Modeling and estimation of signal-dependent noise in hyperspectral imagery
The majority of hyperspectral data exploitation algorithms are developed using statistical models for the data that include sensor noise. Hyperspectral data collected using charge-coupled devices or other photon detectors have sensor noise that is directly dependent on the amplitude of the signal co...
Saved in:
Published in | Applied optics. Optical technology and biomedical optics Vol. 50; no. 21; p. 3829 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
20.07.2011
|
Online Access | Get more information |
Cover
Loading…
Abstract | The majority of hyperspectral data exploitation algorithms are developed using statistical models for the data that include sensor noise. Hyperspectral data collected using charge-coupled devices or other photon detectors have sensor noise that is directly dependent on the amplitude of the signal collected. However, this signal dependence is often ignored. Additionally, the statistics of the noise can vary spatially and spectrally as a result of camera characteristics and the calibration process applied to the data. Here, we examine the expected noise characteristics of both raw and calibrated visible/near-infrared hyperspectral data and provide a method for estimating the noise statistics using calibration data or directly from the imagery if calibration data is unavailable. |
---|---|
AbstractList | The majority of hyperspectral data exploitation algorithms are developed using statistical models for the data that include sensor noise. Hyperspectral data collected using charge-coupled devices or other photon detectors have sensor noise that is directly dependent on the amplitude of the signal collected. However, this signal dependence is often ignored. Additionally, the statistics of the noise can vary spatially and spectrally as a result of camera characteristics and the calibration process applied to the data. Here, we examine the expected noise characteristics of both raw and calibrated visible/near-infrared hyperspectral data and provide a method for estimating the noise statistics using calibration data or directly from the imagery if calibration data is unavailable. |
Author | Meola, Joseph Eismann, Michael T Moses, Randolph L Ash, Joshua N |
Author_xml | – sequence: 1 givenname: Joseph surname: Meola fullname: Meola, Joseph email: joseph.meola@wpafb.af.mil organization: The Air Force Research Laboratory, 2241 Avionics Circle, Wright-Patterson Air Force Base, Ohio 45433, USA. joseph.meola@wpafb.af.mil – sequence: 2 givenname: Michael T surname: Eismann fullname: Eismann, Michael T – sequence: 3 givenname: Randolph L surname: Moses fullname: Moses, Randolph L – sequence: 4 givenname: Joshua N surname: Ash fullname: Ash, Joshua N |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21772364$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jz1PwzAYhC0Eoh-wMSP_gaT-djJWFRRQqy4wV479OhiljhWHIf-eSMB00ume090KXcc-AkIPlJSUK7HZnkpJSkJ4xeortGRUyoJTJRdolfPX7EtR61u0YFRrNgNL9HbsHXQhtthEhyGP4WLG0Efce5xDG01XOEgQHcQRxz5kwCHizynBkBPYcTAdnpEWhukO3XjTZbj_0zX6eH56370Uh9P-dbc9FJbVZCw0ZUaJSlurZW2dIEILyxtDoNGikpYrLwi3nCvZiNpa771RpJmD0kjuNVujx9_e9N1cwJ3TMA8YpvP_KfYDBp9ORA |
CitedBy_id | crossref_primary_10_1364_AO_377059 crossref_primary_10_1109_TGRS_2018_2816593 crossref_primary_10_1080_00387010_2014_991975 crossref_primary_10_1364_AO_53_007059 crossref_primary_10_1016_j_isprsjprs_2022_08_004 crossref_primary_10_1109_TGRS_2015_2453126 crossref_primary_10_1109_TGRS_2012_2186305 crossref_primary_10_1109_TGRS_2013_2264392 crossref_primary_10_1109_JSEN_2017_2696562 crossref_primary_10_1109_JSTARS_2016_2531747 crossref_primary_10_3390_e25091313 crossref_primary_10_1109_JSTARS_2017_2781906 crossref_primary_10_1109_TGRS_2013_2259245 crossref_primary_10_1109_TGRS_2018_2867278 crossref_primary_10_3390_rs11060611 crossref_primary_10_1109_TGRS_2012_2230182 crossref_primary_10_1109_TGRS_2012_2221128 crossref_primary_10_1109_TGRS_2021_3060781 crossref_primary_10_1109_TGRS_2012_2201488 crossref_primary_10_3390_rs15061669 crossref_primary_10_3390_rs11091049 crossref_primary_10_1590_S1982_21702013000400008 crossref_primary_10_3390_rs12213534 crossref_primary_10_3390_rs9121237 crossref_primary_10_1109_JSTARS_2016_2533579 |
ContentType | Journal Article |
Copyright | 2011 Optical Society of America |
Copyright_xml | – notice: 2011 Optical Society of America |
DBID | NPM |
DOI | 10.1364/AO.50.003829 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2155-3165 |
ExternalDocumentID | 21772364 |
Genre | Journal Article |
GroupedDBID | 53G 5GY 8SL ALMA_UNASSIGNED_HOLDINGS H~9 NPM OPLUZ ROP ROS |
ID | FETCH-LOGICAL-c290t-712a6487cc759cd40474c3ba0eb7485c36f403c3365b49ccfffa60bd405a53f72 |
IngestDate | Fri Feb 23 03:07:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | 2011 Optical Society of America |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c290t-712a6487cc759cd40474c3ba0eb7485c36f403c3365b49ccfffa60bd405a53f72 |
PMID | 21772364 |
ParticipantIDs | pubmed_primary_21772364 |
PublicationCentury | 2000 |
PublicationDate | 2011-Jul-20 |
PublicationDateYYYYMMDD | 2011-07-20 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-Jul-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied optics. Optical technology and biomedical optics |
PublicationTitleAlternate | Appl Opt |
PublicationYear | 2011 |
SSID | ssj0035497 |
Score | 2.2948103 |
Snippet | The majority of hyperspectral data exploitation algorithms are developed using statistical models for the data that include sensor noise. Hyperspectral data... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 3829 |
Title | Modeling and estimation of signal-dependent noise in hyperspectral imagery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21772364 |
Volume | 50 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbZLYVeSnf72D520aG34NSxJMs-hqUlBHZzSSC3ICkSCSS2Id5Lf0Z_cUcP21m3pe1ejLEmStA3VmZGM98g9NmAH6sTJsDJoTSiPMkioXUaSaEMFYQp7aiU7u7T6ZLOVmw1GPw4yVp6qOVIff9tXclTUIVngKutkv0PZNtJ4QHcA75wBYTh-k8Y20Zm-6bK0NJlHFoD0OZliH3U9Lith0W5OzqCkC14nr7A0hFuHES_LLoxTMvKUjiPhvPKx7vrNgrvvs8X7rsRL9lip8FdPjldaGz23fEQOjKHXP0uQfsOJH3IB2Yu99V22MakJ8dtmGv7IMLB0aYLu_Io8Qcu2u1mYFrYI3ffGKLZej3nbFAxXykdNlKS-UDILzs8SallmpiPmM3J64sBPtXBoQ2uFrfk-H8f7fFtN0Nn6Ixndue8t_Ef_99OwJvmoXwCRL6c_gxHK-0_2nNRnKmyeIVeBh8DT7zCXKCBLi7Rc5frq46v0axRGwyLjTu1waXBfbXBTm3wrsCP1AYHtXmDlt--Lm6nUWipEakkj-uIjxORgo-qFGe52tCYcqqIFLGWnGZMkdTQmChCUiZprpQxRqSxBEEmGDE8eYvOi7LQVwinRGqWb6RimlLBuZRKj2NJ41wLMk6S9-idX4R15XlT1s3yfPjjyEf0olOeT-iZgRdVX4PVV8sbB8RPBSZZ8g |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+estimation+of+signal-dependent+noise+in+hyperspectral+imagery&rft.jtitle=Applied+optics.+Optical+technology+and+biomedical+optics&rft.au=Meola%2C+Joseph&rft.au=Eismann%2C+Michael+T&rft.au=Moses%2C+Randolph+L&rft.au=Ash%2C+Joshua+N&rft.date=2011-07-20&rft.eissn=2155-3165&rft.volume=50&rft.issue=21&rft.spage=3829&rft_id=info:doi/10.1364%2FAO.50.003829&rft_id=info%3Apmid%2F21772364&rft_id=info%3Apmid%2F21772364&rft.externalDocID=21772364 |