Modeling and estimation of signal-dependent noise in hyperspectral imagery

The majority of hyperspectral data exploitation algorithms are developed using statistical models for the data that include sensor noise. Hyperspectral data collected using charge-coupled devices or other photon detectors have sensor noise that is directly dependent on the amplitude of the signal co...

Full description

Saved in:
Bibliographic Details
Published inApplied optics. Optical technology and biomedical optics Vol. 50; no. 21; p. 3829
Main Authors Meola, Joseph, Eismann, Michael T, Moses, Randolph L, Ash, Joshua N
Format Journal Article
LanguageEnglish
Published United States 20.07.2011
Online AccessGet more information

Cover

Loading…
Abstract The majority of hyperspectral data exploitation algorithms are developed using statistical models for the data that include sensor noise. Hyperspectral data collected using charge-coupled devices or other photon detectors have sensor noise that is directly dependent on the amplitude of the signal collected. However, this signal dependence is often ignored. Additionally, the statistics of the noise can vary spatially and spectrally as a result of camera characteristics and the calibration process applied to the data. Here, we examine the expected noise characteristics of both raw and calibrated visible/near-infrared hyperspectral data and provide a method for estimating the noise statistics using calibration data or directly from the imagery if calibration data is unavailable.
AbstractList The majority of hyperspectral data exploitation algorithms are developed using statistical models for the data that include sensor noise. Hyperspectral data collected using charge-coupled devices or other photon detectors have sensor noise that is directly dependent on the amplitude of the signal collected. However, this signal dependence is often ignored. Additionally, the statistics of the noise can vary spatially and spectrally as a result of camera characteristics and the calibration process applied to the data. Here, we examine the expected noise characteristics of both raw and calibrated visible/near-infrared hyperspectral data and provide a method for estimating the noise statistics using calibration data or directly from the imagery if calibration data is unavailable.
Author Meola, Joseph
Eismann, Michael T
Moses, Randolph L
Ash, Joshua N
Author_xml – sequence: 1
  givenname: Joseph
  surname: Meola
  fullname: Meola, Joseph
  email: joseph.meola@wpafb.af.mil
  organization: The Air Force Research Laboratory, 2241 Avionics Circle, Wright-Patterson Air Force Base, Ohio 45433, USA. joseph.meola@wpafb.af.mil
– sequence: 2
  givenname: Michael T
  surname: Eismann
  fullname: Eismann, Michael T
– sequence: 3
  givenname: Randolph L
  surname: Moses
  fullname: Moses, Randolph L
– sequence: 4
  givenname: Joshua N
  surname: Ash
  fullname: Ash, Joshua N
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21772364$$D View this record in MEDLINE/PubMed
BookMark eNo1jz1PwzAYhC0Eoh-wMSP_gaT-djJWFRRQqy4wV479OhiljhWHIf-eSMB00ume090KXcc-AkIPlJSUK7HZnkpJSkJ4xeortGRUyoJTJRdolfPX7EtR61u0YFRrNgNL9HbsHXQhtthEhyGP4WLG0Efce5xDG01XOEgQHcQRxz5kwCHizynBkBPYcTAdnpEWhukO3XjTZbj_0zX6eH56370Uh9P-dbc9FJbVZCw0ZUaJSlurZW2dIEILyxtDoNGikpYrLwi3nCvZiNpa771RpJmD0kjuNVujx9_e9N1cwJ3TMA8YpvP_KfYDBp9ORA
CitedBy_id crossref_primary_10_1364_AO_377059
crossref_primary_10_1109_TGRS_2018_2816593
crossref_primary_10_1080_00387010_2014_991975
crossref_primary_10_1364_AO_53_007059
crossref_primary_10_1016_j_isprsjprs_2022_08_004
crossref_primary_10_1109_TGRS_2015_2453126
crossref_primary_10_1109_TGRS_2012_2186305
crossref_primary_10_1109_TGRS_2013_2264392
crossref_primary_10_1109_JSEN_2017_2696562
crossref_primary_10_1109_JSTARS_2016_2531747
crossref_primary_10_3390_e25091313
crossref_primary_10_1109_JSTARS_2017_2781906
crossref_primary_10_1109_TGRS_2013_2259245
crossref_primary_10_1109_TGRS_2018_2867278
crossref_primary_10_3390_rs11060611
crossref_primary_10_1109_TGRS_2012_2230182
crossref_primary_10_1109_TGRS_2012_2221128
crossref_primary_10_1109_TGRS_2021_3060781
crossref_primary_10_1109_TGRS_2012_2201488
crossref_primary_10_3390_rs15061669
crossref_primary_10_3390_rs11091049
crossref_primary_10_1590_S1982_21702013000400008
crossref_primary_10_3390_rs12213534
crossref_primary_10_3390_rs9121237
crossref_primary_10_1109_JSTARS_2016_2533579
ContentType Journal Article
Copyright 2011 Optical Society of America
Copyright_xml – notice: 2011 Optical Society of America
DBID NPM
DOI 10.1364/AO.50.003829
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 2155-3165
ExternalDocumentID 21772364
Genre Journal Article
GroupedDBID 53G
5GY
8SL
ALMA_UNASSIGNED_HOLDINGS
H~9
NPM
OPLUZ
ROP
ROS
ID FETCH-LOGICAL-c290t-712a6487cc759cd40474c3ba0eb7485c36f403c3365b49ccfffa60bd405a53f72
IngestDate Fri Feb 23 03:07:20 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License 2011 Optical Society of America
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c290t-712a6487cc759cd40474c3ba0eb7485c36f403c3365b49ccfffa60bd405a53f72
PMID 21772364
ParticipantIDs pubmed_primary_21772364
PublicationCentury 2000
PublicationDate 2011-Jul-20
PublicationDateYYYYMMDD 2011-07-20
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-Jul-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied optics. Optical technology and biomedical optics
PublicationTitleAlternate Appl Opt
PublicationYear 2011
SSID ssj0035497
Score 2.2948103
Snippet The majority of hyperspectral data exploitation algorithms are developed using statistical models for the data that include sensor noise. Hyperspectral data...
SourceID pubmed
SourceType Index Database
StartPage 3829
Title Modeling and estimation of signal-dependent noise in hyperspectral imagery
URI https://www.ncbi.nlm.nih.gov/pubmed/21772364
Volume 50
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbZLYVeSnf72D520aG34NSxJMs-hqUlBHZzSSC3ICkSCSS2Id5Lf0Z_cUcP21m3pe1ejLEmStA3VmZGM98g9NmAH6sTJsDJoTSiPMkioXUaSaEMFYQp7aiU7u7T6ZLOVmw1GPw4yVp6qOVIff9tXclTUIVngKutkv0PZNtJ4QHcA75wBYTh-k8Y20Zm-6bK0NJlHFoD0OZliH3U9Lith0W5OzqCkC14nr7A0hFuHES_LLoxTMvKUjiPhvPKx7vrNgrvvs8X7rsRL9lip8FdPjldaGz23fEQOjKHXP0uQfsOJH3IB2Yu99V22MakJ8dtmGv7IMLB0aYLu_Io8Qcu2u1mYFrYI3ffGKLZej3nbFAxXykdNlKS-UDILzs8SallmpiPmM3J64sBPtXBoQ2uFrfk-H8f7fFtN0Nn6Ixndue8t_Ef_99OwJvmoXwCRL6c_gxHK-0_2nNRnKmyeIVeBh8DT7zCXKCBLi7Rc5frq46v0axRGwyLjTu1waXBfbXBTm3wrsCP1AYHtXmDlt--Lm6nUWipEakkj-uIjxORgo-qFGe52tCYcqqIFLGWnGZMkdTQmChCUiZprpQxRqSxBEEmGDE8eYvOi7LQVwinRGqWb6RimlLBuZRKj2NJ41wLMk6S9-idX4R15XlT1s3yfPjjyEf0olOeT-iZgRdVX4PVV8sbB8RPBSZZ8g
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+estimation+of+signal-dependent+noise+in+hyperspectral+imagery&rft.jtitle=Applied+optics.+Optical+technology+and+biomedical+optics&rft.au=Meola%2C+Joseph&rft.au=Eismann%2C+Michael+T&rft.au=Moses%2C+Randolph+L&rft.au=Ash%2C+Joshua+N&rft.date=2011-07-20&rft.eissn=2155-3165&rft.volume=50&rft.issue=21&rft.spage=3829&rft_id=info:doi/10.1364%2FAO.50.003829&rft_id=info%3Apmid%2F21772364&rft_id=info%3Apmid%2F21772364&rft.externalDocID=21772364