Response probability distribution estimation of expensive computer simulators: A Bayesian active learning perspective using Gaussian process regression

Estimation of the response probability distributions of computer simulators subject to input random variables is a crucial task in many fields. However, achieving this task with guaranteed accuracy remains an open computational challenge, especially for expensive-to-evaluate computer simulators. In...

Full description

Saved in:
Bibliographic Details
Published inStructural safety Vol. 114; p. 102579
Main Authors Dang, Chao, Valdebenito, Marcos A., Manque, Nataly A., Xu, Jun, Faes, Matthias G.R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Estimation of the response probability distributions of computer simulators subject to input random variables is a crucial task in many fields. However, achieving this task with guaranteed accuracy remains an open computational challenge, especially for expensive-to-evaluate computer simulators. In this work, a Bayesian active learning perspective is presented to address the challenge, which is based on the use of the Gaussian process (GP) regression. First, estimation of the response probability distributions is conceptually interpreted as a Bayesian inference problem, as opposed to frequentist inference. This interpretation provides several important benefits: (1) it quantifies and propagates discretization error probabilistically; (2) it incorporates prior knowledge of the computer simulator, and (3) it enables the effective reduction of numerical uncertainty in the solution to a prescribed level. The conceptual Bayesian idea is then realized by using the GP regression, where we derive the posterior statistics of the response probability distributions in semi-analytical form and also provide a numerical solution scheme. Based on the practical Bayesian approach, a Bayesian active learning (BAL) method is further proposed for estimating the response probability distributions. In this context, the key contribution lies in the development of two crucial components for active learning, i.e., stopping criterion and learning function, by taking advantage of the posterior statistics. It is empirically demonstrated by five numerical examples that the proposed BAL method can efficiently estimate the response probability distributions with desired accuracy. •Response probability distribution estimation is conceptually interpreted as a Bayesian inference problem.•A practical Bayesian approach is developed based on Gaussian process regression.•A Bayesian active learning method is proposed based on the practical Bayesian approach.•Stopping criterion and learning function are developed using the posterior statistics.•Five numerical examples illustrate the good performance of the proposed method.
AbstractList Estimation of the response probability distributions of computer simulators subject to input random variables is a crucial task in many fields. However, achieving this task with guaranteed accuracy remains an open computational challenge, especially for expensive-to-evaluate computer simulators. In this work, a Bayesian active learning perspective is presented to address the challenge, which is based on the use of the Gaussian process (GP) regression. First, estimation of the response probability distributions is conceptually interpreted as a Bayesian inference problem, as opposed to frequentist inference. This interpretation provides several important benefits: (1) it quantifies and propagates discretization error probabilistically; (2) it incorporates prior knowledge of the computer simulator, and (3) it enables the effective reduction of numerical uncertainty in the solution to a prescribed level. The conceptual Bayesian idea is then realized by using the GP regression, where we derive the posterior statistics of the response probability distributions in semi-analytical form and also provide a numerical solution scheme. Based on the practical Bayesian approach, a Bayesian active learning (BAL) method is further proposed for estimating the response probability distributions. In this context, the key contribution lies in the development of two crucial components for active learning, i.e., stopping criterion and learning function, by taking advantage of the posterior statistics. It is empirically demonstrated by five numerical examples that the proposed BAL method can efficiently estimate the response probability distributions with desired accuracy. •Response probability distribution estimation is conceptually interpreted as a Bayesian inference problem.•A practical Bayesian approach is developed based on Gaussian process regression.•A Bayesian active learning method is proposed based on the practical Bayesian approach.•Stopping criterion and learning function are developed using the posterior statistics.•Five numerical examples illustrate the good performance of the proposed method.
ArticleNumber 102579
Author Faes, Matthias G.R.
Manque, Nataly A.
Xu, Jun
Valdebenito, Marcos A.
Dang, Chao
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0001-7412-6309
  surname: Dang
  fullname: Dang, Chao
  email: chao.dang@tu-dortmund.de
  organization: Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany
– sequence: 2
  givenname: Marcos A.
  orcidid: 0000-0002-5083-0454
  surname: Valdebenito
  fullname: Valdebenito, Marcos A.
  organization: Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany
– sequence: 3
  givenname: Nataly A.
  orcidid: 0009-0004-5041-1833
  surname: Manque
  fullname: Manque, Nataly A.
  organization: Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany
– sequence: 4
  givenname: Jun
  orcidid: 0000-0001-7101-4280
  surname: Xu
  fullname: Xu, Jun
  organization: College of Civil Engineering, Hunan University, Changsha 410082, PR China
– sequence: 5
  givenname: Matthias G.R.
  orcidid: 0000-0003-3341-3410
  surname: Faes
  fullname: Faes, Matthias G.R.
  organization: Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany
BookMark eNqFkE1OwzAQhb0oEuXnCsgXaLHTJE0RC6CCglQJCcHamtiTylVqRx6noifhurgtbNiwmtGbeW803xkbOO-QsSspxlLI8no9phh6ggbHmciKJGbFdDZgwzScjvLpRJyyM6K1EKKosmrIvt6QOu8IeRd8DbVtbdxxY1OMrftoveNI0W7g0PqG42eHjuwWufabro8YONlN30L0gW74PX-AHZIFx0HH_VqLEJx1K95hoA6PYk97ZQE9HVbTbY1EPOAqpJpOXbCTBlrCy596zj6eHt_nz6Pl6-Jlfr8c6Wwm4ghkIXSTZ9IUIHQ-1cZoyCGX0JS6kFUpZrUpyhomZVUZU2AlmqpGqUstEZtycs5uj7k6eKKAjdI2Hp6NAWyrpFB7sGqtfsGqPVh1BJvs5R97FxKssPvfeHc0YnpuazEo0hadRmNDYqSMt_9FfAP7NqLT
CitedBy_id crossref_primary_10_1016_j_cma_2025_117887
Cites_doi 10.1016/j.engstruct.2019.109912
10.1016/j.probengmech.2009.10.003
10.1016/S0951-8320(03)00058-9
10.1016/j.ress.2015.05.023
10.1023/A:1008306431147
10.1016/j.cma.2022.115066
10.1007/s00366-023-01865-0
10.1016/j.ress.2020.106902
10.1016/j.strusafe.2013.03.001
10.1016/j.cma.2022.115845
10.1016/j.cma.2019.112612
10.1016/j.strusafe.2018.09.001
10.1016/j.ress.2022.108768
10.1016/0378-3758(91)90002-V
10.1093/biomet/89.4.769
10.1016/j.ress.2022.108621
10.1016/j.strusafe.2022.102233
10.1007/s00466-004-0583-8
10.1115/1.4043734
10.1016/0167-4730(90)90012-E
10.1016/j.ress.2024.110537
10.1016/j.ymssp.2018.05.046
10.1016/j.strusafe.2022.102259
10.1016/j.ress.2015.12.002
10.1016/j.ress.2017.11.010
10.1007/s00158-008-0234-7
10.1016/j.ymssp.2023.110113
10.1016/j.cma.2023.116650
10.1016/j.strusafe.2020.101937
10.1016/j.ymssp.2022.109775
10.1016/j.strusafe.2023.102331
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.strusafe.2025.102579
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_strusafe_2025_102579
S0167473025000074
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c290t-a150cf421d5a0c47cddca4a41af6c518609bd56ba3688dd5e80f8be1c6c1eef63
IEDL.DBID .~1
ISSN 0167-4730
IngestDate Tue Jul 01 05:27:43 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Sat Mar 22 15:53:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gaussian process regression
Computer simulator
Bayesian active learning
Bayesian inference
Probability distribution estimation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c290t-a150cf421d5a0c47cddca4a41af6c518609bd56ba3688dd5e80f8be1c6c1eef63
ORCID 0000-0001-7412-6309
0009-0004-5041-1833
0000-0001-7101-4280
0000-0003-3341-3410
0000-0002-5083-0454
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167473025000074
ParticipantIDs crossref_citationtrail_10_1016_j_strusafe_2025_102579
crossref_primary_10_1016_j_strusafe_2025_102579
elsevier_sciencedirect_doi_10_1016_j_strusafe_2025_102579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Structural safety
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References O’Hagan (b40) 1991; 29
Hennig, Osborne, Kersting (b37) 2022
Wang, Broccardo (b24) 2020; 84
Su, Wang, Bursi, Broccardo (b27) 2024
Lyu, Chen (b29) 2022; 98
Zeng, Ghanem (b21) 2023; 405
Xu, Kong (b12) 2019; 76
Briol, Oates, Girolami, Osborne, Sejdinovic (b42) 2019; 34
Yu, Xu (b16) 2023; 190
Oakley, O’hagan (b23) 2002; 89
Li, Chen (b31) 2009
Xiang, Han, Li, Shi, Pan (b26) 2024; 419
Shields, Zhang (b4) 2016; 148
Wan, Gao, Tao (b18) 2024; 10
Bucher, Bourgund (b44) 1990; 7
Kroese, Taimre, Botev (b1) 2013
He, Li, Hao, Zeng (b9) 2019; 141
Dang, Wei, Song, Beer (b34) 2021; 7
Valdebenito, Jensen, Hernández, Mehrez (b45) 2018; 171
Lee, Chen (b7) 2009; 37
Xu, Yu (b15) 2023; 103
Chen, Yang (b32) 2019; 357
Jones, Schonlau, Welch (b38) 1998; 13
Dang, Xu (b13) 2020; 208
Song, Zhang, Cui, Yue, Dang (b25) 2024; 40
Zhao, Lu (b6) 2021
Helton, Davis (b2) 2003; 81
Xu, Dang (b8) 2019; 115
Williams, Rasmussen (b43) 2006
Garnett (b39) 2023
Li, Chen (b30) 2004; 34
Tao, Zhao, Yu, Huang, Zheng (b33) 2022; 396
Lemieux (b5) 2009
Rasmussen, Ghahramani (b41) 2003
Weng, Liu, Zhang, Zhao (b22) 2025; 253
Ding, Dang, Valdebenito, Faes, Broggi, Beer (b14) 2023; 185
Shields, Teferra, Hapij, Daddazio (b3) 2015; 142
Zhang, Pandey (b11) 2013; 43
Blatman, Sudret (b20) 2010; 25
Kougioumtzoglou IA, Psaros AF, Spanos PD. Path integrals in stochastic engineering dynamics. Springer Cham.
Zhou, Peng (b10) 2020; 198
Dang, Wei, Faes, Valdebenito, Beer (b35) 2022; 225
Dang, Valdebenito, Faes, Wei, Beer (b36) 2022; 99
Xu, Song, Yu, Kong (b17) 2023; 229
Zhang, Xu, Wan (b19) 2024
Xu (10.1016/j.strusafe.2025.102579_b8) 2019; 115
Wan (10.1016/j.strusafe.2025.102579_b18) 2024; 10
Kroese (10.1016/j.strusafe.2025.102579_b1) 2013
Shields (10.1016/j.strusafe.2025.102579_b4) 2016; 148
Xu (10.1016/j.strusafe.2025.102579_b15) 2023; 103
Zhao (10.1016/j.strusafe.2025.102579_b6) 2021
Chen (10.1016/j.strusafe.2025.102579_b32) 2019; 357
Song (10.1016/j.strusafe.2025.102579_b25) 2024; 40
Li (10.1016/j.strusafe.2025.102579_b30) 2004; 34
Xu (10.1016/j.strusafe.2025.102579_b12) 2019; 76
Dang (10.1016/j.strusafe.2025.102579_b35) 2022; 225
Helton (10.1016/j.strusafe.2025.102579_b2) 2003; 81
Yu (10.1016/j.strusafe.2025.102579_b16) 2023; 190
Tao (10.1016/j.strusafe.2025.102579_b33) 2022; 396
Jones (10.1016/j.strusafe.2025.102579_b38) 1998; 13
Su (10.1016/j.strusafe.2025.102579_b27) 2024
Briol (10.1016/j.strusafe.2025.102579_b42) 2019; 34
Xu (10.1016/j.strusafe.2025.102579_b17) 2023; 229
Bucher (10.1016/j.strusafe.2025.102579_b44) 1990; 7
Xiang (10.1016/j.strusafe.2025.102579_b26) 2024; 419
Garnett (10.1016/j.strusafe.2025.102579_b39) 2023
Oakley (10.1016/j.strusafe.2025.102579_b23) 2002; 89
Ding (10.1016/j.strusafe.2025.102579_b14) 2023; 185
Weng (10.1016/j.strusafe.2025.102579_b22) 2025; 253
Blatman (10.1016/j.strusafe.2025.102579_b20) 2010; 25
O’Hagan (10.1016/j.strusafe.2025.102579_b40) 1991; 29
Lyu (10.1016/j.strusafe.2025.102579_b29) 2022; 98
Rasmussen (10.1016/j.strusafe.2025.102579_b41) 2003
Zhang (10.1016/j.strusafe.2025.102579_b11) 2013; 43
Zeng (10.1016/j.strusafe.2025.102579_b21) 2023; 405
Li (10.1016/j.strusafe.2025.102579_b31) 2009
Shields (10.1016/j.strusafe.2025.102579_b3) 2015; 142
Wang (10.1016/j.strusafe.2025.102579_b24) 2020; 84
Dang (10.1016/j.strusafe.2025.102579_b34) 2021; 7
Hennig (10.1016/j.strusafe.2025.102579_b37) 2022
Lemieux (10.1016/j.strusafe.2025.102579_b5) 2009
Williams (10.1016/j.strusafe.2025.102579_b43) 2006
He (10.1016/j.strusafe.2025.102579_b9) 2019; 141
Dang (10.1016/j.strusafe.2025.102579_b13) 2020; 208
10.1016/j.strusafe.2025.102579_b28
Lee (10.1016/j.strusafe.2025.102579_b7) 2009; 37
Dang (10.1016/j.strusafe.2025.102579_b36) 2022; 99
Zhang (10.1016/j.strusafe.2025.102579_b19) 2024
Valdebenito (10.1016/j.strusafe.2025.102579_b45) 2018; 171
Zhou (10.1016/j.strusafe.2025.102579_b10) 2020; 198
References_xml – volume: 419
  year: 2024
  ident: b26
  article-title: A multi-region active learning Kriging method for response distribution construction of highly nonlinear problems
  publication-title: Comput Methods Appl Mech Engrg
– start-page: 505
  year: 2003
  end-page: 512
  ident: b41
  article-title: Bayesian Monte Carlo
  publication-title: Adv Neural Inf Process Syst
– year: 2006
  ident: b43
  publication-title: Gaussian processes for machine learning
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: b38
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J Global Optim
– volume: 34
  start-page: 1
  year: 2019
  end-page: 22
  ident: b42
  article-title: Probabilistic integration: A role in statistical computation?
  publication-title: Statist Sci
– volume: 98
  year: 2022
  ident: b29
  article-title: A unified formalism of the GE-GDEE for generic continuous responses and first-passage reliability analysis of multi-dimensional nonlinear systems subjected to non-white-noise excitations
  publication-title: Struct Saf
– volume: 190
  year: 2023
  ident: b16
  article-title: Harmonic transform-based density estimation method for uncertainty propagation and reliability analysis involving multi-modal distributions
  publication-title: Mech Syst Signal Process
– year: 2024
  ident: b27
  article-title: Surrogate modeling for probability distribution estimation: uniform or adaptive design?
– volume: 7
  year: 2021
  ident: b34
  article-title: Estimation of failure probability function under imprecise probabilities by active learning–augmented probabilistic integration
  publication-title: ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng
– volume: 141
  year: 2019
  ident: b9
  article-title: Maximum entropy method-based reliability analysis with correlated input variables via hybrid dimension-reduction method
  publication-title: J Mech Des
– volume: 225
  year: 2022
  ident: b35
  article-title: Parallel adaptive Bayesian quadrature for rare event estimation
  publication-title: Reliab Eng Syst Saf
– volume: 229
  year: 2023
  ident: b17
  article-title: Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis
  publication-title: Reliab Eng Syst Saf
– volume: 25
  start-page: 183
  year: 2010
  end-page: 197
  ident: b20
  article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
  publication-title: Probab Eng Mech
– volume: 81
  start-page: 23
  year: 2003
  end-page: 69
  ident: b2
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliab Eng Syst Saf
– volume: 7
  start-page: 57
  year: 1990
  end-page: 66
  ident: b44
  article-title: A fast and efficient response surface approach for structural reliability problems
  publication-title: Struct Saf
– volume: 115
  start-page: 281
  year: 2019
  end-page: 300
  ident: b8
  article-title: A new bivariate dimension reduction method for efficient structural reliability analysis
  publication-title: Mech Syst Signal Process
– volume: 396
  year: 2022
  ident: b33
  article-title: A fully adaptive method for structural stochastic response analysis based on direct probability integral method
  publication-title: Comput Methods Appl Mech Engrg
– year: 2021
  ident: b6
  article-title: Structural reliability: approaches from perspectives of statistical moments
– year: 2023
  ident: b39
  article-title: Bayesian optimization
– volume: 43
  start-page: 28
  year: 2013
  end-page: 40
  ident: b11
  article-title: Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method
  publication-title: Struct Saf
– volume: 142
  start-page: 310
  year: 2015
  end-page: 325
  ident: b3
  article-title: Refined stratified sampling for efficient Monte Carlo based uncertainty quantification
  publication-title: Reliab Eng Syst Saf
– volume: 37
  start-page: 239
  year: 2009
  end-page: 253
  ident: b7
  article-title: A comparative study of uncertainty propagation methods for black-box-type problems
  publication-title: Struct Multidiscip Optim
– year: 2009
  ident: b31
  article-title: Stochastic Dynamics of Structures
– year: 2013
  ident: b1
  article-title: Handbook of Monte Carlo methods
– volume: 34
  start-page: 400
  year: 2004
  end-page: 409
  ident: b30
  article-title: Probability density evolution method for dynamic response analysis of structures with uncertain parameters
  publication-title: Comput Mech
– volume: 253
  year: 2025
  ident: b22
  article-title: Probability density estimation of polynomial chaos and its application in structural reliability analysis
  publication-title: Reliab Eng Syst Saf
– volume: 29
  start-page: 245
  year: 1991
  end-page: 260
  ident: b40
  article-title: Bayes–Hermite quadrature
  publication-title: J Statist Plann Inference
– reference: Kougioumtzoglou IA, Psaros AF, Spanos PD. Path integrals in stochastic engineering dynamics. Springer Cham.
– volume: 99
  year: 2022
  ident: b36
  article-title: Structural reliability analysis: A Bayesian perspective
  publication-title: Struct Saf
– volume: 148
  start-page: 96
  year: 2016
  end-page: 108
  ident: b4
  article-title: The generalization of Latin hypercube sampling
  publication-title: Reliab Eng Syst Saf
– volume: 357
  year: 2019
  ident: b32
  article-title: Direct probability integral method for stochastic response analysis of static and dynamic structural systems
  publication-title: Comput Methods Appl Mech Engrg
– volume: 84
  year: 2020
  ident: b24
  article-title: A novel active learning-based Gaussian process metamodelling strategy for estimating the full probability distribution in forward UQ analysis
  publication-title: Struct Saf
– volume: 171
  start-page: 99
  year: 2018
  end-page: 111
  ident: b45
  article-title: Sensitivity estimation of failure probability applying line sampling
  publication-title: Reliab Eng Syst Saf
– volume: 89
  start-page: 769
  year: 2002
  end-page: 784
  ident: b23
  article-title: Bayesian inference for the uncertainty distribution of computer model outputs
  publication-title: Biometrika
– volume: 76
  start-page: 123
  year: 2019
  end-page: 134
  ident: b12
  article-title: Adaptive scaled unscented transformation for highly efficient structural reliability analysis by maximum entropy method
  publication-title: Struct Saf
– volume: 405
  year: 2023
  ident: b21
  article-title: Projection pursuit adaptation on polynomial chaos expansions
  publication-title: Comput Methods Appl Mech Engrg
– year: 2009
  ident: b5
  article-title: Monte Carlo and Quasi-Monte Carlo sampling
– volume: 40
  start-page: 1247
  year: 2024
  end-page: 1263
  ident: b25
  article-title: Bayesian active learning approach for estimation of empirical copula-based moment-independent sensitivity indices
  publication-title: Eng Comput
– volume: 185
  year: 2023
  ident: b14
  article-title: First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems by a fractional moments-based mixture distribution approach
  publication-title: Mech Syst Signal Process
– volume: 198
  year: 2020
  ident: b10
  article-title: Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis
  publication-title: Reliab Eng Syst Saf
– volume: 10
  year: 2024
  ident: b18
  article-title: Structural reliability analysis using generalized distribution reconstruction method with novel improvements
  publication-title: ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng
– volume: 208
  year: 2020
  ident: b13
  article-title: A mixture distribution with fractional moments for efficient seismic reliability analysis of nonlinear structures
  publication-title: Eng Struct
– volume: 103
  year: 2023
  ident: b15
  article-title: Harmonic transform-based non-parametric density estimation method for forward uncertainty propagation and reliability analysis
  publication-title: Struct Saf
– year: 2024
  ident: b19
  article-title: An adaptive Gaussian Mixture Model for structural reliability analysis using convolution search technique
  publication-title: Struct Saf
– year: 2022
  ident: b37
  article-title: Probabilistic numerics: Computation as machine learning
– volume: 208
  year: 2020
  ident: 10.1016/j.strusafe.2025.102579_b13
  article-title: A mixture distribution with fractional moments for efficient seismic reliability analysis of nonlinear structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109912
– year: 2022
  ident: 10.1016/j.strusafe.2025.102579_b37
– volume: 25
  start-page: 183
  issue: 2
  year: 2010
  ident: 10.1016/j.strusafe.2025.102579_b20
  article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2009.10.003
– volume: 81
  start-page: 23
  issue: 1
  year: 2003
  ident: 10.1016/j.strusafe.2025.102579_b2
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(03)00058-9
– start-page: 505
  year: 2003
  ident: 10.1016/j.strusafe.2025.102579_b41
  article-title: Bayesian Monte Carlo
  publication-title: Adv Neural Inf Process Syst
– year: 2023
  ident: 10.1016/j.strusafe.2025.102579_b39
– volume: 142
  start-page: 310
  year: 2015
  ident: 10.1016/j.strusafe.2025.102579_b3
  article-title: Refined stratified sampling for efficient Monte Carlo based uncertainty quantification
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.05.023
– issn: 0167-4730
  year: 2024
  ident: 10.1016/j.strusafe.2025.102579_b19
  article-title: An adaptive Gaussian Mixture Model for structural reliability analysis using convolution search technique
  publication-title: Struct Saf
– volume: 13
  start-page: 455
  year: 1998
  ident: 10.1016/j.strusafe.2025.102579_b38
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J Global Optim
  doi: 10.1023/A:1008306431147
– volume: 396
  year: 2022
  ident: 10.1016/j.strusafe.2025.102579_b33
  article-title: A fully adaptive method for structural stochastic response analysis based on direct probability integral method
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2022.115066
– volume: 40
  start-page: 1247
  issue: 2
  year: 2024
  ident: 10.1016/j.strusafe.2025.102579_b25
  article-title: Bayesian active learning approach for estimation of empirical copula-based moment-independent sensitivity indices
  publication-title: Eng Comput
  doi: 10.1007/s00366-023-01865-0
– ident: 10.1016/j.strusafe.2025.102579_b28
– year: 2009
  ident: 10.1016/j.strusafe.2025.102579_b31
– volume: 198
  year: 2020
  ident: 10.1016/j.strusafe.2025.102579_b10
  article-title: Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.106902
– volume: 43
  start-page: 28
  year: 2013
  ident: 10.1016/j.strusafe.2025.102579_b11
  article-title: Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2013.03.001
– volume: 405
  year: 2023
  ident: 10.1016/j.strusafe.2025.102579_b21
  article-title: Projection pursuit adaptation on polynomial chaos expansions
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2022.115845
– volume: 357
  year: 2019
  ident: 10.1016/j.strusafe.2025.102579_b32
  article-title: Direct probability integral method for stochastic response analysis of static and dynamic structural systems
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2019.112612
– volume: 76
  start-page: 123
  year: 2019
  ident: 10.1016/j.strusafe.2025.102579_b12
  article-title: Adaptive scaled unscented transformation for highly efficient structural reliability analysis by maximum entropy method
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2018.09.001
– volume: 229
  year: 2023
  ident: 10.1016/j.strusafe.2025.102579_b17
  article-title: Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108768
– volume: 10
  issue: 2
  year: 2024
  ident: 10.1016/j.strusafe.2025.102579_b18
  article-title: Structural reliability analysis using generalized distribution reconstruction method with novel improvements
  publication-title: ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng
– volume: 29
  start-page: 245
  issue: 3
  year: 1991
  ident: 10.1016/j.strusafe.2025.102579_b40
  article-title: Bayes–Hermite quadrature
  publication-title: J Statist Plann Inference
  doi: 10.1016/0378-3758(91)90002-V
– volume: 89
  start-page: 769
  issue: 4
  year: 2002
  ident: 10.1016/j.strusafe.2025.102579_b23
  article-title: Bayesian inference for the uncertainty distribution of computer model outputs
  publication-title: Biometrika
  doi: 10.1093/biomet/89.4.769
– year: 2024
  ident: 10.1016/j.strusafe.2025.102579_b27
– volume: 225
  year: 2022
  ident: 10.1016/j.strusafe.2025.102579_b35
  article-title: Parallel adaptive Bayesian quadrature for rare event estimation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108621
– volume: 98
  year: 2022
  ident: 10.1016/j.strusafe.2025.102579_b29
  article-title: A unified formalism of the GE-GDEE for generic continuous responses and first-passage reliability analysis of multi-dimensional nonlinear systems subjected to non-white-noise excitations
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2022.102233
– year: 2021
  ident: 10.1016/j.strusafe.2025.102579_b6
– volume: 34
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.strusafe.2025.102579_b42
  article-title: Probabilistic integration: A role in statistical computation?
  publication-title: Statist Sci
– volume: 34
  start-page: 400
  issue: 5
  year: 2004
  ident: 10.1016/j.strusafe.2025.102579_b30
  article-title: Probability density evolution method for dynamic response analysis of structures with uncertain parameters
  publication-title: Comput Mech
  doi: 10.1007/s00466-004-0583-8
– volume: 7
  issue: 4
  year: 2021
  ident: 10.1016/j.strusafe.2025.102579_b34
  article-title: Estimation of failure probability function under imprecise probabilities by active learning–augmented probabilistic integration
  publication-title: ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng
– volume: 141
  issue: 10
  year: 2019
  ident: 10.1016/j.strusafe.2025.102579_b9
  article-title: Maximum entropy method-based reliability analysis with correlated input variables via hybrid dimension-reduction method
  publication-title: J Mech Des
  doi: 10.1115/1.4043734
– volume: 7
  start-page: 57
  issue: 1
  year: 1990
  ident: 10.1016/j.strusafe.2025.102579_b44
  article-title: A fast and efficient response surface approach for structural reliability problems
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(90)90012-E
– volume: 253
  year: 2025
  ident: 10.1016/j.strusafe.2025.102579_b22
  article-title: Probability density estimation of polynomial chaos and its application in structural reliability analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110537
– volume: 115
  start-page: 281
  year: 2019
  ident: 10.1016/j.strusafe.2025.102579_b8
  article-title: A new bivariate dimension reduction method for efficient structural reliability analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.046
– volume: 99
  year: 2022
  ident: 10.1016/j.strusafe.2025.102579_b36
  article-title: Structural reliability analysis: A Bayesian perspective
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2022.102259
– volume: 148
  start-page: 96
  year: 2016
  ident: 10.1016/j.strusafe.2025.102579_b4
  article-title: The generalization of Latin hypercube sampling
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.12.002
– volume: 171
  start-page: 99
  year: 2018
  ident: 10.1016/j.strusafe.2025.102579_b45
  article-title: Sensitivity estimation of failure probability applying line sampling
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.11.010
– volume: 37
  start-page: 239
  year: 2009
  ident: 10.1016/j.strusafe.2025.102579_b7
  article-title: A comparative study of uncertainty propagation methods for black-box-type problems
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-008-0234-7
– volume: 190
  year: 2023
  ident: 10.1016/j.strusafe.2025.102579_b16
  article-title: Harmonic transform-based density estimation method for uncertainty propagation and reliability analysis involving multi-modal distributions
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110113
– volume: 419
  year: 2024
  ident: 10.1016/j.strusafe.2025.102579_b26
  article-title: A multi-region active learning Kriging method for response distribution construction of highly nonlinear problems
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2023.116650
– volume: 84
  year: 2020
  ident: 10.1016/j.strusafe.2025.102579_b24
  article-title: A novel active learning-based Gaussian process metamodelling strategy for estimating the full probability distribution in forward UQ analysis
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2020.101937
– year: 2009
  ident: 10.1016/j.strusafe.2025.102579_b5
– volume: 185
  year: 2023
  ident: 10.1016/j.strusafe.2025.102579_b14
  article-title: First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems by a fractional moments-based mixture distribution approach
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109775
– volume: 103
  year: 2023
  ident: 10.1016/j.strusafe.2025.102579_b15
  article-title: Harmonic transform-based non-parametric density estimation method for forward uncertainty propagation and reliability analysis
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2023.102331
– year: 2013
  ident: 10.1016/j.strusafe.2025.102579_b1
– year: 2006
  ident: 10.1016/j.strusafe.2025.102579_b43
SSID ssj0005828
Score 2.4267526
Snippet Estimation of the response probability distributions of computer simulators subject to input random variables is a crucial task in many fields. However,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102579
SubjectTerms Bayesian active learning
Bayesian inference
Computer simulator
Gaussian process regression
Probability distribution estimation
Title Response probability distribution estimation of expensive computer simulators: A Bayesian active learning perspective using Gaussian process regression
URI https://dx.doi.org/10.1016/j.strusafe.2025.102579
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeXUi96EJ_4Zg5e0ybp7jbxVotan4gP6C1s9lFatC2NHrz4Nfy67mQ3WkHw4Ckk7ELIDLOb5D-_PyGHLI9ainIeJCZSaGGWBnnE2oF9E2M6ZUwxg58Grm9475Fe9Fm_RrpVLwzKKn3tdzW9rNb-StM_zeZ0OGzelwJ6m6AxK__HIROU0jZmeeN9TuaRlP6qju9tR891CY8ayGgthEFcZsyQYsBQ0vXbAjW36JyukGW_W4SOu6FVUtPjNbI0xxBcJx93TuWqAb1hHHX7DRTycL2VFSBIw3UowsQAMv1L0TpI7-gAxfAZXbwms-IIOnAs3jS2VoIoayF4Y4kBTL8bMwH18gM4E69FOXTq-g1gpgdOWDveII-nJw_dXuDdFgIZp-FLIOzWUBoaR4qJUNK2VEoKKmgkDJcsSniY5orxXLR4kijFdBKaJNeR5DLS2vDWJqmPJ2O9RSBsG1u7qGbSRkjzOM-lQtIgbVHk24ltwqpHnEmPIkdHjKes0pyNsio0GYYmc6HZJs2veVMH4_hzRlpFMPuRVpldMf6Yu_OPubtkEc-cMnKP1O0QvW93Ly_5QZmeB2Sh0727usXj-WXv5hOMu_bl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Nb9NAEIZHbXKgHBAfrSifc-BqYjs7G5tbiCgJTXKAVurNWu9HlAqSqCmH_BL-LjveNQ0SUg9c7R3J2lnNru13nhfgHdVZ3wgpk8Jlhi3MyqTOaJD4NzGyJZEhx58GZnM5vhRfrujqAEZtLwzLKmPtDzW9qdbxSi_OZm-zXPa-NQJ6v0Bzav7HiUPoMp2KOtAdTs7H8zulR9FYrAbEtw_YaxS-fs-Y1q1yTMzMiUEGxKquf-1Re_vO2WN4FA-MOAzP9AQO7OopPNzDCD6DX1-D0NUi28ME8PYODSNxo5sVMksjNCni2iFj_RvdOupo6oDb5Q828lrfbD_gED-qneXuSlRNOcToLbHAzV1vJrJkfoGf1c9tM3QTWg7wxi6CtnZ1DJdnny5G4yQaLiQ6L9PbRPnToXYizwypVIuBNkYroUSmnNSUFTIta0OyVn1ZFMaQLVJX1DbTUmfWOtk_gc5qvbLPAdOB8-VLWNI-SVbmda0NwwZFXzDiTp0CtVNc6UgjZ1OM71UrO7uu2tRUnJoqpOYUen_iNoHHcW9E2Waw-mtlVX7TuCf2xX_EvoUH44vZtJpO5ucv4YjvBKHkK-j44fa1P8zc1m_iYv0NMxn4AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+probability+distribution+estimation+of+expensive+computer+simulators%3A+A+Bayesian+active+learning+perspective+using+Gaussian+process+regression&rft.jtitle=Structural+safety&rft.au=Dang%2C+Chao&rft.au=Valdebenito%2C+Marcos+A.&rft.au=Manque%2C+Nataly+A.&rft.au=Xu%2C+Jun&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=0167-4730&rft.volume=114&rft_id=info:doi/10.1016%2Fj.strusafe.2025.102579&rft.externalDocID=S0167473025000074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon