Residual selenate and selenite in the soil: Effect on the accumulation of selenium, macronutrients, and gas exchange in arugula
•Residual Se from the selenate source has enhanced the plant's photosynthetic system.•Selenite residue did not supply sufficient residual Se for arugula to absorb.•Se residual from the previous crop, a key player, enhances gas exchange in arugula.•Selenate increased Se export, leading to higher...
Saved in:
Published in | Scientia horticulturae Vol. 337; p. 113569 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Residual Se from the selenate source has enhanced the plant's photosynthetic system.•Selenite residue did not supply sufficient residual Se for arugula to absorb.•Se residual from the previous crop, a key player, enhances gas exchange in arugula.•Selenate increased Se export, leading to higher fresh mass in arugula.
Residual selenate and selenite in the soil can influence selenium (Se) content, macronutrients accumulation, and gas exchange in arugula. This study explored the impact of Se absorption by plants and their growth when previously exposed to selenium. Absorption of macronutrients, micronutrients, and physiological parameters of arugula plants (Eruca sativa), as well as residual Se uptake, were assessed following Se addition as sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3) to the soil in the previous crop. The research was conducted under greenhouse conditions, with a completely randomized design in a 2 × 3 + 1 arrangement, with two Se sources (sodium selenate - Na2SeO4 and sodium selenite - Na2SeO3) applied at three Se doses (0.6, 1.2, and 1.8 mg dm−3) via soil and a control, without Se application, with three replications. The results indicated that applying 0.6 Se mg dm−3 as selenite did not significantly contribute to the arugula's uptake of residual selenium. On the other hand, arugula exhibited higher dry mass production and macronutrient accumulation content in the shoots due to increased physiological processes such as photosynthetic rate, transpiration, and instantaneous carboxylation efficiency and stomatal conductance when it absorbed the residual Se in the form of selenate at the increasing doses. This study underscores the need for further comprehensive studies of residual Se in the soil to comprehend its dynamics and relationship with plant absorption, highlighting the potential implications of this research in soil science and agricultural practices. |
---|---|
AbstractList | Residual selenate and selenite in the soil can influence selenium (Se) content, macronutrients accumulation, and gas exchange in arugula. This study explored the impact of Se absorption by plants and their growth when previously exposed to selenium. Absorption of macronutrients, micronutrients, and physiological parameters of arugula plants (Eruca sativa), as well as residual Se uptake, were assessed following Se addition as sodium selenate (Na₂SeO₄) and sodium selenite (Na₂SeO₃) to the soil in the previous crop. The research was conducted under greenhouse conditions, with a completely randomized design in a 2 × 3 + 1 arrangement, with two Se sources (sodium selenate - Na₂SeO₄ and sodium selenite - Na₂SeO₃) applied at three Se doses (0.6, 1.2, and 1.8 mg dm⁻³) via soil and a control, without Se application, with three replications. The results indicated that applying 0.6 Se mg dm⁻³ as selenite did not significantly contribute to the arugula's uptake of residual selenium. On the other hand, arugula exhibited higher dry mass production and macronutrient accumulation content in the shoots due to increased physiological processes such as photosynthetic rate, transpiration, and instantaneous carboxylation efficiency and stomatal conductance when it absorbed the residual Se in the form of selenate at the increasing doses. This study underscores the need for further comprehensive studies of residual Se in the soil to comprehend its dynamics and relationship with plant absorption, highlighting the potential implications of this research in soil science and agricultural practices. •Residual Se from the selenate source has enhanced the plant's photosynthetic system.•Selenite residue did not supply sufficient residual Se for arugula to absorb.•Se residual from the previous crop, a key player, enhances gas exchange in arugula.•Selenate increased Se export, leading to higher fresh mass in arugula. Residual selenate and selenite in the soil can influence selenium (Se) content, macronutrients accumulation, and gas exchange in arugula. This study explored the impact of Se absorption by plants and their growth when previously exposed to selenium. Absorption of macronutrients, micronutrients, and physiological parameters of arugula plants (Eruca sativa), as well as residual Se uptake, were assessed following Se addition as sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3) to the soil in the previous crop. The research was conducted under greenhouse conditions, with a completely randomized design in a 2 × 3 + 1 arrangement, with two Se sources (sodium selenate - Na2SeO4 and sodium selenite - Na2SeO3) applied at three Se doses (0.6, 1.2, and 1.8 mg dm−3) via soil and a control, without Se application, with three replications. The results indicated that applying 0.6 Se mg dm−3 as selenite did not significantly contribute to the arugula's uptake of residual selenium. On the other hand, arugula exhibited higher dry mass production and macronutrient accumulation content in the shoots due to increased physiological processes such as photosynthetic rate, transpiration, and instantaneous carboxylation efficiency and stomatal conductance when it absorbed the residual Se in the form of selenate at the increasing doses. This study underscores the need for further comprehensive studies of residual Se in the soil to comprehend its dynamics and relationship with plant absorption, highlighting the potential implications of this research in soil science and agricultural practices. |
ArticleNumber | 113569 |
Author | de Souza, Ray Rodrigues Cipriano, Patriciani Estela Guilherme, Luiz Roberto Guimarães Siueia Júnior, Matias da Silva, Deivisson Ferreira Silva, Maria Ligia de Souza Faquin, Valdemar |
Author_xml | – sequence: 1 givenname: Matias orcidid: 0000-0001-6433-3718 surname: Siueia Júnior fullname: Siueia Júnior, Matias email: siueia.junior@gmail.com organization: Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan – sequence: 2 givenname: Deivisson Ferreira surname: da Silva fullname: da Silva, Deivisson Ferreira organization: Federal Institute Catarinense, Porto Grande, Araquari, SC 89245-000, Brazil – sequence: 3 givenname: Patriciani Estela surname: Cipriano fullname: Cipriano, Patriciani Estela organization: Department of Soil Science, Federal University of Lavras, Lavras, MG 37203-202, Brazil – sequence: 4 givenname: Ray Rodrigues surname: de Souza fullname: de Souza, Ray Rodrigues organization: Department of Applied Botanic, Federal University of Lavras, Lavras, MG 37203-202, Brazil – sequence: 5 givenname: Valdemar surname: Faquin fullname: Faquin, Valdemar organization: Department of Soil Science, Federal University of Lavras, Lavras, MG 37203-202, Brazil – sequence: 6 givenname: Maria Ligia de Souza surname: Silva fullname: Silva, Maria Ligia de Souza organization: Department of Soil Science, Federal University of Lavras, Lavras, MG 37203-202, Brazil – sequence: 7 givenname: Luiz Roberto Guimarães surname: Guilherme fullname: Guilherme, Luiz Roberto Guimarães organization: Department of Soil Science, Federal University of Lavras, Lavras, MG 37203-202, Brazil |
BookMark | eNqFkM1OwzAQhH0oEm3hEZBy5NAEO7YThwtCVfmRKiEhOFuus25dJU6xEwQnXh2X9M5ptauZ0c43QxPXOUDoiuCMYFLc7LOgLbheZTnOWUYI5UU1QVNMMUtZTsU5moWwxxgTwqop-nmFYOtBNUmABpzqIVGuHhcbF-uSfgdJ6Gxzm6yMAd0n3XhTWg_t0KjexkNnTp6hXSSt0r5zQ--Pn4TFX-JWhQS-9E657V-q8sM2mi_QmVFNgMvTnKP3h9Xb8ildvzw-L-_Xqc4r3KeiqMtaVIxXrKo4MQK4UDnHjAmKCy2UEowXvNxgITaM1aWptSFRRBljlGzoHF2PuQfffQwQetnaoKFplINuCJISTktBOWFRykdpLBGCByMP3rbKf0uC5RGy3MsTZHmELEfI0Xc3-iD2-LTgR5WG2vqITdad_SfhF7QXjHE |
Cites_doi | 10.3389/fpls.2016.02074 10.1007/s11104-019-04346-w 10.1016/j.tibs.2013.12.007 10.1007/s00216-006-0529-8 10.1890/1051-0761(1999)009[0669:DTASIT]2.0.CO;2 10.1590/S0100-204X2012000600014 10.3389/fpls.2015.00136 10.3390/antiox6040081 10.3390/plants8070197 10.1021/acs.jafc.9b01829 10.1016/j.scienta.2019.108839 10.3390/molecules26040881 10.1080/11263504.2010.509942 10.1016/j.plaphy.2020.11.001 10.17221/559/2012-PSE 10.1021/jf0258555 10.1016/j.ecoenv.2018.11.080 10.1111/nph.14378 10.1016/j.envexpbot.2020.104170 10.3389/fpls.2015.00280 10.1016/j.bbagen.2018.03.028 10.3390/agronomy12010131 10.1111/j.2517-6161.1995.tb02031.x 10.1016/j.scienta.2022.110908 10.3390/antiox9040272 10.1016/j.jhazmat.2020.124178 10.1111/nph.12596 10.1016/j.jfca.2022.104865 10.3390/agriculture11070626 10.1007/s11104-004-0965-1 10.1016/j.envint.2017.12.035 10.1007/s00425-010-1323-6 10.1007/s11104-020-04635-9 10.1016/S0140-6736(11)61452-9 10.1016/j.envpol.2017.12.019 10.1016/j.scienta.2023.112522 10.1016/j.chemosphere.2017.08.158 10.1023/A:1004639906245 10.1590/1807-1929/agriambi.v21n3p197-202 10.1016/j.jfca.2019.103382 10.1111/j.1469-8137.2007.02343.x 10.1016/bs.abr.2016.06.004 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.scienta.2024.113569 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_scienta_2024_113569 S0304423824007258 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSZ T5K Y6R ~G- ~KM AALCJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HVGLF HZ~ LW9 M41 R2- SSH WUQ XOL 7S9 L.6 |
ID | FETCH-LOGICAL-c290t-86d7d8945949951f8e58a250448306c8aa845657b088b44d7fdcf1e58344431b3 |
IEDL.DBID | .~1 |
ISSN | 0304-4238 |
IngestDate | Wed Jul 02 04:53:46 EDT 2025 Tue Jul 01 02:36:20 EDT 2025 Sat Sep 14 18:04:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Macronutrients Photosynthetic rate Selenate Eruca sativa Miller Selenium Transpiration rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c290t-86d7d8945949951f8e58a250448306c8aa845657b088b44d7fdcf1e58344431b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6433-3718 |
PQID | 3153783514 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153783514 crossref_primary_10_1016_j_scienta_2024_113569 elsevier_sciencedirect_doi_10_1016_j_scienta_2024_113569 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Scientia horticulturae |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, McGrath, Zhao (bib0018) 2008; 178 Natasha, Shahid, Niazi, Khalid, Murtaza, Bibi, Rashid (bib0025) 2018; 234 Tiwari, Brunton, Brennan (bib0045) 2012 Dinh, Cui, Huang, Tran, Wang, Yang, Zhou, Wang, Yu, Liang (bib0008) 2018 Schiavon, Pilon-Smits (bib0037) 2017; 213 Zou, Du, Rashid, Ram, Savasli, Pieterse, Ortiz-Monasterio, Yazici, Kaur, Mahmood, Singh, Le Roux, Kuang, Onder, Kalayci, Cakmak (bib0059) 2019; 67 Pannico, El-Nakhel, Graziani, Kyriacou, Giordano, Soteriou, Zarrelli, Ritieni, De Pascale, Rouphael (bib0027) 2020; 9 Freitas, Giovanelli, Delazari, Dos Santos, Pereira, Da Silva (bib0010) 2017; 21 Dall'Acqua, Ertani, Pilon-Smits, Fabrega-Prats, Schiavon (bib0007) 2019; 8 Jiang, Zu, Lu, Zheng, Shen, Wang, Li (bib0017) 2017; 7 Santos, Jacomine, dos Anjos, Oliveira, Lumbreras, Coelho, Almeida, Cunha, Oliveira (bib0034) 2018 Santiago, Silva, Cardoso, Duan, Guilherme, Liu, Li (bib0033) 2020; 157 Zafeiriou, Gasparatos, Ioannou, Kalderis, Massas (bib0055) 2022; 12 Malavolta, E., Vitti, G.C., Oliveira, S.A.de, 1997. Avaliação do estado nutricional de plantas: princípios e aplicações, 2nd ed. Potáfos, Piracicaba. Silva (bib0041) 2009 Malagoli, Schiavon, Dall'Acqua, Pilon-Smits (bib0020) 2015; 6 Pilon-Smits (bib0028) 2019; 8 Benjamini, Hochberg (bib0001) 1995; 57 Zhang, Hu, Li, Che, Deng, Li, Yu, Ling, Li, Chu (bib0057) 2014; 201 Silva, Cipriano, de Souza, Siueia Júnior, da Silva, Faquin, de Souza Silva, Guimarães Guilherme (bib0039) 2020; 260 Boldrin, Faquin, Ramos, Guilherme, Bastos, Carvalho, Costa, de (bib0002) 2012; 47 Ramos, Ávila, Boldrin, Pereira, Castro, Faquin, Reis, Guilherme (bib0030) 2012; 58 Hopper, Parker (bib0015) 1999; 210 Mukaka (bib0024) 2012; 24 Gupta, Gupta (bib0011) 2017; 7 . Lima, Pilon-Smits, Schiavon (bib0019) 2018 Silva Junior, Wadt, Silva, Lima, Batista, Guedes, Carvalho, Carvalho, Reis, Lopes, Guilherme (bib0038) 2017; 188 Trippe, Pilon-Smits (bib0047) 2021; 404 (bib0042) 2014; 12 Silva, Cipriano, de Souza, Siueia, Faquin, de Souza Silva, Guilherme (bib0040) 2020; 86 Yin, Qi, Li, Ahammed, Chu, Zhou (bib0054) 2019; 169 Dumont, Vanhaecke, Cornelis (bib0009) 2006 Hatfield, Tsuji, Carlson, Gladyshev (bib0014) 2014 Rayman (bib0032) 2012; 379 Ramos, Rutzke, Hayes, Faquin, Guilherme, Li (bib0031) 2011; 233 Teixeira, Donagemma, Fontana, Teixeira (bib0044) 2017 Wu, Bañuelos, Lin, Liu, Yuan, Yin, Li (bib0053) 2015 Schiavon, Nardi, dalla Vecchia, Ertani (bib0035) 2020 Mikkelsen, Wan (bib0022) 1990; 121 (bib0048) 2005 Wilson, Nash, Singh, Griffiths, Singh, De Meester, Horiuchi, Takahashi (bib0051) 2017 (bib0029) 2024 Miller, Cramer (bib0023) 2004; 274 Hossain, Skalicky, Brestic, Maitra, Sarkar (bib0016) 2021; 26 Zenda, Liu, Dong, Duan (bib0056) 2021 Cipriano, da Silva, Martins, de Lima, de Oliveira, Faquin, Guilherme (bib0005) 2023; 115 USEPA, 2007. Microwave assisted acid digestion of sediments sludge soils and oils EPA SW 846 3051A. Revision 1, 1-30. Washington, DC. Apr 2022, [Online]. Available Carvalho, Gallardo-Williams, Benson, Martin (bib0004) 2003; 51 Traka (bib0046) 2016; 80 Cao, Williams, Williams (bib0003) 1999; 9 Tavan, Wee, Fuentes, Pang, Brodie, Viejo, Gupta (bib0043) 2024; 323 Hasanuzzaman, Bhuyan, Raza, Hawrylak-Nowak, Matraszek-Gawron, Mahmud, Nahar, Fujita (bib0013) 2020; 178 Hair Junior, Black, Babin, Anderson, Tatham (bib0012) 2009 (bib0052) 2009 Paciolla, de Leonardis, Dipierro (bib0026) 2011; 145 Cipriano, Siueia Júnior, Souza, da Silva, Faquin, Silva, de, Guilherme (bib0006) 2022; 296 Wang, Dinh, Qi, Wang, Yang, Zhou, Liang (bib0050) 2020; 446 Schiavon (10.1016/j.scienta.2024.113569_bib0037) 2017; 213 Wu (10.1016/j.scienta.2024.113569_bib0053) 2015 Benjamini (10.1016/j.scienta.2024.113569_bib0001) 1995; 57 (10.1016/j.scienta.2024.113569_bib0048) 2005 Freitas (10.1016/j.scienta.2024.113569_bib0010) 2017; 21 Hatfield (10.1016/j.scienta.2024.113569_bib0014) 2014 Rayman (10.1016/j.scienta.2024.113569_bib0032) 2012; 379 Zafeiriou (10.1016/j.scienta.2024.113569_bib0055) 2022; 12 Silva Junior (10.1016/j.scienta.2024.113569_bib0038) 2017; 188 Lima (10.1016/j.scienta.2024.113569_bib0019) 2018 Li (10.1016/j.scienta.2024.113569_bib0018) 2008; 178 Dall'Acqua (10.1016/j.scienta.2024.113569_bib0007) 2019; 8 10.1016/j.scienta.2024.113569_bib0049 Wilson (10.1016/j.scienta.2024.113569_bib0051) 2017 Hossain (10.1016/j.scienta.2024.113569_bib0016) 2021; 26 Natasha, Shahid (10.1016/j.scienta.2024.113569_bib0025) 2018; 234 Teixeira (10.1016/j.scienta.2024.113569_bib0044) 2017 Mikkelsen (10.1016/j.scienta.2024.113569_bib0022) 1990; 121 Boldrin (10.1016/j.scienta.2024.113569_bib0002) 2012; 47 Hair Junior (10.1016/j.scienta.2024.113569_bib0012) 2009 Carvalho (10.1016/j.scienta.2024.113569_bib0004) 2003; 51 Zenda (10.1016/j.scienta.2024.113569_bib0056) 2021 Silva (10.1016/j.scienta.2024.113569_bib0040) 2020; 86 Schiavon (10.1016/j.scienta.2024.113569_bib0035) 2020 Mukaka (10.1016/j.scienta.2024.113569_bib0024) 2012; 24 Wang (10.1016/j.scienta.2024.113569_bib0050) 2020; 446 Zhang (10.1016/j.scienta.2024.113569_bib0057) 2014; 201 Cao (10.1016/j.scienta.2024.113569_bib0003) 1999; 9 Malagoli (10.1016/j.scienta.2024.113569_bib0020) 2015; 6 Tavan (10.1016/j.scienta.2024.113569_bib0043) 2024; 323 Trippe (10.1016/j.scienta.2024.113569_bib0047) 2021; 404 Cipriano (10.1016/j.scienta.2024.113569_bib0005) 2023; 115 Hopper (10.1016/j.scienta.2024.113569_bib0015) 1999; 210 Dinh (10.1016/j.scienta.2024.113569_bib0008) 2018 Cipriano (10.1016/j.scienta.2024.113569_bib0006) 2022; 296 Gupta (10.1016/j.scienta.2024.113569_bib0011) 2017; 7 (10.1016/j.scienta.2024.113569_bib0042) 2014; 12 10.1016/j.scienta.2024.113569_bib0021 Hasanuzzaman (10.1016/j.scienta.2024.113569_bib0013) 2020; 178 Paciolla (10.1016/j.scienta.2024.113569_bib0026) 2011; 145 Santiago (10.1016/j.scienta.2024.113569_bib0033) 2020; 157 (10.1016/j.scienta.2024.113569_bib0052) 2009 Traka (10.1016/j.scienta.2024.113569_bib0046) 2016; 80 Dumont (10.1016/j.scienta.2024.113569_bib0009) 2006 Miller (10.1016/j.scienta.2024.113569_bib0023) 2004; 274 Santos (10.1016/j.scienta.2024.113569_bib0034) 2018 (10.1016/j.scienta.2024.113569_bib0029) 2024 Ramos (10.1016/j.scienta.2024.113569_bib0030) 2012; 58 Ramos (10.1016/j.scienta.2024.113569_bib0031) 2011; 233 Silva (10.1016/j.scienta.2024.113569_bib0041) 2009 Silva (10.1016/j.scienta.2024.113569_bib0039) 2020; 260 Yin (10.1016/j.scienta.2024.113569_bib0054) 2019; 169 Zou (10.1016/j.scienta.2024.113569_bib0059) 2019; 67 Jiang (10.1016/j.scienta.2024.113569_bib0017) 2017; 7 Pannico (10.1016/j.scienta.2024.113569_bib0027) 2020; 9 Pilon-Smits (10.1016/j.scienta.2024.113569_bib0028) 2019; 8 Tiwari (10.1016/j.scienta.2024.113569_bib0045) 2012 |
References_xml | – volume: 12 year: 2022 ident: bib0055 article-title: Selenium biofortification of lettuce plants ( publication-title: Agronomy – volume: 7 start-page: 1 year: 2017 end-page: 14 ident: bib0017 article-title: Effect of exogenous selenium supply on photosynthesis, Na + accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress publication-title: Sci. Rep. – volume: 323 year: 2024 ident: bib0043 article-title: Biofortification of kale microgreens with selenate-selenium using two delivery methods: Selenium-rich soilless medium and foliar application publication-title: Sci. Hortic. – reference: USEPA, 2007. Microwave assisted acid digestion of sediments sludge soils and oils EPA SW 846 3051A. Revision 1, 1-30. Washington, DC. Apr 2022, [Online]. Available: – volume: 145 start-page: 253 year: 2011 end-page: 259 ident: bib0026 article-title: Effects of selenite and selenate on the antioxidant systems in Senecio scandens L publication-title: Plant Biosyst. – volume: 8 year: 2019 ident: bib0007 article-title: Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca sativa mill. and diplotaxis tenuifolia) grown in hydroponics publication-title: Plants – volume: 9 start-page: 669 year: 1999 end-page: 677 ident: bib0003 article-title: Data transformation and standardization in the multivariate analysis of river water quality publication-title: Ecol. Appl. – year: 2017 ident: bib0044 publication-title: Manual de métodos de análise de solo – volume: 51 start-page: 704 year: 2003 end-page: 709 ident: bib0004 article-title: Effects of selenium supplementation on four agricultural crops publication-title: J. Agric. Food Chem. – year: 2018 ident: bib0034 publication-title: Sistema brasileiro de classificação de Solos – volume: 21 start-page: 197 year: 2017 end-page: 202 ident: bib0010 article-title: Arugula production as a function of irrigation depths and potassium fertilization publication-title: Rev. Bras. Eng. Agric. Ambient. – volume: 404 year: 2021 ident: bib0047 article-title: Selenium transport and metabolism in plants: phytoremediation and biofortification implications publication-title: J. Hazard. Mater. – volume: 58 start-page: 521 year: 2012 end-page: 527 ident: bib0030 article-title: Response of brachiaria grass to selenium forms applied in a tropical soil publication-title: Plant Soil Environ. – volume: 67 start-page: 8096 year: 2019 end-page: 8106 ident: bib0059 article-title: Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries publication-title: J. Agric. Food Chem. – year: 2009 ident: bib0012 article-title: Análise Multivariada de Dados – year: 2009 ident: bib0041 article-title: Manual de Análises Químicas de solos, Plantas e Fertilizantes – year: 2018 ident: bib0008 article-title: Selenium distribution in the Chinese environment and its relationship with human health: a review publication-title: Environ. Int. – year: 2020 ident: bib0035 article-title: Selenium biofortification in the 21st century: status and challenges for healthy human nutrition publication-title: Plant Soil – year: 2018 ident: bib0019 article-title: Mechanisms of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues publication-title: Biochim. Biophys. Acta – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib0001 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B Methodol. – reference: Malavolta, E., Vitti, G.C., Oliveira, S.A.de, 1997. Avaliação do estado nutricional de plantas: princípios e aplicações, 2nd ed. Potáfos, Piracicaba. – volume: 157 start-page: 328 year: 2020 end-page: 338 ident: bib0033 article-title: Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.) publication-title: Plant Physiol. Biochem. – year: 2021 ident: bib0056 article-title: Revisiting sulphur—the once neglected nutrient: It's roles in plant growth, metabolism, stress tolerance and crop production publication-title: Agriculture – volume: 9 year: 2020 ident: bib0027 article-title: Selenium biofortification impacts the nutritive value, polyphenolic content, and bioactive constitution of variable microgreens genotypes publication-title: Antioxidants – year: 2009 ident: bib0052 article-title: ‘Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks – volume: 26 start-page: 881 year: 2021 ident: bib0016 article-title: Selenium biofortification: roles, mechanisms, responses and prospects publication-title: Molecules – year: 2005 ident: bib0048 article-title: Dietary Guidelines for Americans – volume: 234 start-page: 915 year: 2018 end-page: 934 ident: bib0025 article-title: A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health publication-title: Environ. Pollut. – volume: 121 start-page: 151 year: 1990 end-page: 153 ident: bib0022 article-title: The effect of selenium on sulfur uptake by barley and rice publication-title: Plant Soil – volume: 169 start-page: 911 year: 2019 end-page: 917 ident: bib0054 article-title: Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L publication-title: Ecotoxicol. Environ. Saf. – volume: 115 year: 2023 ident: bib0005 article-title: Selenate fertilization of sorghum via foliar application and its effect on nutrient content and antioxidant metabolism publication-title: J. Food Compos. Anal. – volume: 210 start-page: 199 year: 1999 end-page: 207 ident: bib0015 article-title: Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate publication-title: Plant Soil – volume: 178 start-page: 92 year: 2008 end-page: 102 ident: bib0018 article-title: Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite publication-title: New Phytol. – volume: 260 year: 2020 ident: bib0039 article-title: Anatomical and physiological characteristics of Raphanus sativus L. submitted to different selenium sources and forms application publication-title: Sci. Hortic. – volume: 274 start-page: 1 year: 2004 end-page: 36 ident: bib0023 article-title: Root Nitrogen Acquisition and Assimilation publication-title: Plant Soil. – year: 2012 ident: bib0045 article-title: Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction – volume: 213 start-page: 1582 year: 2017 end-page: 1596 ident: bib0037 article-title: The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology publication-title: New Phytol. – year: 2006 ident: bib0009 article-title: Selenium speciation from food source to metabolites: a critical review publication-title: Anal. Bioanal. Chem. – volume: 233 start-page: 649 year: 2011 end-page: 660 ident: bib0031 article-title: Selenium accumulation in lettuce germplasm publication-title: Planta – year: 2014 ident: bib0014 article-title: Selenium and selenocysteine: Roles in cancer, health, and development publication-title: Trends Biochem. Sci. – volume: 178 year: 2020 ident: bib0013 article-title: Selenium in plants: boon or bane? publication-title: Environ. Exp. Bot. – volume: 296 year: 2022 ident: bib0006 article-title: Macronutrients content of radishes and the influence of biofortification with selenium publication-title: Sci. Hortic. – volume: 80 start-page: 247 year: 2016 end-page: 279 ident: bib0046 article-title: Health benefits of glucosinolates publication-title: Adv. Bot. Res. – volume: 47 start-page: 831 year: 2012 end-page: 837 ident: bib0002 article-title: Selenate and selenite on yield and agronomic biofortification with selenium in rice publication-title: Pesqui. Agropecu. Bras. – volume: 7 year: 2017 ident: bib0011 article-title: An overview of selenium uptake, metabolism, and toxicity in plants publication-title: Front. Plant Sci. – volume: 188 start-page: 650 year: 2017 end-page: 658 ident: bib0038 article-title: Natural variation of selenium in Brazil nuts and soils from the Amazon region publication-title: Chemosphere – year: 2024 ident: bib0029 publication-title: R: A language and environment statistical computing – volume: 24 start-page: 69 year: 2012 end-page: 71 ident: bib0024 article-title: Statistics corner: a guide to appropriate use of correlation coefficient in medical research publication-title: Malawi Med. J. – volume: 201 start-page: 1183 year: 2014 end-page: 1191 ident: bib0057 article-title: OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice publication-title: New Phytol. – volume: 86 year: 2020 ident: bib0040 article-title: Biofortification with selenium and implications in the absorption of macronutrients in Raphanus sativus L publication-title: J. Food Compos. Anal. – year: 2015 ident: bib0053 article-title: Biofortification and phytoremediation of selenium in China publication-title: Front. Plant Sci. – reference: . – year: 2017 ident: bib0051 article-title: The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: an overview publication-title: Antioxidants – volume: 12 start-page: 410 year: 2014 ident: bib0042 article-title: Keys to soil taxonomy publication-title: Soil Conserv. Serv. – volume: 8 year: 2019 ident: bib0028 article-title: On the ecology of selenium accumulation in plants publication-title: Plants – volume: 6 start-page: 1 year: 2015 end-page: 5 ident: bib0020 article-title: Effects of selenium biofortification on crop nutritional quality publication-title: Front. Plant Sci. – volume: 446 start-page: 111 year: 2020 end-page: 123 ident: bib0050 article-title: Radicular and foliar uptake, and xylem- and phloem-mediated transport of selenium in maize ( publication-title: Plant Soil – volume: 379 start-page: 1256 year: 2012 end-page: 1268 ident: bib0032 article-title: Selenium and human health publication-title: Lancet – volume: 7 year: 2017 ident: 10.1016/j.scienta.2024.113569_bib0011 article-title: An overview of selenium uptake, metabolism, and toxicity in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.02074 – volume: 446 start-page: 111 issue: 1–2 year: 2020 ident: 10.1016/j.scienta.2024.113569_bib0050 article-title: Radicular and foliar uptake, and xylem- and phloem-mediated transport of selenium in maize (Zea mays L.): a comparison of five Se exogenous species publication-title: Plant Soil doi: 10.1007/s11104-019-04346-w – year: 2014 ident: 10.1016/j.scienta.2024.113569_bib0014 article-title: Selenium and selenocysteine: Roles in cancer, health, and development publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.12.007 – ident: 10.1016/j.scienta.2024.113569_bib0021 – year: 2006 ident: 10.1016/j.scienta.2024.113569_bib0009 article-title: Selenium speciation from food source to metabolites: a critical review publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-0529-8 – volume: 9 start-page: 669 year: 1999 ident: 10.1016/j.scienta.2024.113569_bib0003 article-title: Data transformation and standardization in the multivariate analysis of river water quality publication-title: Ecol. Appl. doi: 10.1890/1051-0761(1999)009[0669:DTASIT]2.0.CO;2 – volume: 8 year: 2019 ident: 10.1016/j.scienta.2024.113569_bib0007 article-title: Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca sativa mill. and diplotaxis tenuifolia) grown in hydroponics publication-title: Plants – volume: 47 start-page: 831 year: 2012 ident: 10.1016/j.scienta.2024.113569_bib0002 article-title: Selenate and selenite on yield and agronomic biofortification with selenium in rice publication-title: Pesqui. Agropecu. Bras. doi: 10.1590/S0100-204X2012000600014 – year: 2015 ident: 10.1016/j.scienta.2024.113569_bib0053 article-title: Biofortification and phytoremediation of selenium in China publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00136 – year: 2005 ident: 10.1016/j.scienta.2024.113569_bib0048 – year: 2017 ident: 10.1016/j.scienta.2024.113569_bib0051 article-title: The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: an overview publication-title: Antioxidants doi: 10.3390/antiox6040081 – volume: 8 year: 2019 ident: 10.1016/j.scienta.2024.113569_bib0028 article-title: On the ecology of selenium accumulation in plants publication-title: Plants doi: 10.3390/plants8070197 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.scienta.2024.113569_bib0017 article-title: Effect of exogenous selenium supply on photosynthesis, Na + accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress publication-title: Sci. Rep. – volume: 67 start-page: 8096 year: 2019 ident: 10.1016/j.scienta.2024.113569_bib0059 article-title: Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b01829 – volume: 260 year: 2020 ident: 10.1016/j.scienta.2024.113569_bib0039 article-title: Anatomical and physiological characteristics of Raphanus sativus L. submitted to different selenium sources and forms application publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.108839 – volume: 26 start-page: 881 year: 2021 ident: 10.1016/j.scienta.2024.113569_bib0016 article-title: Selenium biofortification: roles, mechanisms, responses and prospects publication-title: Molecules doi: 10.3390/molecules26040881 – volume: 145 start-page: 253 year: 2011 ident: 10.1016/j.scienta.2024.113569_bib0026 article-title: Effects of selenite and selenate on the antioxidant systems in Senecio scandens L publication-title: Plant Biosyst. doi: 10.1080/11263504.2010.509942 – ident: 10.1016/j.scienta.2024.113569_bib0049 – volume: 157 start-page: 328 year: 2020 ident: 10.1016/j.scienta.2024.113569_bib0033 article-title: Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.) publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.11.001 – volume: 58 start-page: 521 year: 2012 ident: 10.1016/j.scienta.2024.113569_bib0030 article-title: Response of brachiaria grass to selenium forms applied in a tropical soil publication-title: Plant Soil Environ. doi: 10.17221/559/2012-PSE – volume: 51 start-page: 704 year: 2003 ident: 10.1016/j.scienta.2024.113569_bib0004 article-title: Effects of selenium supplementation on four agricultural crops publication-title: J. Agric. Food Chem. doi: 10.1021/jf0258555 – volume: 169 start-page: 911 year: 2019 ident: 10.1016/j.scienta.2024.113569_bib0054 article-title: Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.11.080 – volume: 213 start-page: 1582 year: 2017 ident: 10.1016/j.scienta.2024.113569_bib0037 article-title: The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology publication-title: New Phytol. doi: 10.1111/nph.14378 – volume: 178 year: 2020 ident: 10.1016/j.scienta.2024.113569_bib0013 article-title: Selenium in plants: boon or bane? publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2020.104170 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.scienta.2024.113569_bib0020 article-title: Effects of selenium biofortification on crop nutritional quality publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00280 – year: 2024 ident: 10.1016/j.scienta.2024.113569_bib0029 – year: 2018 ident: 10.1016/j.scienta.2024.113569_bib0019 article-title: Mechanisms of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2018.03.028 – year: 2009 ident: 10.1016/j.scienta.2024.113569_bib0012 – volume: 12 year: 2022 ident: 10.1016/j.scienta.2024.113569_bib0055 article-title: Selenium biofortification of lettuce plants (Lactuca sativa L.) as affected by Se species, Se rate, and a biochar Co-application in a calcareous soil publication-title: Agronomy doi: 10.3390/agronomy12010131 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.scienta.2024.113569_bib0001 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 296 year: 2022 ident: 10.1016/j.scienta.2024.113569_bib0006 article-title: Macronutrients content of radishes and the influence of biofortification with selenium publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2022.110908 – volume: 24 start-page: 69 year: 2012 ident: 10.1016/j.scienta.2024.113569_bib0024 article-title: Statistics corner: a guide to appropriate use of correlation coefficient in medical research publication-title: Malawi Med. J. – volume: 9 year: 2020 ident: 10.1016/j.scienta.2024.113569_bib0027 article-title: Selenium biofortification impacts the nutritive value, polyphenolic content, and bioactive constitution of variable microgreens genotypes publication-title: Antioxidants doi: 10.3390/antiox9040272 – volume: 121 start-page: 151 year: 1990 ident: 10.1016/j.scienta.2024.113569_bib0022 article-title: The effect of selenium on sulfur uptake by barley and rice – year: 2018 ident: 10.1016/j.scienta.2024.113569_bib0034 – volume: 404 year: 2021 ident: 10.1016/j.scienta.2024.113569_bib0047 article-title: Selenium transport and metabolism in plants: phytoremediation and biofortification implications publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124178 – volume: 201 start-page: 1183 year: 2014 ident: 10.1016/j.scienta.2024.113569_bib0057 article-title: OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice publication-title: New Phytol. doi: 10.1111/nph.12596 – year: 2017 ident: 10.1016/j.scienta.2024.113569_bib0044 – volume: 115 year: 2023 ident: 10.1016/j.scienta.2024.113569_bib0005 article-title: Selenate fertilization of sorghum via foliar application and its effect on nutrient content and antioxidant metabolism publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2022.104865 – year: 2021 ident: 10.1016/j.scienta.2024.113569_bib0056 article-title: Revisiting sulphur—the once neglected nutrient: It's roles in plant growth, metabolism, stress tolerance and crop production publication-title: Agriculture doi: 10.3390/agriculture11070626 – volume: 274 start-page: 1 year: 2004 ident: 10.1016/j.scienta.2024.113569_bib0023 article-title: Root Nitrogen Acquisition and Assimilation publication-title: Plant Soil. doi: 10.1007/s11104-004-0965-1 – year: 2018 ident: 10.1016/j.scienta.2024.113569_bib0008 article-title: Selenium distribution in the Chinese environment and its relationship with human health: a review publication-title: Environ. Int. doi: 10.1016/j.envint.2017.12.035 – volume: 233 start-page: 649 year: 2011 ident: 10.1016/j.scienta.2024.113569_bib0031 article-title: Selenium accumulation in lettuce germplasm publication-title: Planta doi: 10.1007/s00425-010-1323-6 – year: 2020 ident: 10.1016/j.scienta.2024.113569_bib0035 article-title: Selenium biofortification in the 21st century: status and challenges for healthy human nutrition publication-title: Plant Soil doi: 10.1007/s11104-020-04635-9 – volume: 379 start-page: 1256 year: 2012 ident: 10.1016/j.scienta.2024.113569_bib0032 article-title: Selenium and human health publication-title: Lancet doi: 10.1016/S0140-6736(11)61452-9 – year: 2012 ident: 10.1016/j.scienta.2024.113569_bib0045 – volume: 234 start-page: 915 year: 2018 ident: 10.1016/j.scienta.2024.113569_bib0025 article-title: A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.12.019 – year: 2009 ident: 10.1016/j.scienta.2024.113569_bib0052 – year: 2009 ident: 10.1016/j.scienta.2024.113569_bib0041 – volume: 323 year: 2024 ident: 10.1016/j.scienta.2024.113569_bib0043 article-title: Biofortification of kale microgreens with selenate-selenium using two delivery methods: Selenium-rich soilless medium and foliar application publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2023.112522 – volume: 188 start-page: 650 year: 2017 ident: 10.1016/j.scienta.2024.113569_bib0038 article-title: Natural variation of selenium in Brazil nuts and soils from the Amazon region publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.08.158 – volume: 12 start-page: 410 year: 2014 ident: 10.1016/j.scienta.2024.113569_bib0042 article-title: Keys to soil taxonomy publication-title: Soil Conserv. Serv. – volume: 210 start-page: 199 year: 1999 ident: 10.1016/j.scienta.2024.113569_bib0015 article-title: Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate publication-title: Plant Soil doi: 10.1023/A:1004639906245 – volume: 21 start-page: 197 year: 2017 ident: 10.1016/j.scienta.2024.113569_bib0010 article-title: Arugula production as a function of irrigation depths and potassium fertilization publication-title: Rev. Bras. Eng. Agric. Ambient. doi: 10.1590/1807-1929/agriambi.v21n3p197-202 – volume: 86 year: 2020 ident: 10.1016/j.scienta.2024.113569_bib0040 article-title: Biofortification with selenium and implications in the absorption of macronutrients in Raphanus sativus L publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2019.103382 – volume: 178 start-page: 92 year: 2008 ident: 10.1016/j.scienta.2024.113569_bib0018 article-title: Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02343.x – volume: 80 start-page: 247 year: 2016 ident: 10.1016/j.scienta.2024.113569_bib0046 article-title: Health benefits of glucosinolates publication-title: Adv. Bot. Res. doi: 10.1016/bs.abr.2016.06.004 |
SSID | ssj0001149 |
Score | 2.4161637 |
Snippet | •Residual Se from the selenate source has enhanced the plant's photosynthetic system.•Selenite residue did not supply sufficient residual Se for arugula to... Residual selenate and selenite in the soil can influence selenium (Se) content, macronutrients accumulation, and gas exchange in arugula. This study explored... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 113569 |
SubjectTerms | absorption arugula carboxylation Eruca sativa Miller Eruca vesicaria subsp. sativa gas exchange greenhouses Macronutrients photosynthesis Photosynthetic rate Selenate Selenium sodium selenate sodium selenite soil stomatal conductance Transpiration rate |
Title | Residual selenate and selenite in the soil: Effect on the accumulation of selenium, macronutrients, and gas exchange in arugula |
URI | https://dx.doi.org/10.1016/j.scienta.2024.113569 https://www.proquest.com/docview/3153783514 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yX_RB_MRvIvi4bmt7XVPfhjim4h7Uwd5C2qZj4tqxreCT_uveNSmiCIKPCUkIuevll9797hi7FAq0Fq7vJHEWOJDhA0Up7TqIBToiRR3RGRGcH4bdwQjuxsF4jV3XXBgKq7S239j0ylrbnrY9zfZ8Om0_kVMPwYCgKMjQC4jwCxCSlrfev8I8EO9HxpMADo3-YvG0X1qWdIjPRA-ouklAcc-_308_LHV1_fS32ZbFjbxntrbD1nS-yzZ7k4XNnaH32MejXlbUKk4VlHIEkVzlqWkgsOTTnCPa48ti-nrFTdZiXpg-lSTlzBby4kVm55SzJp8p3GdOKfsp4qJZrThRS67fDGWYVlWLkgra77NR_-b5euDY-gpO4kWdlSO6aZiKCAJKUBO4mdCBUJTSDAQ-JBKhlKi8ojFaohggDbM0yVwc5AMg7oj9A9bIi1wfMp4gcorCAHydCvC7lPPdgywCNxWu6nr6iLXqU5Vzk0ZD1vFlL9KKQZIYpBHDERP12ctv-iDR1P819aKWlcRvhRwgKtdFuZQ-mnf60-XC8f-XP2Eb1DJ8xFPWWC1KfYbAZBWfV5p3ztZ7t_eD4SehGuLK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5096AexCe-jeDRurZNdlNviyi7PvbgA7yFtE1lxW1ldwve_OvONKmiCILHpk0omfTLl87MNwCHUnNjpB96SZwJj2d4QNHa-B5ygROZ4hoxGSU43wzavQd--SgeZ-CszoWhsEqH_RbTK7R2LS03m63X4bB1R049JAOSoiA7gZCz0CR1KtGAZrd_1Rt8AjJS_sg6E7hHHb4SeVrPxy7vEE-KAacCJ4JCn3_fon6AdbUDXSzBoqOOrGvfbhlmTL4CC92nsZPPMKvwfmsmVXYVoyJKOfJIpvPUXiC3ZMOcIeFjk2L4csqscDErbJtOknLkanmxInN9ytERG2l8z5xU-yno4qga8UlPmHmzWcM0qh6XVNN-DR4uzu_Pep4rseAlQXQy9WQ77aQy4oI0aoSfSSOkJlUzLvEskUitZeUYjRGMYs7TTpYmmY8PhZwj9YjDdWjkRW42gCVInqKO4KFJJQ_bJPse8Czifip93Q7MJhzXs6perZKGqkPMnpUzgyIzKGuGTZD13KtvS0Ih2v_V9aC2lcLPhXwgOjdFOVEhIjz97PL51v-H34e53v3NtbruD662YZ7u2PTEHWhMx6XZRZ4yjffcOvwAb3jlew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+selenate+and+selenite+in+the+soil%3A+Effect+on+the+accumulation+of+selenium%2C+macronutrients%2C+and+gas+exchange+in+arugula&rft.jtitle=Scientia+horticulturae&rft.au=Siueia+J%C3%BAnior%2C+Matias&rft.au=da+Silva%2C+Deivisson+Ferreira&rft.au=Cipriano%2C+Patriciani+Estela&rft.au=de+Souza%2C+Ray+Rodrigues&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0304-4238&rft.volume=337&rft_id=info:doi/10.1016%2Fj.scienta.2024.113569&rft.externalDocID=S0304423824007258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon |