Response probability distribution estimation of expensive computer simulators: A Bayesian active learning perspective using Gaussian process regression
Estimation of the response probability distributions of computer simulators subject to input random variables is a crucial task in many fields. However, achieving this task with guaranteed accuracy remains an open computational challenge, especially for expensive-to-evaluate computer simulators. In...
Saved in:
Published in | Structural safety Vol. 114; p. 102579 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Estimation of the response probability distributions of computer simulators subject to input random variables is a crucial task in many fields. However, achieving this task with guaranteed accuracy remains an open computational challenge, especially for expensive-to-evaluate computer simulators. In this work, a Bayesian active learning perspective is presented to address the challenge, which is based on the use of the Gaussian process (GP) regression. First, estimation of the response probability distributions is conceptually interpreted as a Bayesian inference problem, as opposed to frequentist inference. This interpretation provides several important benefits: (1) it quantifies and propagates discretization error probabilistically; (2) it incorporates prior knowledge of the computer simulator, and (3) it enables the effective reduction of numerical uncertainty in the solution to a prescribed level. The conceptual Bayesian idea is then realized by using the GP regression, where we derive the posterior statistics of the response probability distributions in semi-analytical form and also provide a numerical solution scheme. Based on the practical Bayesian approach, a Bayesian active learning (BAL) method is further proposed for estimating the response probability distributions. In this context, the key contribution lies in the development of two crucial components for active learning, i.e., stopping criterion and learning function, by taking advantage of the posterior statistics. It is empirically demonstrated by five numerical examples that the proposed BAL method can efficiently estimate the response probability distributions with desired accuracy.
•Response probability distribution estimation is conceptually interpreted as a Bayesian inference problem.•A practical Bayesian approach is developed based on Gaussian process regression.•A Bayesian active learning method is proposed based on the practical Bayesian approach.•Stopping criterion and learning function are developed using the posterior statistics.•Five numerical examples illustrate the good performance of the proposed method. |
---|---|
AbstractList | Estimation of the response probability distributions of computer simulators subject to input random variables is a crucial task in many fields. However, achieving this task with guaranteed accuracy remains an open computational challenge, especially for expensive-to-evaluate computer simulators. In this work, a Bayesian active learning perspective is presented to address the challenge, which is based on the use of the Gaussian process (GP) regression. First, estimation of the response probability distributions is conceptually interpreted as a Bayesian inference problem, as opposed to frequentist inference. This interpretation provides several important benefits: (1) it quantifies and propagates discretization error probabilistically; (2) it incorporates prior knowledge of the computer simulator, and (3) it enables the effective reduction of numerical uncertainty in the solution to a prescribed level. The conceptual Bayesian idea is then realized by using the GP regression, where we derive the posterior statistics of the response probability distributions in semi-analytical form and also provide a numerical solution scheme. Based on the practical Bayesian approach, a Bayesian active learning (BAL) method is further proposed for estimating the response probability distributions. In this context, the key contribution lies in the development of two crucial components for active learning, i.e., stopping criterion and learning function, by taking advantage of the posterior statistics. It is empirically demonstrated by five numerical examples that the proposed BAL method can efficiently estimate the response probability distributions with desired accuracy.
•Response probability distribution estimation is conceptually interpreted as a Bayesian inference problem.•A practical Bayesian approach is developed based on Gaussian process regression.•A Bayesian active learning method is proposed based on the practical Bayesian approach.•Stopping criterion and learning function are developed using the posterior statistics.•Five numerical examples illustrate the good performance of the proposed method. |
ArticleNumber | 102579 |
Author | Faes, Matthias G.R. Manque, Nataly A. Xu, Jun Valdebenito, Marcos A. Dang, Chao |
Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0001-7412-6309 surname: Dang fullname: Dang, Chao email: chao.dang@tu-dortmund.de organization: Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany – sequence: 2 givenname: Marcos A. orcidid: 0000-0002-5083-0454 surname: Valdebenito fullname: Valdebenito, Marcos A. organization: Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany – sequence: 3 givenname: Nataly A. orcidid: 0009-0004-5041-1833 surname: Manque fullname: Manque, Nataly A. organization: Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany – sequence: 4 givenname: Jun orcidid: 0000-0001-7101-4280 surname: Xu fullname: Xu, Jun organization: College of Civil Engineering, Hunan University, Changsha 410082, PR China – sequence: 5 givenname: Matthias G.R. orcidid: 0000-0003-3341-3410 surname: Faes fullname: Faes, Matthias G.R. organization: Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany |
BookMark | eNqFkE1OwzAQhb0oEuXnCsgXaLHTJE0RC6CCglQJCcHamtiTylVqRx6noifhurgtbNiwmtGbeW803xkbOO-QsSspxlLI8no9phh6ggbHmciKJGbFdDZgwzScjvLpRJyyM6K1EKKosmrIvt6QOu8IeRd8DbVtbdxxY1OMrftoveNI0W7g0PqG42eHjuwWufabro8YONlN30L0gW74PX-AHZIFx0HH_VqLEJx1K95hoA6PYk97ZQE9HVbTbY1EPOAqpJpOXbCTBlrCy596zj6eHt_nz6Pl6-Jlfr8c6Wwm4ghkIXSTZ9IUIHQ-1cZoyCGX0JS6kFUpZrUpyhomZVUZU2AlmqpGqUstEZtycs5uj7k6eKKAjdI2Hp6NAWyrpFB7sGqtfsGqPVh1BJvs5R97FxKssPvfeHc0YnpuazEo0hadRmNDYqSMt_9FfAP7NqLT |
CitedBy_id | crossref_primary_10_1016_j_cma_2025_117887 |
Cites_doi | 10.1016/j.engstruct.2019.109912 10.1016/j.probengmech.2009.10.003 10.1016/S0951-8320(03)00058-9 10.1016/j.ress.2015.05.023 10.1023/A:1008306431147 10.1016/j.cma.2022.115066 10.1007/s00366-023-01865-0 10.1016/j.ress.2020.106902 10.1016/j.strusafe.2013.03.001 10.1016/j.cma.2022.115845 10.1016/j.cma.2019.112612 10.1016/j.strusafe.2018.09.001 10.1016/j.ress.2022.108768 10.1016/0378-3758(91)90002-V 10.1093/biomet/89.4.769 10.1016/j.ress.2022.108621 10.1016/j.strusafe.2022.102233 10.1007/s00466-004-0583-8 10.1115/1.4043734 10.1016/0167-4730(90)90012-E 10.1016/j.ress.2024.110537 10.1016/j.ymssp.2018.05.046 10.1016/j.strusafe.2022.102259 10.1016/j.ress.2015.12.002 10.1016/j.ress.2017.11.010 10.1007/s00158-008-0234-7 10.1016/j.ymssp.2023.110113 10.1016/j.cma.2023.116650 10.1016/j.strusafe.2020.101937 10.1016/j.ymssp.2022.109775 10.1016/j.strusafe.2023.102331 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.strusafe.2025.102579 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_strusafe_2025_102579 S0167473025000074 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c290t-a150cf421d5a0c47cddca4a41af6c518609bd56ba3688dd5e80f8be1c6c1eef63 |
IEDL.DBID | .~1 |
ISSN | 0167-4730 |
IngestDate | Tue Jul 01 05:27:43 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Sat Mar 22 15:53:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gaussian process regression Computer simulator Bayesian active learning Bayesian inference Probability distribution estimation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c290t-a150cf421d5a0c47cddca4a41af6c518609bd56ba3688dd5e80f8be1c6c1eef63 |
ORCID | 0000-0001-7412-6309 0009-0004-5041-1833 0000-0001-7101-4280 0000-0003-3341-3410 0000-0002-5083-0454 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167473025000074 |
ParticipantIDs | crossref_citationtrail_10_1016_j_strusafe_2025_102579 crossref_primary_10_1016_j_strusafe_2025_102579 elsevier_sciencedirect_doi_10_1016_j_strusafe_2025_102579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Structural safety |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | O’Hagan (b40) 1991; 29 Hennig, Osborne, Kersting (b37) 2022 Wang, Broccardo (b24) 2020; 84 Su, Wang, Bursi, Broccardo (b27) 2024 Lyu, Chen (b29) 2022; 98 Zeng, Ghanem (b21) 2023; 405 Xu, Kong (b12) 2019; 76 Briol, Oates, Girolami, Osborne, Sejdinovic (b42) 2019; 34 Yu, Xu (b16) 2023; 190 Oakley, O’hagan (b23) 2002; 89 Li, Chen (b31) 2009 Xiang, Han, Li, Shi, Pan (b26) 2024; 419 Shields, Zhang (b4) 2016; 148 Wan, Gao, Tao (b18) 2024; 10 Bucher, Bourgund (b44) 1990; 7 Kroese, Taimre, Botev (b1) 2013 He, Li, Hao, Zeng (b9) 2019; 141 Dang, Wei, Song, Beer (b34) 2021; 7 Valdebenito, Jensen, Hernández, Mehrez (b45) 2018; 171 Lee, Chen (b7) 2009; 37 Xu, Yu (b15) 2023; 103 Chen, Yang (b32) 2019; 357 Jones, Schonlau, Welch (b38) 1998; 13 Dang, Xu (b13) 2020; 208 Song, Zhang, Cui, Yue, Dang (b25) 2024; 40 Zhao, Lu (b6) 2021 Helton, Davis (b2) 2003; 81 Xu, Dang (b8) 2019; 115 Williams, Rasmussen (b43) 2006 Garnett (b39) 2023 Li, Chen (b30) 2004; 34 Tao, Zhao, Yu, Huang, Zheng (b33) 2022; 396 Lemieux (b5) 2009 Rasmussen, Ghahramani (b41) 2003 Weng, Liu, Zhang, Zhao (b22) 2025; 253 Ding, Dang, Valdebenito, Faes, Broggi, Beer (b14) 2023; 185 Shields, Teferra, Hapij, Daddazio (b3) 2015; 142 Zhang, Pandey (b11) 2013; 43 Blatman, Sudret (b20) 2010; 25 Kougioumtzoglou IA, Psaros AF, Spanos PD. Path integrals in stochastic engineering dynamics. Springer Cham. Zhou, Peng (b10) 2020; 198 Dang, Wei, Faes, Valdebenito, Beer (b35) 2022; 225 Dang, Valdebenito, Faes, Wei, Beer (b36) 2022; 99 Xu, Song, Yu, Kong (b17) 2023; 229 Zhang, Xu, Wan (b19) 2024 Xu (10.1016/j.strusafe.2025.102579_b8) 2019; 115 Wan (10.1016/j.strusafe.2025.102579_b18) 2024; 10 Kroese (10.1016/j.strusafe.2025.102579_b1) 2013 Shields (10.1016/j.strusafe.2025.102579_b4) 2016; 148 Xu (10.1016/j.strusafe.2025.102579_b15) 2023; 103 Zhao (10.1016/j.strusafe.2025.102579_b6) 2021 Chen (10.1016/j.strusafe.2025.102579_b32) 2019; 357 Song (10.1016/j.strusafe.2025.102579_b25) 2024; 40 Li (10.1016/j.strusafe.2025.102579_b30) 2004; 34 Xu (10.1016/j.strusafe.2025.102579_b12) 2019; 76 Dang (10.1016/j.strusafe.2025.102579_b35) 2022; 225 Helton (10.1016/j.strusafe.2025.102579_b2) 2003; 81 Yu (10.1016/j.strusafe.2025.102579_b16) 2023; 190 Tao (10.1016/j.strusafe.2025.102579_b33) 2022; 396 Jones (10.1016/j.strusafe.2025.102579_b38) 1998; 13 Su (10.1016/j.strusafe.2025.102579_b27) 2024 Briol (10.1016/j.strusafe.2025.102579_b42) 2019; 34 Xu (10.1016/j.strusafe.2025.102579_b17) 2023; 229 Bucher (10.1016/j.strusafe.2025.102579_b44) 1990; 7 Xiang (10.1016/j.strusafe.2025.102579_b26) 2024; 419 Garnett (10.1016/j.strusafe.2025.102579_b39) 2023 Oakley (10.1016/j.strusafe.2025.102579_b23) 2002; 89 Ding (10.1016/j.strusafe.2025.102579_b14) 2023; 185 Weng (10.1016/j.strusafe.2025.102579_b22) 2025; 253 Blatman (10.1016/j.strusafe.2025.102579_b20) 2010; 25 O’Hagan (10.1016/j.strusafe.2025.102579_b40) 1991; 29 Lyu (10.1016/j.strusafe.2025.102579_b29) 2022; 98 Rasmussen (10.1016/j.strusafe.2025.102579_b41) 2003 Zhang (10.1016/j.strusafe.2025.102579_b11) 2013; 43 Zeng (10.1016/j.strusafe.2025.102579_b21) 2023; 405 Li (10.1016/j.strusafe.2025.102579_b31) 2009 Shields (10.1016/j.strusafe.2025.102579_b3) 2015; 142 Wang (10.1016/j.strusafe.2025.102579_b24) 2020; 84 Dang (10.1016/j.strusafe.2025.102579_b34) 2021; 7 Hennig (10.1016/j.strusafe.2025.102579_b37) 2022 Lemieux (10.1016/j.strusafe.2025.102579_b5) 2009 Williams (10.1016/j.strusafe.2025.102579_b43) 2006 He (10.1016/j.strusafe.2025.102579_b9) 2019; 141 Dang (10.1016/j.strusafe.2025.102579_b13) 2020; 208 10.1016/j.strusafe.2025.102579_b28 Lee (10.1016/j.strusafe.2025.102579_b7) 2009; 37 Dang (10.1016/j.strusafe.2025.102579_b36) 2022; 99 Zhang (10.1016/j.strusafe.2025.102579_b19) 2024 Valdebenito (10.1016/j.strusafe.2025.102579_b45) 2018; 171 Zhou (10.1016/j.strusafe.2025.102579_b10) 2020; 198 |
References_xml | – volume: 419 year: 2024 ident: b26 article-title: A multi-region active learning Kriging method for response distribution construction of highly nonlinear problems publication-title: Comput Methods Appl Mech Engrg – start-page: 505 year: 2003 end-page: 512 ident: b41 article-title: Bayesian Monte Carlo publication-title: Adv Neural Inf Process Syst – year: 2006 ident: b43 publication-title: Gaussian processes for machine learning – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: b38 article-title: Efficient global optimization of expensive black-box functions publication-title: J Global Optim – volume: 34 start-page: 1 year: 2019 end-page: 22 ident: b42 article-title: Probabilistic integration: A role in statistical computation? publication-title: Statist Sci – volume: 98 year: 2022 ident: b29 article-title: A unified formalism of the GE-GDEE for generic continuous responses and first-passage reliability analysis of multi-dimensional nonlinear systems subjected to non-white-noise excitations publication-title: Struct Saf – volume: 190 year: 2023 ident: b16 article-title: Harmonic transform-based density estimation method for uncertainty propagation and reliability analysis involving multi-modal distributions publication-title: Mech Syst Signal Process – year: 2024 ident: b27 article-title: Surrogate modeling for probability distribution estimation: uniform or adaptive design? – volume: 7 year: 2021 ident: b34 article-title: Estimation of failure probability function under imprecise probabilities by active learning–augmented probabilistic integration publication-title: ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng – volume: 141 year: 2019 ident: b9 article-title: Maximum entropy method-based reliability analysis with correlated input variables via hybrid dimension-reduction method publication-title: J Mech Des – volume: 225 year: 2022 ident: b35 article-title: Parallel adaptive Bayesian quadrature for rare event estimation publication-title: Reliab Eng Syst Saf – volume: 229 year: 2023 ident: b17 article-title: Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis publication-title: Reliab Eng Syst Saf – volume: 25 start-page: 183 year: 2010 end-page: 197 ident: b20 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probab Eng Mech – volume: 81 start-page: 23 year: 2003 end-page: 69 ident: b2 article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems publication-title: Reliab Eng Syst Saf – volume: 7 start-page: 57 year: 1990 end-page: 66 ident: b44 article-title: A fast and efficient response surface approach for structural reliability problems publication-title: Struct Saf – volume: 115 start-page: 281 year: 2019 end-page: 300 ident: b8 article-title: A new bivariate dimension reduction method for efficient structural reliability analysis publication-title: Mech Syst Signal Process – volume: 396 year: 2022 ident: b33 article-title: A fully adaptive method for structural stochastic response analysis based on direct probability integral method publication-title: Comput Methods Appl Mech Engrg – year: 2021 ident: b6 article-title: Structural reliability: approaches from perspectives of statistical moments – year: 2023 ident: b39 article-title: Bayesian optimization – volume: 43 start-page: 28 year: 2013 end-page: 40 ident: b11 article-title: Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method publication-title: Struct Saf – volume: 142 start-page: 310 year: 2015 end-page: 325 ident: b3 article-title: Refined stratified sampling for efficient Monte Carlo based uncertainty quantification publication-title: Reliab Eng Syst Saf – volume: 37 start-page: 239 year: 2009 end-page: 253 ident: b7 article-title: A comparative study of uncertainty propagation methods for black-box-type problems publication-title: Struct Multidiscip Optim – year: 2009 ident: b31 article-title: Stochastic Dynamics of Structures – year: 2013 ident: b1 article-title: Handbook of Monte Carlo methods – volume: 34 start-page: 400 year: 2004 end-page: 409 ident: b30 article-title: Probability density evolution method for dynamic response analysis of structures with uncertain parameters publication-title: Comput Mech – volume: 253 year: 2025 ident: b22 article-title: Probability density estimation of polynomial chaos and its application in structural reliability analysis publication-title: Reliab Eng Syst Saf – volume: 29 start-page: 245 year: 1991 end-page: 260 ident: b40 article-title: Bayes–Hermite quadrature publication-title: J Statist Plann Inference – reference: Kougioumtzoglou IA, Psaros AF, Spanos PD. Path integrals in stochastic engineering dynamics. Springer Cham. – volume: 99 year: 2022 ident: b36 article-title: Structural reliability analysis: A Bayesian perspective publication-title: Struct Saf – volume: 148 start-page: 96 year: 2016 end-page: 108 ident: b4 article-title: The generalization of Latin hypercube sampling publication-title: Reliab Eng Syst Saf – volume: 357 year: 2019 ident: b32 article-title: Direct probability integral method for stochastic response analysis of static and dynamic structural systems publication-title: Comput Methods Appl Mech Engrg – volume: 84 year: 2020 ident: b24 article-title: A novel active learning-based Gaussian process metamodelling strategy for estimating the full probability distribution in forward UQ analysis publication-title: Struct Saf – volume: 171 start-page: 99 year: 2018 end-page: 111 ident: b45 article-title: Sensitivity estimation of failure probability applying line sampling publication-title: Reliab Eng Syst Saf – volume: 89 start-page: 769 year: 2002 end-page: 784 ident: b23 article-title: Bayesian inference for the uncertainty distribution of computer model outputs publication-title: Biometrika – volume: 76 start-page: 123 year: 2019 end-page: 134 ident: b12 article-title: Adaptive scaled unscented transformation for highly efficient structural reliability analysis by maximum entropy method publication-title: Struct Saf – volume: 405 year: 2023 ident: b21 article-title: Projection pursuit adaptation on polynomial chaos expansions publication-title: Comput Methods Appl Mech Engrg – year: 2009 ident: b5 article-title: Monte Carlo and Quasi-Monte Carlo sampling – volume: 40 start-page: 1247 year: 2024 end-page: 1263 ident: b25 article-title: Bayesian active learning approach for estimation of empirical copula-based moment-independent sensitivity indices publication-title: Eng Comput – volume: 185 year: 2023 ident: b14 article-title: First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems by a fractional moments-based mixture distribution approach publication-title: Mech Syst Signal Process – volume: 198 year: 2020 ident: b10 article-title: Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis publication-title: Reliab Eng Syst Saf – volume: 10 year: 2024 ident: b18 article-title: Structural reliability analysis using generalized distribution reconstruction method with novel improvements publication-title: ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng – volume: 208 year: 2020 ident: b13 article-title: A mixture distribution with fractional moments for efficient seismic reliability analysis of nonlinear structures publication-title: Eng Struct – volume: 103 year: 2023 ident: b15 article-title: Harmonic transform-based non-parametric density estimation method for forward uncertainty propagation and reliability analysis publication-title: Struct Saf – year: 2024 ident: b19 article-title: An adaptive Gaussian Mixture Model for structural reliability analysis using convolution search technique publication-title: Struct Saf – year: 2022 ident: b37 article-title: Probabilistic numerics: Computation as machine learning – volume: 208 year: 2020 ident: 10.1016/j.strusafe.2025.102579_b13 article-title: A mixture distribution with fractional moments for efficient seismic reliability analysis of nonlinear structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109912 – year: 2022 ident: 10.1016/j.strusafe.2025.102579_b37 – volume: 25 start-page: 183 issue: 2 year: 2010 ident: 10.1016/j.strusafe.2025.102579_b20 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2009.10.003 – volume: 81 start-page: 23 issue: 1 year: 2003 ident: 10.1016/j.strusafe.2025.102579_b2 article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(03)00058-9 – start-page: 505 year: 2003 ident: 10.1016/j.strusafe.2025.102579_b41 article-title: Bayesian Monte Carlo publication-title: Adv Neural Inf Process Syst – year: 2023 ident: 10.1016/j.strusafe.2025.102579_b39 – volume: 142 start-page: 310 year: 2015 ident: 10.1016/j.strusafe.2025.102579_b3 article-title: Refined stratified sampling for efficient Monte Carlo based uncertainty quantification publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.05.023 – issn: 0167-4730 year: 2024 ident: 10.1016/j.strusafe.2025.102579_b19 article-title: An adaptive Gaussian Mixture Model for structural reliability analysis using convolution search technique publication-title: Struct Saf – volume: 13 start-page: 455 year: 1998 ident: 10.1016/j.strusafe.2025.102579_b38 article-title: Efficient global optimization of expensive black-box functions publication-title: J Global Optim doi: 10.1023/A:1008306431147 – volume: 396 year: 2022 ident: 10.1016/j.strusafe.2025.102579_b33 article-title: A fully adaptive method for structural stochastic response analysis based on direct probability integral method publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2022.115066 – volume: 40 start-page: 1247 issue: 2 year: 2024 ident: 10.1016/j.strusafe.2025.102579_b25 article-title: Bayesian active learning approach for estimation of empirical copula-based moment-independent sensitivity indices publication-title: Eng Comput doi: 10.1007/s00366-023-01865-0 – ident: 10.1016/j.strusafe.2025.102579_b28 – year: 2009 ident: 10.1016/j.strusafe.2025.102579_b31 – volume: 198 year: 2020 ident: 10.1016/j.strusafe.2025.102579_b10 article-title: Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.106902 – volume: 43 start-page: 28 year: 2013 ident: 10.1016/j.strusafe.2025.102579_b11 article-title: Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method publication-title: Struct Saf doi: 10.1016/j.strusafe.2013.03.001 – volume: 405 year: 2023 ident: 10.1016/j.strusafe.2025.102579_b21 article-title: Projection pursuit adaptation on polynomial chaos expansions publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2022.115845 – volume: 357 year: 2019 ident: 10.1016/j.strusafe.2025.102579_b32 article-title: Direct probability integral method for stochastic response analysis of static and dynamic structural systems publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2019.112612 – volume: 76 start-page: 123 year: 2019 ident: 10.1016/j.strusafe.2025.102579_b12 article-title: Adaptive scaled unscented transformation for highly efficient structural reliability analysis by maximum entropy method publication-title: Struct Saf doi: 10.1016/j.strusafe.2018.09.001 – volume: 229 year: 2023 ident: 10.1016/j.strusafe.2025.102579_b17 article-title: Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108768 – volume: 10 issue: 2 year: 2024 ident: 10.1016/j.strusafe.2025.102579_b18 article-title: Structural reliability analysis using generalized distribution reconstruction method with novel improvements publication-title: ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng – volume: 29 start-page: 245 issue: 3 year: 1991 ident: 10.1016/j.strusafe.2025.102579_b40 article-title: Bayes–Hermite quadrature publication-title: J Statist Plann Inference doi: 10.1016/0378-3758(91)90002-V – volume: 89 start-page: 769 issue: 4 year: 2002 ident: 10.1016/j.strusafe.2025.102579_b23 article-title: Bayesian inference for the uncertainty distribution of computer model outputs publication-title: Biometrika doi: 10.1093/biomet/89.4.769 – year: 2024 ident: 10.1016/j.strusafe.2025.102579_b27 – volume: 225 year: 2022 ident: 10.1016/j.strusafe.2025.102579_b35 article-title: Parallel adaptive Bayesian quadrature for rare event estimation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108621 – volume: 98 year: 2022 ident: 10.1016/j.strusafe.2025.102579_b29 article-title: A unified formalism of the GE-GDEE for generic continuous responses and first-passage reliability analysis of multi-dimensional nonlinear systems subjected to non-white-noise excitations publication-title: Struct Saf doi: 10.1016/j.strusafe.2022.102233 – year: 2021 ident: 10.1016/j.strusafe.2025.102579_b6 – volume: 34 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.strusafe.2025.102579_b42 article-title: Probabilistic integration: A role in statistical computation? publication-title: Statist Sci – volume: 34 start-page: 400 issue: 5 year: 2004 ident: 10.1016/j.strusafe.2025.102579_b30 article-title: Probability density evolution method for dynamic response analysis of structures with uncertain parameters publication-title: Comput Mech doi: 10.1007/s00466-004-0583-8 – volume: 7 issue: 4 year: 2021 ident: 10.1016/j.strusafe.2025.102579_b34 article-title: Estimation of failure probability function under imprecise probabilities by active learning–augmented probabilistic integration publication-title: ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng – volume: 141 issue: 10 year: 2019 ident: 10.1016/j.strusafe.2025.102579_b9 article-title: Maximum entropy method-based reliability analysis with correlated input variables via hybrid dimension-reduction method publication-title: J Mech Des doi: 10.1115/1.4043734 – volume: 7 start-page: 57 issue: 1 year: 1990 ident: 10.1016/j.strusafe.2025.102579_b44 article-title: A fast and efficient response surface approach for structural reliability problems publication-title: Struct Saf doi: 10.1016/0167-4730(90)90012-E – volume: 253 year: 2025 ident: 10.1016/j.strusafe.2025.102579_b22 article-title: Probability density estimation of polynomial chaos and its application in structural reliability analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110537 – volume: 115 start-page: 281 year: 2019 ident: 10.1016/j.strusafe.2025.102579_b8 article-title: A new bivariate dimension reduction method for efficient structural reliability analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.05.046 – volume: 99 year: 2022 ident: 10.1016/j.strusafe.2025.102579_b36 article-title: Structural reliability analysis: A Bayesian perspective publication-title: Struct Saf doi: 10.1016/j.strusafe.2022.102259 – volume: 148 start-page: 96 year: 2016 ident: 10.1016/j.strusafe.2025.102579_b4 article-title: The generalization of Latin hypercube sampling publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.12.002 – volume: 171 start-page: 99 year: 2018 ident: 10.1016/j.strusafe.2025.102579_b45 article-title: Sensitivity estimation of failure probability applying line sampling publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.11.010 – volume: 37 start-page: 239 year: 2009 ident: 10.1016/j.strusafe.2025.102579_b7 article-title: A comparative study of uncertainty propagation methods for black-box-type problems publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-008-0234-7 – volume: 190 year: 2023 ident: 10.1016/j.strusafe.2025.102579_b16 article-title: Harmonic transform-based density estimation method for uncertainty propagation and reliability analysis involving multi-modal distributions publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2023.110113 – volume: 419 year: 2024 ident: 10.1016/j.strusafe.2025.102579_b26 article-title: A multi-region active learning Kriging method for response distribution construction of highly nonlinear problems publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2023.116650 – volume: 84 year: 2020 ident: 10.1016/j.strusafe.2025.102579_b24 article-title: A novel active learning-based Gaussian process metamodelling strategy for estimating the full probability distribution in forward UQ analysis publication-title: Struct Saf doi: 10.1016/j.strusafe.2020.101937 – year: 2009 ident: 10.1016/j.strusafe.2025.102579_b5 – volume: 185 year: 2023 ident: 10.1016/j.strusafe.2025.102579_b14 article-title: First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems by a fractional moments-based mixture distribution approach publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.109775 – volume: 103 year: 2023 ident: 10.1016/j.strusafe.2025.102579_b15 article-title: Harmonic transform-based non-parametric density estimation method for forward uncertainty propagation and reliability analysis publication-title: Struct Saf doi: 10.1016/j.strusafe.2023.102331 – year: 2013 ident: 10.1016/j.strusafe.2025.102579_b1 – year: 2006 ident: 10.1016/j.strusafe.2025.102579_b43 |
SSID | ssj0005828 |
Score | 2.4267526 |
Snippet | Estimation of the response probability distributions of computer simulators subject to input random variables is a crucial task in many fields. However,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102579 |
SubjectTerms | Bayesian active learning Bayesian inference Computer simulator Gaussian process regression Probability distribution estimation |
Title | Response probability distribution estimation of expensive computer simulators: A Bayesian active learning perspective using Gaussian process regression |
URI | https://dx.doi.org/10.1016/j.strusafe.2025.102579 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeXUi96EJ_4Zg5e0ybp7jbxVotan4gP6C1s9lFatC2NHrz4Nfy67mQ3WkHw4Ckk7ELIDLOb5D-_PyGHLI9ainIeJCZSaGGWBnnE2oF9E2M6ZUwxg58Grm9475Fe9Fm_RrpVLwzKKn3tdzW9rNb-StM_zeZ0OGzelwJ6m6AxK__HIROU0jZmeeN9TuaRlP6qju9tR891CY8ayGgthEFcZsyQYsBQ0vXbAjW36JyukGW_W4SOu6FVUtPjNbI0xxBcJx93TuWqAb1hHHX7DRTycL2VFSBIw3UowsQAMv1L0TpI7-gAxfAZXbwms-IIOnAs3jS2VoIoayF4Y4kBTL8bMwH18gM4E69FOXTq-g1gpgdOWDveII-nJw_dXuDdFgIZp-FLIOzWUBoaR4qJUNK2VEoKKmgkDJcsSniY5orxXLR4kijFdBKaJNeR5DLS2vDWJqmPJ2O9RSBsG1u7qGbSRkjzOM-lQtIgbVHk24ltwqpHnEmPIkdHjKes0pyNsio0GYYmc6HZJs2veVMH4_hzRlpFMPuRVpldMf6Yu_OPubtkEc-cMnKP1O0QvW93Ly_5QZmeB2Sh0727usXj-WXv5hOMu_bl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Nb9NAEIZHbXKgHBAfrSifc-BqYjs7G5tbiCgJTXKAVurNWu9HlAqSqCmH_BL-LjveNQ0SUg9c7R3J2lnNru13nhfgHdVZ3wgpk8Jlhi3MyqTOaJD4NzGyJZEhx58GZnM5vhRfrujqAEZtLwzLKmPtDzW9qdbxSi_OZm-zXPa-NQJ6v0Bzav7HiUPoMp2KOtAdTs7H8zulR9FYrAbEtw_YaxS-fs-Y1q1yTMzMiUEGxKquf-1Re_vO2WN4FA-MOAzP9AQO7OopPNzDCD6DX1-D0NUi28ME8PYODSNxo5sVMksjNCni2iFj_RvdOupo6oDb5Q828lrfbD_gED-qneXuSlRNOcToLbHAzV1vJrJkfoGf1c9tM3QTWg7wxi6CtnZ1DJdnny5G4yQaLiQ6L9PbRPnToXYizwypVIuBNkYroUSmnNSUFTIta0OyVn1ZFMaQLVJX1DbTUmfWOtk_gc5qvbLPAdOB8-VLWNI-SVbmda0NwwZFXzDiTp0CtVNc6UgjZ1OM71UrO7uu2tRUnJoqpOYUen_iNoHHcW9E2Waw-mtlVX7TuCf2xX_EvoUH44vZtJpO5ucv4YjvBKHkK-j44fa1P8zc1m_iYv0NMxn4AQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+probability+distribution+estimation+of+expensive+computer+simulators%3A+A+Bayesian+active+learning+perspective+using+Gaussian+process+regression&rft.jtitle=Structural+safety&rft.au=Dang%2C+Chao&rft.au=Valdebenito%2C+Marcos+A.&rft.au=Manque%2C+Nataly+A.&rft.au=Xu%2C+Jun&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=0167-4730&rft.volume=114&rft_id=info:doi/10.1016%2Fj.strusafe.2025.102579&rft.externalDocID=S0167473025000074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon |