Microgrids for Service Restoration to Critical Load in a Resilient Distribution System
Microgrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs)...
Saved in:
Published in | IEEE transactions on smart grid Vol. 9; no. 1; pp. 426 - 437 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microgrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. By introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman. |
---|---|
AbstractList | icrogrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. By introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman. Microgrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. By introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman. |
Author | Ton, Dan T. Chen-Ching Liu Schneider, Kevin P. Yin Xu Tuffner, Francis K. |
Author_xml | – sequence: 1 surname: Yin Xu fullname: Yin Xu email: yxu2@eecs.wsu.edu organization: Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA – sequence: 2 surname: Chen-Ching Liu fullname: Chen-Ching Liu email: liu@eecs.wsu.edu organization: Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA – sequence: 3 givenname: Kevin P. surname: Schneider fullname: Schneider, Kevin P. email: kevin.schneider@pnnl.gov organization: Battelle Seattle Res. Center, Pacific Northwest Nat. Lab., Seattle, WA, USA – sequence: 4 givenname: Francis K. surname: Tuffner fullname: Tuffner, Francis K. email: francis.tuffner@pnnl.gov organization: Battelle Seattle Res. Center, Pacific Northwest Nat. Lab., Seattle, WA, USA – sequence: 5 givenname: Dan T. surname: Ton fullname: Ton, Dan T. email: dan.ton@hq.doe.gov organization: U.S. Dept. of Energy, Office of Electr. Delivery & Energy Reliability, Washington, DC, USA |
BackLink | https://www.osti.gov/biblio/1421344$$D View this record in Osti.gov |
BookMark | eNp9kE1LAzEQhoNUsNbeBS_Be2uy2c1ujlK1ChXBVq8hm53Vke1Gkij035t-4MGDc5lh5nmHmfeUDHrXAyHnnE05Z-pqtZxPM8blNCsULwQ_IkOucjURTPLBb12IEzIO4YOlEELITA3J6yNa7948NoG2ztMl-G-0QJ8hROdNRNfT6OjMY0RrOrpwpqHYU7MlsEPoI73BED3WXzt4uQkR1mfkuDVdgPEhj8jL3e1qdj9ZPM0fZteLic0Ui5O6lkWdMVPmspFQmdLyMk2ygnErLasq2dR5arFWFZUBEKoxuWjaui3rSjVSjMjlfq8LEXWwGMG-W9f3YKPmecZFnidI7qH0aQgeWp243WvRG-w0Z3rrok4u6q2L-uBiErI_wk-Pa-M3_0ku9hIEgF-8LNIhrBI_cfp_Sw |
CODEN | ITSGBQ |
CitedBy_id | crossref_primary_10_1049_stg2_12021 crossref_primary_10_1109_TIE_2024_3451135 crossref_primary_10_1016_j_rser_2023_113991 crossref_primary_10_1016_j_ijepes_2021_107068 crossref_primary_10_1109_ACCESS_2020_3038133 crossref_primary_10_1002_2050_7038_12610 crossref_primary_10_1109_ACCESS_2019_2891786 crossref_primary_10_1088_1742_6596_2788_1_012003 crossref_primary_10_1109_TSG_2018_2879793 crossref_primary_10_1016_j_jclepro_2019_03_141 crossref_primary_10_1109_ACCESS_2022_3195492 crossref_primary_10_1016_j_renene_2020_08_074 crossref_primary_10_1109_TIE_2019_2956417 crossref_primary_10_1049_gtd2_12307 crossref_primary_10_1016_j_segan_2021_100464 crossref_primary_10_1109_TIA_2020_3023669 crossref_primary_10_1016_j_epsr_2023_110050 crossref_primary_10_1016_j_apenergy_2023_122424 crossref_primary_10_1109_TIE_2023_3340206 crossref_primary_10_1016_j_est_2020_101542 crossref_primary_10_3390_s23031200 crossref_primary_10_1109_TPWRS_2023_3276827 crossref_primary_10_1049_tje2_12057 crossref_primary_10_1002_2050_7038_13159 crossref_primary_10_1038_s41467_024_49207_y crossref_primary_10_1016_j_est_2020_102086 crossref_primary_10_1109_TII_2023_3271750 crossref_primary_10_1007_s40866_024_00218_0 crossref_primary_10_1109_ACCESS_2022_3177143 crossref_primary_10_1109_TPWRS_2022_3219519 crossref_primary_10_3390_en16093953 crossref_primary_10_1016_j_ijepes_2024_109895 crossref_primary_10_1049_esi2_12067 crossref_primary_10_1109_TPWRS_2021_3137257 crossref_primary_10_1109_TSG_2018_2824820 crossref_primary_10_1109_TSG_2023_3327603 crossref_primary_10_1051_e3sconf_202340905014 crossref_primary_10_1109_TIA_2020_2972854 crossref_primary_10_1109_JSYST_2020_2965993 crossref_primary_10_1016_j_jclepro_2020_125023 crossref_primary_10_1049_rpg2_12705 crossref_primary_10_1109_TPWRS_2022_3209919 crossref_primary_10_1109_TPWRS_2022_3149524 crossref_primary_10_1109_TSG_2020_3010570 crossref_primary_10_1109_TSG_2022_3167436 crossref_primary_10_1016_j_ijepes_2024_109982 crossref_primary_10_1016_j_energy_2023_129314 crossref_primary_10_1049_iet_gtd_2018_5915 crossref_primary_10_1016_j_ijepes_2018_07_025 crossref_primary_10_1109_TAI_2023_3314395 crossref_primary_10_1016_j_epsr_2020_106873 crossref_primary_10_1016_j_epsr_2022_108454 crossref_primary_10_1016_j_scs_2022_103975 crossref_primary_10_1049_iet_gtd_2020_0531 crossref_primary_10_1109_TSMC_2020_2997794 crossref_primary_10_1016_j_apenergy_2022_120422 crossref_primary_10_1016_j_nexus_2024_100311 crossref_primary_10_1049_joe_2018_0153 crossref_primary_10_1049_joe_2018_0151 crossref_primary_10_1109_ACCESS_2022_3207772 crossref_primary_10_1109_TSG_2016_2638854 crossref_primary_10_1109_TPWRS_2022_3176024 crossref_primary_10_1049_stg2_12005 crossref_primary_10_1016_j_ijepes_2023_109210 crossref_primary_10_1088_1742_6596_2564_1_012015 crossref_primary_10_1109_ACCESS_2023_3292254 crossref_primary_10_1109_ACCESS_2018_2873615 crossref_primary_10_1109_TSUSC_2022_3227749 crossref_primary_10_1109_TSG_2021_3105234 crossref_primary_10_1049_rpg2_12842 crossref_primary_10_1109_TSTE_2020_2994174 crossref_primary_10_1016_j_rser_2021_111252 crossref_primary_10_1109_TSG_2021_3098570 crossref_primary_10_1016_j_rser_2020_110313 crossref_primary_10_1016_j_esd_2022_08_005 crossref_primary_10_1109_TPWRS_2023_3233992 crossref_primary_10_1109_TSG_2019_2953716 crossref_primary_10_1088_1742_6596_2320_1_012014 crossref_primary_10_1049_gtd2_12100 crossref_primary_10_1115_1_4053296 crossref_primary_10_1016_j_ijepes_2020_106293 crossref_primary_10_1109_TSG_2020_2994111 crossref_primary_10_1016_j_apenergy_2023_120849 crossref_primary_10_1109_ACCESS_2021_3084368 crossref_primary_10_1063_1_5066264 crossref_primary_10_1109_ACCESS_2019_2930907 crossref_primary_10_1016_j_apenergy_2021_118507 crossref_primary_10_1049_gtd2_12470 crossref_primary_10_1109_JESTIE_2023_3343291 crossref_primary_10_1016_j_rser_2020_110201 crossref_primary_10_1109_TSG_2023_3307178 crossref_primary_10_1109_TPWRS_2018_2885763 crossref_primary_10_1109_TPWRS_2021_3056543 crossref_primary_10_1016_j_epsr_2021_107238 crossref_primary_10_1109_TPWRS_2018_2849265 crossref_primary_10_1109_TSG_2022_3225557 crossref_primary_10_1016_j_apenergy_2021_118189 crossref_primary_10_1109_TSG_2019_2891419 crossref_primary_10_1109_ACCESS_2019_2922994 crossref_primary_10_1109_TSTE_2022_3199161 crossref_primary_10_2139_ssrn_4172982 crossref_primary_10_1016_j_ifacol_2024_07_457 crossref_primary_10_1109_ACCESS_2019_2900728 crossref_primary_10_1016_j_isatra_2024_08_021 crossref_primary_10_3389_fenrg_2022_992966 crossref_primary_10_1016_j_rser_2022_112567 crossref_primary_10_1109_ACCESS_2019_2933642 crossref_primary_10_1109_TSG_2019_2930012 crossref_primary_10_1109_ACCESS_2019_2952362 crossref_primary_10_1016_j_ijepes_2019_105568 crossref_primary_10_1016_j_ijepes_2024_110023 crossref_primary_10_1049_enc2_12083 crossref_primary_10_1016_j_apenergy_2019_02_055 crossref_primary_10_1109_TPEL_2020_2972321 crossref_primary_10_1049_rpg2_12635 crossref_primary_10_1049_rpg2_12757 crossref_primary_10_1109_TSG_2018_2880255 crossref_primary_10_1016_j_apenergy_2018_06_096 crossref_primary_10_1049_iet_gtd_2019_0107 crossref_primary_10_1109_ACCESS_2023_3300292 crossref_primary_10_2139_ssrn_3979444 crossref_primary_10_1109_MIE_2019_2958039 crossref_primary_10_1016_j_ijepes_2024_110371 crossref_primary_10_1109_TSG_2019_2891515 crossref_primary_10_1109_TSG_2020_2995099 crossref_primary_10_1109_TSG_2022_3227752 crossref_primary_10_1016_j_ijepes_2019_105791 crossref_primary_10_1016_j_ijepes_2019_105550 crossref_primary_10_1109_ACCESS_2024_3397892 crossref_primary_10_1080_23311916_2019_1628424 crossref_primary_10_1016_j_ijepes_2021_107901 crossref_primary_10_1049_iet_stg_2019_0175 crossref_primary_10_1109_TIFS_2019_2960657 crossref_primary_10_1016_j_apenergy_2023_121295 crossref_primary_10_1016_j_egyr_2024_03_026 crossref_primary_10_1049_iet_stg_2019_0176 crossref_primary_10_1109_TSG_2021_3123937 crossref_primary_10_1016_j_ijdrr_2021_102319 crossref_primary_10_1049_gtd2_12947 crossref_primary_10_1109_JSYST_2021_3097263 crossref_primary_10_1088_1742_6596_2166_1_012044 crossref_primary_10_1109_JESTPE_2021_3071765 crossref_primary_10_1016_j_apenergy_2024_123633 crossref_primary_10_1049_iet_gtd_2018_6866 crossref_primary_10_1002_2050_7038_12348 crossref_primary_10_1049_tje2_12334 crossref_primary_10_1109_ACCESS_2019_2917052 crossref_primary_10_1088_1742_6596_2477_1_012054 crossref_primary_10_1109_ACCESS_2019_2948372 crossref_primary_10_1016_j_tej_2020_106864 crossref_primary_10_1016_j_rser_2024_114953 crossref_primary_10_3390_en17010100 crossref_primary_10_1109_ACCESS_2020_3003325 crossref_primary_10_1109_TSG_2022_3179593 crossref_primary_10_1049_iet_gtd_2018_5883 crossref_primary_10_1109_TSG_2022_3195989 crossref_primary_10_1049_gtd2_12713 crossref_primary_10_1109_TSG_2022_3192910 crossref_primary_10_1109_ACCESS_2022_3183788 crossref_primary_10_1109_COMST_2020_3023963 crossref_primary_10_1016_j_apenergy_2021_118301 crossref_primary_10_1109_TIA_2022_3146103 crossref_primary_10_1109_ACCESS_2023_3244872 crossref_primary_10_1109_TSG_2021_3095485 crossref_primary_10_1016_j_ref_2023_06_007 crossref_primary_10_1109_TII_2019_2923714 crossref_primary_10_1016_j_apenergy_2021_117921 crossref_primary_10_1109_TPWRS_2024_3399122 crossref_primary_10_1109_TSG_2023_3322682 crossref_primary_10_1049_iet_est_2019_0145 crossref_primary_10_1016_j_ijepes_2022_108738 crossref_primary_10_1049_iet_gtd_2019_1123 crossref_primary_10_1016_j_apenergy_2024_124389 crossref_primary_10_1109_OAJPE_2023_3282188 crossref_primary_10_1109_TSG_2021_3127518 crossref_primary_10_1109_TPWRS_2020_2982795 crossref_primary_10_1016_j_segan_2023_101014 crossref_primary_10_1109_TIA_2024_3397745 crossref_primary_10_1109_TPWRS_2024_3386851 crossref_primary_10_1109_TPWRS_2017_2765600 crossref_primary_10_1016_j_rser_2024_115143 crossref_primary_10_1016_j_ijepes_2021_107234 crossref_primary_10_1016_j_ijepes_2023_109612 crossref_primary_10_1016_j_egyr_2022_01_060 crossref_primary_10_1109_JSYST_2019_2890898 crossref_primary_10_1049_iet_esi_2019_0134 crossref_primary_10_1088_1742_6596_2703_1_012030 crossref_primary_10_1016_j_ijepes_2025_110510 crossref_primary_10_1109_TSTE_2022_3148236 crossref_primary_10_1109_JESTPE_2020_2981921 crossref_primary_10_1109_TIA_2023_3336851 crossref_primary_10_1049_rpg2_12563 crossref_primary_10_1155_2020_8880661 crossref_primary_10_1109_ACCESS_2024_3411601 crossref_primary_10_1016_j_egyr_2022_12_023 crossref_primary_10_1002_2050_7038_12934 crossref_primary_10_1049_iet_gtd_2019_0973 crossref_primary_10_1109_TSG_2018_2803141 crossref_primary_10_1049_gtd2_13155 crossref_primary_10_1049_iet_rpg_2018_5237 crossref_primary_10_1109_JPROC_2017_2696878 crossref_primary_10_1109_TPWRS_2018_2822295 crossref_primary_10_1109_TSG_2020_3042111 crossref_primary_10_3390_s23062952 crossref_primary_10_1016_j_aej_2024_06_092 crossref_primary_10_2139_ssrn_4046621 crossref_primary_10_1109_JPROC_2017_2666548 crossref_primary_10_1109_TSG_2022_3144976 crossref_primary_10_1049_gtd2_12988 crossref_primary_10_1109_TSG_2021_3088006 crossref_primary_10_1049_iet_rpg_2020_0215 crossref_primary_10_1016_j_egyr_2022_02_097 crossref_primary_10_1109_TPWRD_2022_3226659 crossref_primary_10_1109_TPWRS_2022_3149463 crossref_primary_10_1109_TPWRD_2023_3269724 crossref_primary_10_3390_electronics8121485 crossref_primary_10_1080_15567036_2019_1652371 crossref_primary_10_3390_en16041918 crossref_primary_10_3390_en17215352 crossref_primary_10_1080_15325008_2018_1527868 crossref_primary_10_1109_TPWRS_2022_3225798 crossref_primary_10_1007_s40031_020_00449_6 crossref_primary_10_3390_su12062167 crossref_primary_10_3390_en15062249 crossref_primary_10_1016_j_aej_2018_03_011 crossref_primary_10_1016_j_segan_2021_100551 crossref_primary_10_1109_ACCESS_2019_2942633 crossref_primary_10_1109_TSG_2019_2928330 crossref_primary_10_1109_TSTE_2023_3251099 crossref_primary_10_1016_j_apenergy_2021_118019 crossref_primary_10_1109_TPWRS_2018_2866099 crossref_primary_10_1007_s00202_023_01832_4 crossref_primary_10_1049_gtd2_12280 crossref_primary_10_1016_j_ijepes_2020_106314 crossref_primary_10_1109_TPWRS_2019_2920123 crossref_primary_10_1109_ACCESS_2020_2980544 crossref_primary_10_1109_TSTE_2023_3316091 crossref_primary_10_1109_TSG_2025_3526789 crossref_primary_10_1007_s13369_023_08086_z crossref_primary_10_1007_s40313_023_01013_5 crossref_primary_10_1109_TSG_2022_3208508 crossref_primary_10_1016_j_energy_2022_125597 crossref_primary_10_1109_ACCESS_2021_3103477 crossref_primary_10_1007_s42835_021_00858_7 crossref_primary_10_3390_su151511635 crossref_primary_10_1049_iet_cps_2018_5069 crossref_primary_10_1109_TPWRS_2017_2756027 crossref_primary_10_3390_en17112573 crossref_primary_10_1109_TII_2021_3078110 crossref_primary_10_1049_tje2_12279 crossref_primary_10_1109_TPWRS_2021_3123247 crossref_primary_10_1016_j_ijepes_2020_106682 crossref_primary_10_1109_TPWRS_2020_2968611 crossref_primary_10_1016_j_scs_2018_03_022 crossref_primary_10_1109_TSG_2020_3047477 crossref_primary_10_1016_j_epsr_2025_111625 crossref_primary_10_1109_TIA_2021_3116559 crossref_primary_10_1109_TCNS_2023_3337710 crossref_primary_10_1109_TSG_2023_3326063 crossref_primary_10_1080_01430750_2022_2037460 crossref_primary_10_1109_ACCESS_2019_2918407 crossref_primary_10_1109_ACCESS_2019_2921017 crossref_primary_10_1016_j_spc_2023_04_001 crossref_primary_10_23919_IEN_2022_0032 |
Cites_doi | 10.1504/IJCIS.2008.016089 10.1109/59.192914 10.1109/MPE.2015.2397337 10.1109/TPWRS.2015.2389712 10.1109/TPWRS.2009.2036811 10.1109/TSG.2015.2418334 10.1109/TSG.2012.2233770 10.1109/TSG.2014.2385309 10.1109/TPWRS.2015.2419616 10.1109/TPWRD.2007.905412 10.1109/TPWRS.2015.2503341 10.1109/PESGM.2015.7286551 10.1109/PESGM.2016.7741723 10.1109/TPWRS.2012.2192943 10.1109/TPWRS.2006.888989 10.1109/TPWRS.2008.2009477 10.1109/TPWRD.2013.2244923 10.1109/PES.2009.5275900 10.1109/TPWRS.2014.2312424 10.1109/59.867133 10.1109/TPWRS.2007.907585 10.1109/TPWRS.2008.926471 |
ContentType | Journal Article |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | 97E RIA RIE AAYXX CITATION OTOTI |
DOI | 10.1109/TSG.2016.2591531 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1949-3061 |
EndPage | 437 |
ExternalDocumentID | 1421344 10_1109_TSG_2016_2591531 7513408 |
Genre | orig-research |
GrantInformation_xml | – fundername: Pacific Northwest National Laboratory – fundername: Office of Electricity Delivery and Energy Reliability funderid: 10.13039/100006130 – fundername: U.S. Department of Energy funderid: 10.13039/100000015 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG OTOTI |
ID | FETCH-LOGICAL-c290t-bb65b20a746d6e8a7c17c292501c6c0886db417c0f958aee39da43dfbf7b89d63 |
IEDL.DBID | RIE |
ISSN | 1949-3053 |
IngestDate | Thu May 18 18:38:29 EDT 2023 Tue Jul 01 02:28:59 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Aug 26 17:00:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c290t-bb65b20a746d6e8a7c17c292501c6c0886db417c0f958aee39da43dfbf7b89d63 |
Notes | AC05-76RL01830 PNNL-SA-131372 USDOE Office of Electricity Delivery and Energy Reliability (OE) |
ORCID | 0000-0002-0945-9024 0000000209459024 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1421344 crossref_citationtrail_10_1109_TSG_2016_2591531 crossref_primary_10_1109_TSG_2016_2591531 ieee_primary_7513408 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jan. 2018-1-00 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on smart grid |
PublicationTitleAbbrev | TSG |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref18 (ref2) 2015 (ref1) 2015 (ref21) 2015 ref24 ref23 ref26 ref25 ref22 cormen (ref19) 2009 (ref20) 2015 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – year: 2015 ident: ref20 publication-title: U S Department of Energy at Pacific Northwest National Laboratory GridLAB-D Power Distribution Simulation Software – ident: ref26 doi: 10.1504/IJCIS.2008.016089 – ident: ref4 doi: 10.1109/59.192914 – start-page: 643 year: 2009 ident: ref19 article-title: Singlesource shortest paths publication-title: Introduction to Algorithm – ident: ref3 doi: 10.1109/MPE.2015.2397337 – ident: ref23 doi: 10.1109/TPWRS.2015.2389712 – ident: ref6 doi: 10.1109/TPWRS.2009.2036811 – ident: ref12 doi: 10.1109/TSG.2015.2418334 – ident: ref14 doi: 10.1109/TSG.2012.2233770 – ident: ref8 doi: 10.1109/TSG.2014.2385309 – ident: ref16 doi: 10.1109/TPWRS.2015.2419616 – ident: ref9 doi: 10.1109/TPWRD.2007.905412 – ident: ref22 doi: 10.1109/TPWRS.2015.2503341 – year: 2015 ident: ref21 publication-title: MATLAB software – year: 2015 ident: ref1 publication-title: U S Department of Energy and National Energy Technology Laboratory Operates Resiliently Against Attack and Natural Disaster – ident: ref17 doi: 10.1109/PESGM.2015.7286551 – ident: ref25 doi: 10.1109/PESGM.2016.7741723 – ident: ref27 doi: 10.1109/TPWRS.2012.2192943 – ident: ref13 doi: 10.1109/TPWRS.2006.888989 – ident: ref11 doi: 10.1109/TPWRS.2008.2009477 – ident: ref5 doi: 10.1109/TPWRD.2013.2244923 – year: 2015 ident: ref2 publication-title: Office of the Press Secretary of the White House Presidential Policy Directive-Critical Infrastructure Security and Resilience – ident: ref24 doi: 10.1109/PES.2009.5275900 – ident: ref15 doi: 10.1109/TPWRS.2014.2312424 – ident: ref18 doi: 10.1109/59.867133 – ident: ref10 doi: 10.1109/TPWRS.2007.907585 – ident: ref7 doi: 10.1109/TPWRS.2008.926471 |
SSID | ssj0000333629 |
Score | 2.6370158 |
Snippet | Microgrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses... icrogrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses... |
SourceID | osti crossref ieee |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 426 |
SubjectTerms | Distributed generator (DG) distribution system Electronic mail Generators microgrid Microgrids Power system stability Reactive power resilience resiliency service restoration Switches Transient analysis |
Title | Microgrids for Service Restoration to Critical Load in a Resilient Distribution System |
URI | https://ieeexplore.ieee.org/document/7513408 https://www.osti.gov/biblio/1421344 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUQpIA8sSKRNasdORgSUClEGaFG3KH4EVVQJKunCr-cuSaOCEGJKlNiW5fPj7nz3fYScCyNsPwkN7H4-c_DEcmIrhePD9GHCGDcx6NAfPYrhhN9P_WmDXNa5MNbaIvjMdvG1uMs3mV6iq6wnfY9xzOzdAMOtzNWq_Skug7YLUjIwy_E632erW0k37I2f7zCMS3RB24c17n07hQpaFXhksKjWDpfBDhmtulXGlLx1l7nq6s8fiI3_7fcu2a60THpVTos90rDpPtlawx5skZcRhuK9Lmbmg4LiSqtNgz4VVDOFvGie0RUVAn3IYkNnKY2xxGyOaZT0BlF3K8IsWmKfH5DJ4HZ8PXQqkgVH90M3d5QSvuq7seQotiCW2pPwBzQjTwsNe5AwisMnNwn9ILaWhSbmzCQqkSoIjWCHpJlmqT0iNORCc9HnYMEwLplU2nNtoqQCrc0E0rRJbzXoka4QyJEIYx4VlogbRiCmCMUUVWJqk4u6xnuJvvFH2RaOfF2uGvQ26aBcI1AoEBVXY_iQzsHiQSg7fvx7pQ7ZhKaD0tVyQpr5YmlPQfnI1Vkx674A6ErUaQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6V9gAcoFCqbgvFBzhwyK4TO3Z84IAo7Zbu9gBb1FuIf1KtqDZVmxWCZ-FVeDdmkuyqRai3SpwSJXYS2188Px5_A_BKeRWS0nic_VIRkcSKiqBVlCJ8hPKel54c-uNjNTyRH0_T0xX4tdwLE0Jogs9Cn06btXxfuTm5ygY6jYXkWRdCeRR-fEcD7ert4R6O5usk2f8weT-MuhwCkUsMryNrVWoTXmhJX5UV2sUa76Dgj51y-IspbyVe4qVJsyIEYXwhhS9tqW1mvBL43HuwhnpGmrS7w5YeHC6wNU0atNhICiBIxWIdlJvB5PMBBY6pPtoXOKvEN-Rek8gFDxX-xtfE2f5j-L3oiDaK5Vt_Xtu--_kXR-T_2lPr8KjTo9m7FvhPYCXMnsLDa-yKG_BlTMGGZ5dTf8VQNWfdtMg-Ncl0GkSyumKLZA9sVBWeTWesoBLTc9ooyvaIV7hLCcZadvdncHInDduE1Vk1C1vAjFROqkSijSakFtq6mIfSaot6qc-078FgMci56zjWKdXHed7YWtzkCIucYJF3sOjBm2WNi5Zf5JayGzTSy3LdIPdgh3CUo8pEvL-OAqRcjTYdkfXJ7X9Xegn3h5PxKB8dHh_twAN8TdY6lp7Dan05Dy9Q1artboN4Bl_vGjh_ADHvMuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microgrids+for+Service+Restoration+to+Critical+Load+in+a+Resilient+Distribution+System&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Xu%2C+Yin&rft.au=Liu%2C+Chen-Ching&rft.au=Schneider%2C+Kevin+P.&rft.au=Tuffner%2C+Francis+K.&rft.date=2018-01-01&rft.pub=IEEE&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1109%2FTSG.2016.2591531&rft.externalDocID=1421344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |