubjectTerms Distributed generator (DG)
distribution system
Electronic mail
Generators
microgrid
Microgrids
Power system stability
Reactive power
resilience
resiliency
service restoration
Switches
Transient analysis
Title Microgrids for Service Restoration to Critical Load in a Resilient Distribution System
URI https://ieeexplore.ieee.org/document/7513408
https://www.osti.gov/biblio/1421344
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUQpIA8sSKRNasdORgSUClEGaFG3KH4EVVQJKunCr-cuSaOCEGJKlNiW5fPj7nz3fYScCyNsPwkN7H4-c_DEcmIrhePD9GHCGDcx6NAfPYrhhN9P_WmDXNa5MNbaIvjMdvG1uMs3mV6iq6wnfY9xzOzdAMOtzNWq_Skug7YLUjIwy_E632erW0k37I2f7zCMS3RB24c17n07hQpaFXhksKjWDpfBDhmtulXGlLx1l7nq6s8fiI3_7fcu2a60THpVTos90rDpPtlawx5skZcRhuK9Lmbmg4LiSqtNgz4VVDOFvGie0RUVAn3IYkNnKY2xxGyOaZT0BlF3K8IsWmKfH5DJ4HZ8PXQqkgVH90M3d5QSvuq7seQotiCW2pPwBzQjTwsNe5AwisMnNwn9ILaWhSbmzCQqkSoIjWCHpJlmqT0iNORCc9HnYMEwLplU2nNtoqQCrc0E0rRJbzXoka4QyJEIYx4VlogbRiCmCMUUVWJqk4u6xnuJvvFH2RaOfF2uGvQ26aBcI1AoEBVXY_iQzsHiQSg7fvx7pQ7ZhKaD0tVyQpr5YmlPQfnI1Vkx674A6ErUaQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6V9gAcoFCqbgvFBzhwyK4TO3Z84IAo7Zbu9gBb1FuIf1KtqDZVmxWCZ-FVeDdmkuyqRai3SpwSJXYS2188Px5_A_BKeRWS0nic_VIRkcSKiqBVlCJ8hPKel54c-uNjNTyRH0_T0xX4tdwLE0Jogs9Cn06btXxfuTm5ygY6jYXkWRdCeRR-fEcD7ert4R6O5usk2f8weT-MuhwCkUsMryNrVWoTXmhJX5UV2sUa76Dgj51y-IspbyVe4qVJsyIEYXwhhS9tqW1mvBL43HuwhnpGmrS7w5YeHC6wNU0atNhICiBIxWIdlJvB5PMBBY6pPtoXOKvEN-Rek8gFDxX-xtfE2f5j-L3oiDaK5Vt_Xtu--_kXR-T_2lPr8KjTo9m7FvhPYCXMnsLDa-yKG_BlTMGGZ5dTf8VQNWfdtMg-Ncl0GkSyumKLZA9sVBWeTWesoBLTc9ooyvaIV7hLCcZadvdncHInDduE1Vk1C1vAjFROqkSijSakFtq6mIfSaot6qc-078FgMci56zjWKdXHed7YWtzkCIucYJF3sOjBm2WNi5Zf5JayGzTSy3LdIPdgh3CUo8pEvL-OAqRcjTYdkfXJ7X9Xegn3h5PxKB8dHh_twAN8TdY6lp7Dan05Dy9Q1artboN4Bl_vGjh_ADHvMuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microgrids+for+Service+Restoration+to+Critical+Load+in+a+Resilient+Distribution+System&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Xu%2C+Yin&rft.au=Liu%2C+Chen-Ching&rft.au=Schneider%2C+Kevin+P.&rft.au=Tuffner%2C+Francis+K.&rft.date=2018-01-01&rft.pub=IEEE&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1109%2FTSG.2016.2591531&rft.externalDocID=1421344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon