Residual selenate and selenite in the soil: Effect on the accumulation of selenium, macronutrients, and gas exchange in arugula

•Residual Se from the selenate source has enhanced the plant's photosynthetic system.•Selenite residue did not supply sufficient residual Se for arugula to absorb.•Se residual from the previous crop, a key player, enhances gas exchange in arugula.•Selenate increased Se export, leading to higher...

Full description

Saved in:
Bibliographic Details
Published inScientia horticulturae Vol. 337; p. 113569
Main Authors Siueia Júnior, Matias, da Silva, Deivisson Ferreira, Cipriano, Patriciani Estela, de Souza, Ray Rodrigues, Faquin, Valdemar, Silva, Maria Ligia de Souza, Guilherme, Luiz Roberto Guimarães
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Residual Se from the selenate source has enhanced the plant's photosynthetic system.•Selenite residue did not supply sufficient residual Se for arugula to absorb.•Se residual from the previous crop, a key player, enhances gas exchange in arugula.•Selenate increased Se export, leading to higher fresh mass in arugula. Residual selenate and selenite in the soil can influence selenium (Se) content, macronutrients accumulation, and gas exchange in arugula. This study explored the impact of Se absorption by plants and their growth when previously exposed to selenium. Absorption of macronutrients, micronutrients, and physiological parameters of arugula plants (Eruca sativa), as well as residual Se uptake, were assessed following Se addition as sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3) to the soil in the previous crop. The research was conducted under greenhouse conditions, with a completely randomized design in a 2 × 3 + 1 arrangement, with two Se sources (sodium selenate - Na2SeO4 and sodium selenite - Na2SeO3) applied at three Se doses (0.6, 1.2, and 1.8 mg dm−3) via soil and a control, without Se application, with three replications. The results indicated that applying 0.6 Se mg dm−3 as selenite did not significantly contribute to the arugula's uptake of residual selenium. On the other hand, arugula exhibited higher dry mass production and macronutrient accumulation content in the shoots due to increased physiological processes such as photosynthetic rate, transpiration, and instantaneous carboxylation efficiency and stomatal conductance when it absorbed the residual Se in the form of selenate at the increasing doses. This study underscores the need for further comprehensive studies of residual Se in the soil to comprehend its dynamics and relationship with plant absorption, highlighting the potential implications of this research in soil science and agricultural practices.
AbstractList Residual selenate and selenite in the soil can influence selenium (Se) content, macronutrients accumulation, and gas exchange in arugula. This study explored the impact of Se absorption by plants and their growth when previously exposed to selenium. Absorption of macronutrients, micronutrients, and physiological parameters of arugula plants (Eruca sativa), as well as residual Se uptake, were assessed following Se addition as sodium selenate (Na₂SeO₄) and sodium selenite (Na₂SeO₃) to the soil in the previous crop. The research was conducted under greenhouse conditions, with a completely randomized design in a 2 × 3 + 1 arrangement, with two Se sources (sodium selenate - Na₂SeO₄ and sodium selenite - Na₂SeO₃) applied at three Se doses (0.6, 1.2, and 1.8 mg dm⁻³) via soil and a control, without Se application, with three replications. The results indicated that applying 0.6 Se mg dm⁻³ as selenite did not significantly contribute to the arugula's uptake of residual selenium. On the other hand, arugula exhibited higher dry mass production and macronutrient accumulation content in the shoots due to increased physiological processes such as photosynthetic rate, transpiration, and instantaneous carboxylation efficiency and stomatal conductance when it absorbed the residual Se in the form of selenate at the increasing doses. This study underscores the need for further comprehensive studies of residual Se in the soil to comprehend its dynamics and relationship with plant absorption, highlighting the potential implications of this research in soil science and agricultural practices.
•Residual Se from the selenate source has enhanced the plant's photosynthetic system.•Selenite residue did not supply sufficient residual Se for arugula to absorb.•Se residual from the previous crop, a key player, enhances gas exchange in arugula.•Selenate increased Se export, leading to higher fresh mass in arugula. Residual selenate and selenite in the soil can influence selenium (Se) content, macronutrients accumulation, and gas exchange in arugula. This study explored the impact of Se absorption by plants and their growth when previously exposed to selenium. Absorption of macronutrients, micronutrients, and physiological parameters of arugula plants (Eruca sativa), as well as residual Se uptake, were assessed following Se addition as sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3) to the soil in the previous crop. The research was conducted under greenhouse conditions, with a completely randomized design in a 2 × 3 + 1 arrangement, with two Se sources (sodium selenate - Na2SeO4 and sodium selenite - Na2SeO3) applied at three Se doses (0.6, 1.2, and 1.8 mg dm−3) via soil and a control, without Se application, with three replications. The results indicated that applying 0.6 Se mg dm−3 as selenite did not significantly contribute to the arugula's uptake of residual selenium. On the other hand, arugula exhibited higher dry mass production and macronutrient accumulation content in the shoots due to increased physiological processes such as photosynthetic rate, transpiration, and instantaneous carboxylation efficiency and stomatal conductance when it absorbed the residual Se in the form of selenate at the increasing doses. This study underscores the need for further comprehensive studies of residual Se in the soil to comprehend its dynamics and relationship with plant absorption, highlighting the potential implications of this research in soil science and agricultural practices.
ArticleNumber 113569
Author de Souza, Ray Rodrigues
Cipriano, Patriciani Estela
Guilherme, Luiz Roberto Guimarães
Siueia Júnior, Matias
da Silva, Deivisson Ferreira
Silva, Maria Ligia de Souza
Faquin, Valdemar
Author_xml – sequence: 1
  givenname: Matias
  orcidid: 0000-0001-6433-3718
  surname: Siueia Júnior
  fullname: Siueia Júnior, Matias
  email: siueia.junior@gmail.com
  organization: Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
– sequence: 2
  givenname: Deivisson Ferreira
  surname: da Silva
  fullname: da Silva, Deivisson Ferreira
  organization: Federal Institute Catarinense, Porto Grande, Araquari, SC 89245-000, Brazil
– sequence: 3
  givenname: Patriciani Estela
  surname: Cipriano
  fullname: Cipriano, Patriciani Estela
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG 37203-202, Brazil
– sequence: 4
  givenname: Ray Rodrigues
  surname: de Souza
  fullname: de Souza, Ray Rodrigues
  organization: Department of Applied Botanic, Federal University of Lavras, Lavras, MG 37203-202, Brazil
– sequence: 5
  givenname: Valdemar
  surname: Faquin
  fullname: Faquin, Valdemar
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG 37203-202, Brazil
– sequence: 6
  givenname: Maria Ligia de Souza
  surname: Silva
  fullname: Silva, Maria Ligia de Souza
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG 37203-202, Brazil
– sequence: 7
  givenname: Luiz Roberto Guimarães
  surname: Guilherme
  fullname: Guilherme, Luiz Roberto Guimarães
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG 37203-202, Brazil
BookMark eNqFkM1OwzAQhH0oEm3hEZBy5NAEO7YThwtCVfmRKiEhOFuus25dJU6xEwQnXh2X9M5ptauZ0c43QxPXOUDoiuCMYFLc7LOgLbheZTnOWUYI5UU1QVNMMUtZTsU5moWwxxgTwqop-nmFYOtBNUmABpzqIVGuHhcbF-uSfgdJ6Gxzm6yMAd0n3XhTWg_t0KjexkNnTp6hXSSt0r5zQ--Pn4TFX-JWhQS-9E657V-q8sM2mi_QmVFNgMvTnKP3h9Xb8ildvzw-L-_Xqc4r3KeiqMtaVIxXrKo4MQK4UDnHjAmKCy2UEowXvNxgITaM1aWptSFRRBljlGzoHF2PuQfffQwQetnaoKFplINuCJISTktBOWFRykdpLBGCByMP3rbKf0uC5RGy3MsTZHmELEfI0Xc3-iD2-LTgR5WG2vqITdad_SfhF7QXjHE
Cites_doi 10.3389/fpls.2016.02074
10.1007/s11104-019-04346-w
10.1016/j.tibs.2013.12.007
10.1007/s00216-006-0529-8
10.1890/1051-0761(1999)009[0669:DTASIT]2.0.CO;2
10.1590/S0100-204X2012000600014
10.3389/fpls.2015.00136
10.3390/antiox6040081
10.3390/plants8070197
10.1021/acs.jafc.9b01829
10.1016/j.scienta.2019.108839
10.3390/molecules26040881
10.1080/11263504.2010.509942
10.1016/j.plaphy.2020.11.001
10.17221/559/2012-PSE
10.1021/jf0258555
10.1016/j.ecoenv.2018.11.080
10.1111/nph.14378
10.1016/j.envexpbot.2020.104170
10.3389/fpls.2015.00280
10.1016/j.bbagen.2018.03.028
10.3390/agronomy12010131
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.scienta.2022.110908
10.3390/antiox9040272
10.1016/j.jhazmat.2020.124178
10.1111/nph.12596
10.1016/j.jfca.2022.104865
10.3390/agriculture11070626
10.1007/s11104-004-0965-1
10.1016/j.envint.2017.12.035
10.1007/s00425-010-1323-6
10.1007/s11104-020-04635-9
10.1016/S0140-6736(11)61452-9
10.1016/j.envpol.2017.12.019
10.1016/j.scienta.2023.112522
10.1016/j.chemosphere.2017.08.158
10.1023/A:1004639906245
10.1590/1807-1929/agriambi.v21n3p197-202
10.1016/j.jfca.2019.103382
10.1111/j.1469-8137.2007.02343.x
10.1016/bs.abr.2016.06.004
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.scienta.2024.113569
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_scienta_2024_113569
S0304423824007258
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXKI
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
Y6R
~G-
~KM
AALCJ
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HVGLF
HZ~
LW9
M41
R2-
SSH
WUQ
XOL
7S9
L.6
ID FETCH-LOGICAL-c290t-86d7d8945949951f8e58a250448306c8aa845657b088b44d7fdcf1e58344431b3
IEDL.DBID .~1
ISSN 0304-4238
IngestDate Wed Jul 02 04:53:46 EDT 2025
Tue Jul 01 02:36:20 EDT 2025
Sat Sep 14 18:04:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Macronutrients
Photosynthetic rate
Selenate
Eruca sativa Miller
Selenium
Transpiration rate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c290t-86d7d8945949951f8e58a250448306c8aa845657b088b44d7fdcf1e58344431b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6433-3718
PQID 3153783514
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153783514
crossref_primary_10_1016_j_scienta_2024_113569
elsevier_sciencedirect_doi_10_1016_j_scienta_2024_113569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Scientia horticulturae
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, McGrath, Zhao (bib0018) 2008; 178
Natasha, Shahid, Niazi, Khalid, Murtaza, Bibi, Rashid (bib0025) 2018; 234
Tiwari, Brunton, Brennan (bib0045) 2012
Dinh, Cui, Huang, Tran, Wang, Yang, Zhou, Wang, Yu, Liang (bib0008) 2018
Schiavon, Pilon-Smits (bib0037) 2017; 213
Zou, Du, Rashid, Ram, Savasli, Pieterse, Ortiz-Monasterio, Yazici, Kaur, Mahmood, Singh, Le Roux, Kuang, Onder, Kalayci, Cakmak (bib0059) 2019; 67
Pannico, El-Nakhel, Graziani, Kyriacou, Giordano, Soteriou, Zarrelli, Ritieni, De Pascale, Rouphael (bib0027) 2020; 9
Freitas, Giovanelli, Delazari, Dos Santos, Pereira, Da Silva (bib0010) 2017; 21
Dall'Acqua, Ertani, Pilon-Smits, Fabrega-Prats, Schiavon (bib0007) 2019; 8
Jiang, Zu, Lu, Zheng, Shen, Wang, Li (bib0017) 2017; 7
Santos, Jacomine, dos Anjos, Oliveira, Lumbreras, Coelho, Almeida, Cunha, Oliveira (bib0034) 2018
Santiago, Silva, Cardoso, Duan, Guilherme, Liu, Li (bib0033) 2020; 157
Zafeiriou, Gasparatos, Ioannou, Kalderis, Massas (bib0055) 2022; 12
Malavolta, E., Vitti, G.C., Oliveira, S.A.de, 1997. Avaliação do estado nutricional de plantas: princípios e aplicações, 2nd ed. Potáfos, Piracicaba.
Silva (bib0041) 2009
Malagoli, Schiavon, Dall'Acqua, Pilon-Smits (bib0020) 2015; 6
Pilon-Smits (bib0028) 2019; 8
Benjamini, Hochberg (bib0001) 1995; 57
Zhang, Hu, Li, Che, Deng, Li, Yu, Ling, Li, Chu (bib0057) 2014; 201
Silva, Cipriano, de Souza, Siueia Júnior, da Silva, Faquin, de Souza Silva, Guimarães Guilherme (bib0039) 2020; 260
Boldrin, Faquin, Ramos, Guilherme, Bastos, Carvalho, Costa, de (bib0002) 2012; 47
Ramos, Ávila, Boldrin, Pereira, Castro, Faquin, Reis, Guilherme (bib0030) 2012; 58
Hopper, Parker (bib0015) 1999; 210
Mukaka (bib0024) 2012; 24
Gupta, Gupta (bib0011) 2017; 7
.
Lima, Pilon-Smits, Schiavon (bib0019) 2018
Silva Junior, Wadt, Silva, Lima, Batista, Guedes, Carvalho, Carvalho, Reis, Lopes, Guilherme (bib0038) 2017; 188
Trippe, Pilon-Smits (bib0047) 2021; 404
(bib0042) 2014; 12
Silva, Cipriano, de Souza, Siueia, Faquin, de Souza Silva, Guilherme (bib0040) 2020; 86
Yin, Qi, Li, Ahammed, Chu, Zhou (bib0054) 2019; 169
Dumont, Vanhaecke, Cornelis (bib0009) 2006
Hatfield, Tsuji, Carlson, Gladyshev (bib0014) 2014
Rayman (bib0032) 2012; 379
Ramos, Rutzke, Hayes, Faquin, Guilherme, Li (bib0031) 2011; 233
Teixeira, Donagemma, Fontana, Teixeira (bib0044) 2017
Wu, Bañuelos, Lin, Liu, Yuan, Yin, Li (bib0053) 2015
Schiavon, Nardi, dalla Vecchia, Ertani (bib0035) 2020
Mikkelsen, Wan (bib0022) 1990; 121
(bib0048) 2005
Wilson, Nash, Singh, Griffiths, Singh, De Meester, Horiuchi, Takahashi (bib0051) 2017
(bib0029) 2024
Miller, Cramer (bib0023) 2004; 274
Hossain, Skalicky, Brestic, Maitra, Sarkar (bib0016) 2021; 26
Zenda, Liu, Dong, Duan (bib0056) 2021
Cipriano, da Silva, Martins, de Lima, de Oliveira, Faquin, Guilherme (bib0005) 2023; 115
USEPA, 2007. Microwave assisted acid digestion of sediments sludge soils and oils EPA SW 846 3051A. Revision 1, 1-30. Washington, DC. Apr 2022, [Online]. Available
Carvalho, Gallardo-Williams, Benson, Martin (bib0004) 2003; 51
Traka (bib0046) 2016; 80
Cao, Williams, Williams (bib0003) 1999; 9
Tavan, Wee, Fuentes, Pang, Brodie, Viejo, Gupta (bib0043) 2024; 323
Hasanuzzaman, Bhuyan, Raza, Hawrylak-Nowak, Matraszek-Gawron, Mahmud, Nahar, Fujita (bib0013) 2020; 178
Hair Junior, Black, Babin, Anderson, Tatham (bib0012) 2009
(bib0052) 2009
Paciolla, de Leonardis, Dipierro (bib0026) 2011; 145
Cipriano, Siueia Júnior, Souza, da Silva, Faquin, Silva, de, Guilherme (bib0006) 2022; 296
Wang, Dinh, Qi, Wang, Yang, Zhou, Liang (bib0050) 2020; 446
Schiavon (10.1016/j.scienta.2024.113569_bib0037) 2017; 213
Wu (10.1016/j.scienta.2024.113569_bib0053) 2015
Benjamini (10.1016/j.scienta.2024.113569_bib0001) 1995; 57
(10.1016/j.scienta.2024.113569_bib0048) 2005
Freitas (10.1016/j.scienta.2024.113569_bib0010) 2017; 21
Hatfield (10.1016/j.scienta.2024.113569_bib0014) 2014
Rayman (10.1016/j.scienta.2024.113569_bib0032) 2012; 379
Zafeiriou (10.1016/j.scienta.2024.113569_bib0055) 2022; 12
Silva Junior (10.1016/j.scienta.2024.113569_bib0038) 2017; 188
Lima (10.1016/j.scienta.2024.113569_bib0019) 2018
Li (10.1016/j.scienta.2024.113569_bib0018) 2008; 178
Dall'Acqua (10.1016/j.scienta.2024.113569_bib0007) 2019; 8
10.1016/j.scienta.2024.113569_bib0049
Wilson (10.1016/j.scienta.2024.113569_bib0051) 2017
Hossain (10.1016/j.scienta.2024.113569_bib0016) 2021; 26
Natasha, Shahid (10.1016/j.scienta.2024.113569_bib0025) 2018; 234
Teixeira (10.1016/j.scienta.2024.113569_bib0044) 2017
Mikkelsen (10.1016/j.scienta.2024.113569_bib0022) 1990; 121
Boldrin (10.1016/j.scienta.2024.113569_bib0002) 2012; 47
Hair Junior (10.1016/j.scienta.2024.113569_bib0012) 2009
Carvalho (10.1016/j.scienta.2024.113569_bib0004) 2003; 51
Zenda (10.1016/j.scienta.2024.113569_bib0056) 2021
Silva (10.1016/j.scienta.2024.113569_bib0040) 2020; 86
Schiavon (10.1016/j.scienta.2024.113569_bib0035) 2020
Mukaka (10.1016/j.scienta.2024.113569_bib0024) 2012; 24
Wang (10.1016/j.scienta.2024.113569_bib0050) 2020; 446
Zhang (10.1016/j.scienta.2024.113569_bib0057) 2014; 201
Cao (10.1016/j.scienta.2024.113569_bib0003) 1999; 9
Malagoli (10.1016/j.scienta.2024.113569_bib0020) 2015; 6
Tavan (10.1016/j.scienta.2024.113569_bib0043) 2024; 323
Trippe (10.1016/j.scienta.2024.113569_bib0047) 2021; 404
Cipriano (10.1016/j.scienta.2024.113569_bib0005) 2023; 115
Hopper (10.1016/j.scienta.2024.113569_bib0015) 1999; 210
Dinh (10.1016/j.scienta.2024.113569_bib0008) 2018
Cipriano (10.1016/j.scienta.2024.113569_bib0006) 2022; 296
Gupta (10.1016/j.scienta.2024.113569_bib0011) 2017; 7
(10.1016/j.scienta.2024.113569_bib0042) 2014; 12
10.1016/j.scienta.2024.113569_bib0021
Hasanuzzaman (10.1016/j.scienta.2024.113569_bib0013) 2020; 178
Paciolla (10.1016/j.scienta.2024.113569_bib0026) 2011; 145
Santiago (10.1016/j.scienta.2024.113569_bib0033) 2020; 157
(10.1016/j.scienta.2024.113569_bib0052) 2009
Traka (10.1016/j.scienta.2024.113569_bib0046) 2016; 80
Dumont (10.1016/j.scienta.2024.113569_bib0009) 2006
Miller (10.1016/j.scienta.2024.113569_bib0023) 2004; 274
Santos (10.1016/j.scienta.2024.113569_bib0034) 2018
(10.1016/j.scienta.2024.113569_bib0029) 2024
Ramos (10.1016/j.scienta.2024.113569_bib0030) 2012; 58
Ramos (10.1016/j.scienta.2024.113569_bib0031) 2011; 233
Silva (10.1016/j.scienta.2024.113569_bib0041) 2009
Silva (10.1016/j.scienta.2024.113569_bib0039) 2020; 260
Yin (10.1016/j.scienta.2024.113569_bib0054) 2019; 169
Zou (10.1016/j.scienta.2024.113569_bib0059) 2019; 67
Jiang (10.1016/j.scienta.2024.113569_bib0017) 2017; 7
Pannico (10.1016/j.scienta.2024.113569_bib0027) 2020; 9
Pilon-Smits (10.1016/j.scienta.2024.113569_bib0028) 2019; 8
Tiwari (10.1016/j.scienta.2024.113569_bib0045) 2012
References_xml – volume: 12
  year: 2022
  ident: bib0055
  article-title: Selenium biofortification of lettuce plants (
  publication-title: Agronomy
– volume: 7
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0017
  article-title: Effect of exogenous selenium supply on photosynthesis, Na + accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress
  publication-title: Sci. Rep.
– volume: 323
  year: 2024
  ident: bib0043
  article-title: Biofortification of kale microgreens with selenate-selenium using two delivery methods: Selenium-rich soilless medium and foliar application
  publication-title: Sci. Hortic.
– reference: USEPA, 2007. Microwave assisted acid digestion of sediments sludge soils and oils EPA SW 846 3051A. Revision 1, 1-30. Washington, DC. Apr 2022, [Online]. Available:
– volume: 145
  start-page: 253
  year: 2011
  end-page: 259
  ident: bib0026
  article-title: Effects of selenite and selenate on the antioxidant systems in Senecio scandens L
  publication-title: Plant Biosyst.
– volume: 8
  year: 2019
  ident: bib0007
  article-title: Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca sativa mill. and diplotaxis tenuifolia) grown in hydroponics
  publication-title: Plants
– volume: 9
  start-page: 669
  year: 1999
  end-page: 677
  ident: bib0003
  article-title: Data transformation and standardization in the multivariate analysis of river water quality
  publication-title: Ecol. Appl.
– year: 2017
  ident: bib0044
  publication-title: Manual de métodos de análise de solo
– volume: 51
  start-page: 704
  year: 2003
  end-page: 709
  ident: bib0004
  article-title: Effects of selenium supplementation on four agricultural crops
  publication-title: J. Agric. Food Chem.
– year: 2018
  ident: bib0034
  publication-title: Sistema brasileiro de classificação de Solos
– volume: 21
  start-page: 197
  year: 2017
  end-page: 202
  ident: bib0010
  article-title: Arugula production as a function of irrigation depths and potassium fertilization
  publication-title: Rev. Bras. Eng. Agric. Ambient.
– volume: 404
  year: 2021
  ident: bib0047
  article-title: Selenium transport and metabolism in plants: phytoremediation and biofortification implications
  publication-title: J. Hazard. Mater.
– volume: 58
  start-page: 521
  year: 2012
  end-page: 527
  ident: bib0030
  article-title: Response of brachiaria grass to selenium forms applied in a tropical soil
  publication-title: Plant Soil Environ.
– volume: 67
  start-page: 8096
  year: 2019
  end-page: 8106
  ident: bib0059
  article-title: Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries
  publication-title: J. Agric. Food Chem.
– year: 2009
  ident: bib0012
  article-title: Análise Multivariada de Dados
– year: 2009
  ident: bib0041
  article-title: Manual de Análises Químicas de solos, Plantas e Fertilizantes
– year: 2018
  ident: bib0008
  article-title: Selenium distribution in the Chinese environment and its relationship with human health: a review
  publication-title: Environ. Int.
– year: 2020
  ident: bib0035
  article-title: Selenium biofortification in the 21st century: status and challenges for healthy human nutrition
  publication-title: Plant Soil
– year: 2018
  ident: bib0019
  article-title: Mechanisms of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues
  publication-title: Biochim. Biophys. Acta
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib0001
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– reference: Malavolta, E., Vitti, G.C., Oliveira, S.A.de, 1997. Avaliação do estado nutricional de plantas: princípios e aplicações, 2nd ed. Potáfos, Piracicaba.
– volume: 157
  start-page: 328
  year: 2020
  end-page: 338
  ident: bib0033
  article-title: Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.)
  publication-title: Plant Physiol. Biochem.
– year: 2021
  ident: bib0056
  article-title: Revisiting sulphur—the once neglected nutrient: It's roles in plant growth, metabolism, stress tolerance and crop production
  publication-title: Agriculture
– volume: 9
  year: 2020
  ident: bib0027
  article-title: Selenium biofortification impacts the nutritive value, polyphenolic content, and bioactive constitution of variable microgreens genotypes
  publication-title: Antioxidants
– year: 2009
  ident: bib0052
  article-title: ‘Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks
– volume: 26
  start-page: 881
  year: 2021
  ident: bib0016
  article-title: Selenium biofortification: roles, mechanisms, responses and prospects
  publication-title: Molecules
– year: 2005
  ident: bib0048
  article-title: Dietary Guidelines for Americans
– volume: 234
  start-page: 915
  year: 2018
  end-page: 934
  ident: bib0025
  article-title: A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health
  publication-title: Environ. Pollut.
– volume: 121
  start-page: 151
  year: 1990
  end-page: 153
  ident: bib0022
  article-title: The effect of selenium on sulfur uptake by barley and rice
  publication-title: Plant Soil
– volume: 169
  start-page: 911
  year: 2019
  end-page: 917
  ident: bib0054
  article-title: Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 115
  year: 2023
  ident: bib0005
  article-title: Selenate fertilization of sorghum via foliar application and its effect on nutrient content and antioxidant metabolism
  publication-title: J. Food Compos. Anal.
– volume: 210
  start-page: 199
  year: 1999
  end-page: 207
  ident: bib0015
  article-title: Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate
  publication-title: Plant Soil
– volume: 178
  start-page: 92
  year: 2008
  end-page: 102
  ident: bib0018
  article-title: Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite
  publication-title: New Phytol.
– volume: 260
  year: 2020
  ident: bib0039
  article-title: Anatomical and physiological characteristics of Raphanus sativus L. submitted to different selenium sources and forms application
  publication-title: Sci. Hortic.
– volume: 274
  start-page: 1
  year: 2004
  end-page: 36
  ident: bib0023
  article-title: Root Nitrogen Acquisition and Assimilation
  publication-title: Plant Soil.
– year: 2012
  ident: bib0045
  article-title: Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction
– volume: 213
  start-page: 1582
  year: 2017
  end-page: 1596
  ident: bib0037
  article-title: The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology
  publication-title: New Phytol.
– year: 2006
  ident: bib0009
  article-title: Selenium speciation from food source to metabolites: a critical review
  publication-title: Anal. Bioanal. Chem.
– volume: 233
  start-page: 649
  year: 2011
  end-page: 660
  ident: bib0031
  article-title: Selenium accumulation in lettuce germplasm
  publication-title: Planta
– year: 2014
  ident: bib0014
  article-title: Selenium and selenocysteine: Roles in cancer, health, and development
  publication-title: Trends Biochem. Sci.
– volume: 178
  year: 2020
  ident: bib0013
  article-title: Selenium in plants: boon or bane?
  publication-title: Environ. Exp. Bot.
– volume: 296
  year: 2022
  ident: bib0006
  article-title: Macronutrients content of radishes and the influence of biofortification with selenium
  publication-title: Sci. Hortic.
– volume: 80
  start-page: 247
  year: 2016
  end-page: 279
  ident: bib0046
  article-title: Health benefits of glucosinolates
  publication-title: Adv. Bot. Res.
– volume: 47
  start-page: 831
  year: 2012
  end-page: 837
  ident: bib0002
  article-title: Selenate and selenite on yield and agronomic biofortification with selenium in rice
  publication-title: Pesqui. Agropecu. Bras.
– volume: 7
  year: 2017
  ident: bib0011
  article-title: An overview of selenium uptake, metabolism, and toxicity in plants
  publication-title: Front. Plant Sci.
– volume: 188
  start-page: 650
  year: 2017
  end-page: 658
  ident: bib0038
  article-title: Natural variation of selenium in Brazil nuts and soils from the Amazon region
  publication-title: Chemosphere
– year: 2024
  ident: bib0029
  publication-title: R: A language and environment statistical computing
– volume: 24
  start-page: 69
  year: 2012
  end-page: 71
  ident: bib0024
  article-title: Statistics corner: a guide to appropriate use of correlation coefficient in medical research
  publication-title: Malawi Med. J.
– volume: 201
  start-page: 1183
  year: 2014
  end-page: 1191
  ident: bib0057
  article-title: OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice
  publication-title: New Phytol.
– volume: 86
  year: 2020
  ident: bib0040
  article-title: Biofortification with selenium and implications in the absorption of macronutrients in Raphanus sativus L
  publication-title: J. Food Compos. Anal.
– year: 2015
  ident: bib0053
  article-title: Biofortification and phytoremediation of selenium in China
  publication-title: Front. Plant Sci.
– reference: .
– year: 2017
  ident: bib0051
  article-title: The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: an overview
  publication-title: Antioxidants
– volume: 12
  start-page: 410
  year: 2014
  ident: bib0042
  article-title: Keys to soil taxonomy
  publication-title: Soil Conserv. Serv.
– volume: 8
  year: 2019
  ident: bib0028
  article-title: On the ecology of selenium accumulation in plants
  publication-title: Plants
– volume: 6
  start-page: 1
  year: 2015
  end-page: 5
  ident: bib0020
  article-title: Effects of selenium biofortification on crop nutritional quality
  publication-title: Front. Plant Sci.
– volume: 446
  start-page: 111
  year: 2020
  end-page: 123
  ident: bib0050
  article-title: Radicular and foliar uptake, and xylem- and phloem-mediated transport of selenium in maize (
  publication-title: Plant Soil
– volume: 379
  start-page: 1256
  year: 2012
  end-page: 1268
  ident: bib0032
  article-title: Selenium and human health
  publication-title: Lancet
– volume: 7
  year: 2017
  ident: 10.1016/j.scienta.2024.113569_bib0011
  article-title: An overview of selenium uptake, metabolism, and toxicity in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.02074
– volume: 446
  start-page: 111
  issue: 1–2
  year: 2020
  ident: 10.1016/j.scienta.2024.113569_bib0050
  article-title: Radicular and foliar uptake, and xylem- and phloem-mediated transport of selenium in maize (Zea mays L.): a comparison of five Se exogenous species
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04346-w
– year: 2014
  ident: 10.1016/j.scienta.2024.113569_bib0014
  article-title: Selenium and selenocysteine: Roles in cancer, health, and development
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2013.12.007
– ident: 10.1016/j.scienta.2024.113569_bib0021
– year: 2006
  ident: 10.1016/j.scienta.2024.113569_bib0009
  article-title: Selenium speciation from food source to metabolites: a critical review
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-0529-8
– volume: 9
  start-page: 669
  year: 1999
  ident: 10.1016/j.scienta.2024.113569_bib0003
  article-title: Data transformation and standardization in the multivariate analysis of river water quality
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(1999)009[0669:DTASIT]2.0.CO;2
– volume: 8
  year: 2019
  ident: 10.1016/j.scienta.2024.113569_bib0007
  article-title: Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca sativa mill. and diplotaxis tenuifolia) grown in hydroponics
  publication-title: Plants
– volume: 47
  start-page: 831
  year: 2012
  ident: 10.1016/j.scienta.2024.113569_bib0002
  article-title: Selenate and selenite on yield and agronomic biofortification with selenium in rice
  publication-title: Pesqui. Agropecu. Bras.
  doi: 10.1590/S0100-204X2012000600014
– year: 2015
  ident: 10.1016/j.scienta.2024.113569_bib0053
  article-title: Biofortification and phytoremediation of selenium in China
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00136
– year: 2005
  ident: 10.1016/j.scienta.2024.113569_bib0048
– year: 2017
  ident: 10.1016/j.scienta.2024.113569_bib0051
  article-title: The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: an overview
  publication-title: Antioxidants
  doi: 10.3390/antiox6040081
– volume: 8
  year: 2019
  ident: 10.1016/j.scienta.2024.113569_bib0028
  article-title: On the ecology of selenium accumulation in plants
  publication-title: Plants
  doi: 10.3390/plants8070197
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.scienta.2024.113569_bib0017
  article-title: Effect of exogenous selenium supply on photosynthesis, Na + accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress
  publication-title: Sci. Rep.
– volume: 67
  start-page: 8096
  year: 2019
  ident: 10.1016/j.scienta.2024.113569_bib0059
  article-title: Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b01829
– volume: 260
  year: 2020
  ident: 10.1016/j.scienta.2024.113569_bib0039
  article-title: Anatomical and physiological characteristics of Raphanus sativus L. submitted to different selenium sources and forms application
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2019.108839
– volume: 26
  start-page: 881
  year: 2021
  ident: 10.1016/j.scienta.2024.113569_bib0016
  article-title: Selenium biofortification: roles, mechanisms, responses and prospects
  publication-title: Molecules
  doi: 10.3390/molecules26040881
– volume: 145
  start-page: 253
  year: 2011
  ident: 10.1016/j.scienta.2024.113569_bib0026
  article-title: Effects of selenite and selenate on the antioxidant systems in Senecio scandens L
  publication-title: Plant Biosyst.
  doi: 10.1080/11263504.2010.509942
– ident: 10.1016/j.scienta.2024.113569_bib0049
– volume: 157
  start-page: 328
  year: 2020
  ident: 10.1016/j.scienta.2024.113569_bib0033
  article-title: Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.)
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.11.001
– volume: 58
  start-page: 521
  year: 2012
  ident: 10.1016/j.scienta.2024.113569_bib0030
  article-title: Response of brachiaria grass to selenium forms applied in a tropical soil
  publication-title: Plant Soil Environ.
  doi: 10.17221/559/2012-PSE
– volume: 51
  start-page: 704
  year: 2003
  ident: 10.1016/j.scienta.2024.113569_bib0004
  article-title: Effects of selenium supplementation on four agricultural crops
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0258555
– volume: 169
  start-page: 911
  year: 2019
  ident: 10.1016/j.scienta.2024.113569_bib0054
  article-title: Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.11.080
– volume: 213
  start-page: 1582
  year: 2017
  ident: 10.1016/j.scienta.2024.113569_bib0037
  article-title: The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology
  publication-title: New Phytol.
  doi: 10.1111/nph.14378
– volume: 178
  year: 2020
  ident: 10.1016/j.scienta.2024.113569_bib0013
  article-title: Selenium in plants: boon or bane?
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2020.104170
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.scienta.2024.113569_bib0020
  article-title: Effects of selenium biofortification on crop nutritional quality
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00280
– year: 2024
  ident: 10.1016/j.scienta.2024.113569_bib0029
– year: 2018
  ident: 10.1016/j.scienta.2024.113569_bib0019
  article-title: Mechanisms of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2018.03.028
– year: 2009
  ident: 10.1016/j.scienta.2024.113569_bib0012
– volume: 12
  year: 2022
  ident: 10.1016/j.scienta.2024.113569_bib0055
  article-title: Selenium biofortification of lettuce plants (Lactuca sativa L.) as affected by Se species, Se rate, and a biochar Co-application in a calcareous soil
  publication-title: Agronomy
  doi: 10.3390/agronomy12010131
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.scienta.2024.113569_bib0001
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 296
  year: 2022
  ident: 10.1016/j.scienta.2024.113569_bib0006
  article-title: Macronutrients content of radishes and the influence of biofortification with selenium
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2022.110908
– volume: 24
  start-page: 69
  year: 2012
  ident: 10.1016/j.scienta.2024.113569_bib0024
  article-title: Statistics corner: a guide to appropriate use of correlation coefficient in medical research
  publication-title: Malawi Med. J.
– volume: 9
  year: 2020
  ident: 10.1016/j.scienta.2024.113569_bib0027
  article-title: Selenium biofortification impacts the nutritive value, polyphenolic content, and bioactive constitution of variable microgreens genotypes
  publication-title: Antioxidants
  doi: 10.3390/antiox9040272
– volume: 121
  start-page: 151
  year: 1990
  ident: 10.1016/j.scienta.2024.113569_bib0022
  article-title: The effect of selenium on sulfur uptake by barley and rice
– year: 2018
  ident: 10.1016/j.scienta.2024.113569_bib0034
– volume: 404
  year: 2021
  ident: 10.1016/j.scienta.2024.113569_bib0047
  article-title: Selenium transport and metabolism in plants: phytoremediation and biofortification implications
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124178
– volume: 201
  start-page: 1183
  year: 2014
  ident: 10.1016/j.scienta.2024.113569_bib0057
  article-title: OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice
  publication-title: New Phytol.
  doi: 10.1111/nph.12596
– year: 2017
  ident: 10.1016/j.scienta.2024.113569_bib0044
– volume: 115
  year: 2023
  ident: 10.1016/j.scienta.2024.113569_bib0005
  article-title: Selenate fertilization of sorghum via foliar application and its effect on nutrient content and antioxidant metabolism
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2022.104865
– year: 2021
  ident: 10.1016/j.scienta.2024.113569_bib0056
  article-title: Revisiting sulphur—the once neglected nutrient: It's roles in plant growth, metabolism, stress tolerance and crop production
  publication-title: Agriculture
  doi: 10.3390/agriculture11070626
– volume: 274
  start-page: 1
  year: 2004
  ident: 10.1016/j.scienta.2024.113569_bib0023
  article-title: Root Nitrogen Acquisition and Assimilation
  publication-title: Plant Soil.
  doi: 10.1007/s11104-004-0965-1
– year: 2018
  ident: 10.1016/j.scienta.2024.113569_bib0008
  article-title: Selenium distribution in the Chinese environment and its relationship with human health: a review
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2017.12.035
– volume: 233
  start-page: 649
  year: 2011
  ident: 10.1016/j.scienta.2024.113569_bib0031
  article-title: Selenium accumulation in lettuce germplasm
  publication-title: Planta
  doi: 10.1007/s00425-010-1323-6
– year: 2020
  ident: 10.1016/j.scienta.2024.113569_bib0035
  article-title: Selenium biofortification in the 21st century: status and challenges for healthy human nutrition
  publication-title: Plant Soil
  doi: 10.1007/s11104-020-04635-9
– volume: 379
  start-page: 1256
  year: 2012
  ident: 10.1016/j.scienta.2024.113569_bib0032
  article-title: Selenium and human health
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)61452-9
– year: 2012
  ident: 10.1016/j.scienta.2024.113569_bib0045
– volume: 234
  start-page: 915
  year: 2018
  ident: 10.1016/j.scienta.2024.113569_bib0025
  article-title: A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.12.019
– year: 2009
  ident: 10.1016/j.scienta.2024.113569_bib0052
– year: 2009
  ident: 10.1016/j.scienta.2024.113569_bib0041
– volume: 323
  year: 2024
  ident: 10.1016/j.scienta.2024.113569_bib0043
  article-title: Biofortification of kale microgreens with selenate-selenium using two delivery methods: Selenium-rich soilless medium and foliar application
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2023.112522
– volume: 188
  start-page: 650
  year: 2017
  ident: 10.1016/j.scienta.2024.113569_bib0038
  article-title: Natural variation of selenium in Brazil nuts and soils from the Amazon region
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.08.158
– volume: 12
  start-page: 410
  year: 2014
  ident: 10.1016/j.scienta.2024.113569_bib0042
  article-title: Keys to soil taxonomy
  publication-title: Soil Conserv. Serv.
– volume: 210
  start-page: 199
  year: 1999
  ident: 10.1016/j.scienta.2024.113569_bib0015
  article-title: Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate
  publication-title: Plant Soil
  doi: 10.1023/A:1004639906245
– volume: 21
  start-page: 197
  year: 2017
  ident: 10.1016/j.scienta.2024.113569_bib0010
  article-title: Arugula production as a function of irrigation depths and potassium fertilization
  publication-title: Rev. Bras. Eng. Agric. Ambient.
  doi: 10.1590/1807-1929/agriambi.v21n3p197-202
– volume: 86
  year: 2020
  ident: 10.1016/j.scienta.2024.113569_bib0040
  article-title: Biofortification with selenium and implications in the absorption of macronutrients in Raphanus sativus L
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2019.103382
– volume: 178
  start-page: 92
  year: 2008
  ident: 10.1016/j.scienta.2024.113569_bib0018
  article-title: Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02343.x
– volume: 80
  start-page: 247
  year: 2016
  ident: 10.1016/j.scienta.2024.113569_bib0046
  article-title: Health benefits of glucosinolates
  publication-title: Adv. Bot. Res.
  doi: 10.1016/bs.abr.2016.06.004
SSID ssj0001149
Score 2.4161637
Snippet •Residual Se from the selenate source has enhanced the plant's photosynthetic system.•Selenite residue did not supply sufficient residual Se for arugula to...
Residual selenate and selenite in the soil can influence selenium (Se) content, macronutrients accumulation, and gas exchange in arugula. This study explored...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 113569
SubjectTerms absorption
arugula
carboxylation
Eruca sativa Miller
Eruca vesicaria subsp. sativa
gas exchange
greenhouses
Macronutrients
photosynthesis
Photosynthetic rate
Selenate
Selenium
sodium selenate
sodium selenite
soil
stomatal conductance
Transpiration rate
Title Residual selenate and selenite in the soil: Effect on the accumulation of selenium, macronutrients, and gas exchange in arugula
URI https://dx.doi.org/10.1016/j.scienta.2024.113569
https://www.proquest.com/docview/3153783514
Volume 337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yX_RB_MRvIvi4bmt7XVPfhjim4h7Uwd5C2qZj4tqxreCT_uveNSmiCIKPCUkIuevll9797hi7FAq0Fq7vJHEWOJDhA0Up7TqIBToiRR3RGRGcH4bdwQjuxsF4jV3XXBgKq7S239j0ylrbnrY9zfZ8Om0_kVMPwYCgKMjQC4jwCxCSlrfev8I8EO9HxpMADo3-YvG0X1qWdIjPRA-ouklAcc-_308_LHV1_fS32ZbFjbxntrbD1nS-yzZ7k4XNnaH32MejXlbUKk4VlHIEkVzlqWkgsOTTnCPa48ti-nrFTdZiXpg-lSTlzBby4kVm55SzJp8p3GdOKfsp4qJZrThRS67fDGWYVlWLkgra77NR_-b5euDY-gpO4kWdlSO6aZiKCAJKUBO4mdCBUJTSDAQ-JBKhlKi8ojFaohggDbM0yVwc5AMg7oj9A9bIi1wfMp4gcorCAHydCvC7lPPdgywCNxWu6nr6iLXqU5Vzk0ZD1vFlL9KKQZIYpBHDERP12ctv-iDR1P819aKWlcRvhRwgKtdFuZQ-mnf60-XC8f-XP2Eb1DJ8xFPWWC1KfYbAZBWfV5p3ztZ7t_eD4SehGuLK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5096AexCe-jeDRurZNdlNviyi7PvbgA7yFtE1lxW1ldwve_OvONKmiCILHpk0omfTLl87MNwCHUnNjpB96SZwJj2d4QNHa-B5ygROZ4hoxGSU43wzavQd--SgeZ-CszoWhsEqH_RbTK7R2LS03m63X4bB1R049JAOSoiA7gZCz0CR1KtGAZrd_1Rt8AjJS_sg6E7hHHb4SeVrPxy7vEE-KAacCJ4JCn3_fon6AdbUDXSzBoqOOrGvfbhlmTL4CC92nsZPPMKvwfmsmVXYVoyJKOfJIpvPUXiC3ZMOcIeFjk2L4csqscDErbJtOknLkanmxInN9ytERG2l8z5xU-yno4qga8UlPmHmzWcM0qh6XVNN-DR4uzu_Pep4rseAlQXQy9WQ77aQy4oI0aoSfSSOkJlUzLvEskUitZeUYjRGMYs7TTpYmmY8PhZwj9YjDdWjkRW42gCVInqKO4KFJJQ_bJPse8Czifip93Q7MJhzXs6perZKGqkPMnpUzgyIzKGuGTZD13KtvS0Ih2v_V9aC2lcLPhXwgOjdFOVEhIjz97PL51v-H34e53v3NtbruD662YZ7u2PTEHWhMx6XZRZ4yjffcOvwAb3jlew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+selenate+and+selenite+in+the+soil%3A+Effect+on+the+accumulation+of+selenium%2C+macronutrients%2C+and+gas+exchange+in+arugula&rft.jtitle=Scientia+horticulturae&rft.au=Siueia+J%C3%BAnior%2C+Matias&rft.au=da+Silva%2C+Deivisson+Ferreira&rft.au=Cipriano%2C+Patriciani+Estela&rft.au=de+Souza%2C+Ray+Rodrigues&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0304-4238&rft.volume=337&rft_id=info:doi/10.1016%2Fj.scienta.2024.113569&rft.externalDocID=S0304423824007258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon