Separation of nicotinamide metabolites using a PBr column packed with pentabromobenzyl group modified silica gel
Nicotinamide adenine dinucleotide, a coenzyme involved in the activation of sirtuins, contributes to various regulations in vivo. However, highly hydrophilic nicotinamide metabolites are difficult to separate by high-performance liquid chromatography (HPLC) using octadecyl (C18) columns, which opera...
Saved in:
Published in | Analytical biochemistry Vol. 655; p. 114837 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2697 1096-0309 1096-0309 |
DOI | 10.1016/j.ab.2022.114837 |
Cover
Abstract | Nicotinamide adenine dinucleotide, a coenzyme involved in the activation of sirtuins, contributes to various regulations in vivo. However, highly hydrophilic nicotinamide metabolites are difficult to separate by high-performance liquid chromatography (HPLC) using octadecyl (C18) columns, which operate via hydrophobic interaction. PBr columns packed with silica gel modified with the pentabromobenzyl group having strong dispersion forces show good retention ability for various highly hydrophilic compounds. Additionally, the peak shape obtained with the PBr column did not collapse like that of the HILIC column, even when a large amount of water was injected. Separation of 11 highly hydrophilic nicotinamide metabolites using a PBr column under simple conditions resulted in baseline separation, but separation on a C18 column was not complete. The peak shape for each compound was better than that in previous studies. Furthermore, the separation of nicotinamide metabolites in tomato using a PBr column enable a more sensitive detection than that using a C18 column.
Chromatographic Technique
[Display omitted]
•Nicotinamide metabolites of highly hydrophilic compounds are difficult to separate using a C18 column, which operates on the basis of hydrophobic interaction.•A PBr column packed with a stationary phase similar to 3-(pentabromobenzyloxy)propyl (PBB) could baseline-separate highly hydrophilic nicotinamide metabolites under simple conditions.•The peak shape of the nicotinamide metabolites obtained using the PBr column was better than that of previous studies. |
---|---|
AbstractList | Nicotinamide adenine dinucleotide, a coenzyme involved in the activation of sirtuins, contributes to various regulations in vivo. However, highly hydrophilic nicotinamide metabolites are difficult to separate by high-performance liquid chromatography (HPLC) using octadecyl (C18) columns, which operate via hydrophobic interaction. PBr columns packed with silica gel modified with the pentabromobenzyl group having strong dispersion forces show good retention ability for various highly hydrophilic compounds. Additionally, the peak shape obtained with the PBr column did not collapse like that of the HILIC column, even when a large amount of water was injected. Separation of 11 highly hydrophilic nicotinamide metabolites using a PBr column under simple conditions resulted in baseline separation, but separation on a C18 column was not complete. The peak shape for each compound was better than that in previous studies. Furthermore, the separation of nicotinamide metabolites in tomato using a PBr column enable a more sensitive detection than that using a C18 column. SUBJECT CATEGORY: Chromatographic Technique.Nicotinamide adenine dinucleotide, a coenzyme involved in the activation of sirtuins, contributes to various regulations in vivo. However, highly hydrophilic nicotinamide metabolites are difficult to separate by high-performance liquid chromatography (HPLC) using octadecyl (C18) columns, which operate via hydrophobic interaction. PBr columns packed with silica gel modified with the pentabromobenzyl group having strong dispersion forces show good retention ability for various highly hydrophilic compounds. Additionally, the peak shape obtained with the PBr column did not collapse like that of the HILIC column, even when a large amount of water was injected. Separation of 11 highly hydrophilic nicotinamide metabolites using a PBr column under simple conditions resulted in baseline separation, but separation on a C18 column was not complete. The peak shape for each compound was better than that in previous studies. Furthermore, the separation of nicotinamide metabolites in tomato using a PBr column enable a more sensitive detection than that using a C18 column. SUBJECT CATEGORY: Chromatographic Technique. Nicotinamide adenine dinucleotide, a coenzyme involved in the activation of sirtuins, contributes to various regulations in vivo. However, highly hydrophilic nicotinamide metabolites are difficult to separate by high-performance liquid chromatography (HPLC) using octadecyl (C18) columns, which operate via hydrophobic interaction. PBr columns packed with silica gel modified with the pentabromobenzyl group having strong dispersion forces show good retention ability for various highly hydrophilic compounds. Additionally, the peak shape obtained with the PBr column did not collapse like that of the HILIC column, even when a large amount of water was injected. Separation of 11 highly hydrophilic nicotinamide metabolites using a PBr column under simple conditions resulted in baseline separation, but separation on a C18 column was not complete. The peak shape for each compound was better than that in previous studies. Furthermore, the separation of nicotinamide metabolites in tomato using a PBr column enable a more sensitive detection than that using a C18 column. Chromatographic Technique [Display omitted] •Nicotinamide metabolites of highly hydrophilic compounds are difficult to separate using a C18 column, which operates on the basis of hydrophobic interaction.•A PBr column packed with a stationary phase similar to 3-(pentabromobenzyloxy)propyl (PBB) could baseline-separate highly hydrophilic nicotinamide metabolites under simple conditions.•The peak shape of the nicotinamide metabolites obtained using the PBr column was better than that of previous studies. Nicotinamide adenine dinucleotide, a coenzyme involved in the activation of sirtuins, contributes to various regulations in vivo. However, highly hydrophilic nicotinamide metabolites are difficult to separate by high-performance liquid chromatography (HPLC) using octadecyl (C₁₈) columns, which operate via hydrophobic interaction. PBr columns packed with silica gel modified with the pentabromobenzyl group having strong dispersion forces show good retention ability for various highly hydrophilic compounds. Additionally, the peak shape obtained with the PBr column did not collapse like that of the HILIC column, even when a large amount of water was injected. Separation of 11 highly hydrophilic nicotinamide metabolites using a PBr column under simple conditions resulted in baseline separation, but separation on a C₁₈ column was not complete. The peak shape for each compound was better than that in previous studies. Furthermore, the separation of nicotinamide metabolites in tomato using a PBr column enable a more sensitive detection than that using a C₁₈ column. Chromatographic Technique |
ArticleNumber | 114837 |
Author | Shimotsuma, Motoshi Ozaki, Makoto Hirose, Tsunehisa |
Author_xml | – sequence: 1 givenname: Makoto surname: Ozaki fullname: Ozaki, Makoto – sequence: 2 givenname: Motoshi surname: Shimotsuma fullname: Shimotsuma, Motoshi – sequence: 3 givenname: Tsunehisa surname: Hirose fullname: Hirose, Tsunehisa email: hirose-t@nacalai.co.jp |
BookMark | eNqNkTtvFTEQRi2USNwk9JQuafYyfuyLDiJeUiSQCLXltWcvc9m1F9sLCr8-Gy4VEohqmnOm-M4FOwsxIGNPBewFiOb5cW-HvQQp90LoTrWP2E5A31SgoD9jOwBQlWz69jG7yPkIsFF1s2PLJ1xssoVi4HHkgVwsFOxMHvmMxQ5xooKZr5nCgVv-8VXiLk7rHPhi3Vf0_AeVL3zBsLEpznHA8PNu4ocU14XP0dNIG5RpImf5Aacrdj7aKeOT3_eSfX7z-vb6XXXz4e3765c3lZM9lKrx1ukORYceVQ1iQD0MEn0rtJVK-7oXrWq9tY2WI3Z6dC2gHVXdy1p2COqSPTv9XVL8tmIuZqbscJpswLhmI1vRKd3I-n9QkKJrdS82tDmhLsWcE47GUfm1XkmWJiPAPNQwR2MH81DDnGpsIvwhLolmm-7-pbw4KbjN9J0wmewIg0NPCV0xPtLf5XuUCqRM |
CitedBy_id | crossref_primary_10_1016_j_mex_2023_102061 crossref_primary_10_1080_19476337_2025_2458753 crossref_primary_10_1248_cpb_c23_00439 crossref_primary_10_1021_acs_jafc_4c07391 crossref_primary_10_3390_metabo13050594 |
Cites_doi | 10.1021/ac00111a010 10.1007/978-1-62703-637-5_14 10.1016/j.jpba.2018.05.014 10.1016/S0021-9673(00)96972-3 10.5936/csbj.201301012 10.1016/j.tibs.2006.11.006 10.1016/S0021-9673(00)01193-6 10.1016/j.chroma.2021.462184 10.1111/cns.12539 10.3390/biom10030477 10.1158/0008-5472.CAN-09-2465 10.15252/embj.201386907 10.1016/j.brainres.2016.04.060 10.1016/j.redox.2019.101192 10.1016/j.cmet.2011.08.014 10.3390/molecules18055163 10.1093/chromsci/17.10.574 10.1016/j.cmet.2016.09.013 10.1507/endocrj.EJ19-0313 10.1016/j.cell.2007.03.024 10.1111/acel.12461 10.1002/jssc.201801074 10.1038/s41392-020-00311-7 10.1016/j.chroma.2010.10.106 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.ab.2022.114837 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1096-0309 |
ExternalDocumentID | 10_1016_j_ab_2022_114837 S0003269722002974 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 85S 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO ABFNM ABFRF ABGSF ABMAC ABOCM ABUDA ACDAQ ACGFO ACNCT ACRLP ADBBV ADECG ADEZE ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DM4 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLW IHE J1W KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SBG SCC SDF SDG SDP SES SPC SPCBC SSH SSK SSU SSZ T5K WH7 XPP Y6R ZMT .55 .GJ 53G AAQXK AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADRHT ADXHL AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CAG CITATION COF EJD FA8 FEDTE FGOYB G-2 HVGLF HZ~ H~9 J5H K-O MVM R2- RIG SCB SEW VH1 WUQ X7M XOL YYP ZGI ZKB ZY4 7X8 EFKBS EFLBG 7S9 L.6 |
ID | FETCH-LOGICAL-c290t-6dac48e18ede3501be4bb2ed714a234d591737daa642fe84fc70eaf3592528e03 |
IEDL.DBID | AIKHN |
ISSN | 0003-2697 1096-0309 |
IngestDate | Fri Sep 05 04:58:33 EDT 2025 Thu Sep 04 16:19:56 EDT 2025 Thu Apr 24 22:53:46 EDT 2025 Tue Jul 01 01:19:46 EDT 2025 Sun Apr 06 06:54:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nicotinamide metabolites PBr column LC-MS High sensitivity Hydrophilic compounds HPLC |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c290t-6dac48e18ede3501be4bb2ed714a234d591737daa642fe84fc70eaf3592528e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2702187491 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718346250 proquest_miscellaneous_2702187491 crossref_citationtrail_10_1016_j_ab_2022_114837 crossref_primary_10_1016_j_ab_2022_114837 elsevier_sciencedirect_doi_10_1016_j_ab_2022_114837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Analytical biochemistry |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Yoshino, Mills, Yoon, Imai (bib6) 2011; 14 Picciotto, Gano, Johnson, Martens, Sindler, Mills, Imai, Seals (bib11) 2016; 15 Ruta, Rudaz, McCalley, Veuthey, Guillarme (bib16) 2010; 1217 Wolcott, Dolan (bib20) 1999; 17 Huang, Xu, Qiu, Li (bib14) 2021; 1648 Ikegami (bib12) 2019; 42 Trammel, Brenner (bib23) 2013; 4 Belenky, Bogan, Brenner (bib1) 2007; 32 Tarantini, Ares, Toth, Yabluchanskiy, Tucsek, Kiss, Hertelendy, Kinter, Ballabh, Süle, Farkas, Baurg, Sinclairh, Csiszar, Ungvari (bib10) 2019; 24 Gallí, Gool, Rongvaux, Andris, Leo (bib2) 2010; 70 Irie, Inagaki, Fujita, Nakaya, Mitsuishi, Yamaguchi, Yamashita, Shigaki, Ono, Yukioka, Okano, Nabeshima, Imai, Yasui, Tsubota, Itoh (bib9) 2020; 67 Belenky, Racette, Bogan, McClure, Smith, Brenner (bib24) 2007; 129 Nikas, Paschou, Ryu (bib5) 2020; 10 Wang, Hu, Yang, Takata, Sakurai (bib8) 2016; 1643 Kimata, Hirose, Moriuchi, Hosoya, Araki, Tanaka (bib19) 1995; 67 Yoshino, Imai (bib22) 2013; 1077 Alpert (bib15) 1990; 499 Mills, Yoshida, Stein, Grozio, Kubota, Sasaki, Redpath, Migaud, Apte, Uchida, Yoshino, Imai (bib25) 2016; 24 Löchmuller, Wilder (bib21) 1979; 17 Turowski, Morimoto, Kimata, Monde, Ikegami, Hosoya, Tanaka (bib17) 2001; 911 North, Rosenberg, Jeganathan, Hafner, Michan, Dai, Baker, Cen, Wu, Sauve, Deursen, Rosenzweig, Sinclair (bib3) 2014; 33 Wang, Xu, Li, Miao (bib7) 2016; 22 Arase, Kimura, Ikegami (bib13) 2018; 5 Xie, Zhang, Gao, Huang, Huber, Zhou, Li, Shen, Zou (bib4) 2020; 5 Miwa, Yamamoto, Saito, Inoue (bib18) 2013; 18 Wang (10.1016/j.ab.2022.114837_bib8) 2016; 1643 Nikas (10.1016/j.ab.2022.114837_bib5) 2020; 10 Yoshino (10.1016/j.ab.2022.114837_bib6) 2011; 14 Tarantini (10.1016/j.ab.2022.114837_bib10) 2019; 24 North (10.1016/j.ab.2022.114837_bib3) 2014; 33 Ikegami (10.1016/j.ab.2022.114837_bib12) 2019; 42 Arase (10.1016/j.ab.2022.114837_bib13) 2018; 5 Huang (10.1016/j.ab.2022.114837_bib14) 2021; 1648 Xie (10.1016/j.ab.2022.114837_bib4) 2020; 5 Löchmuller (10.1016/j.ab.2022.114837_bib21) 1979; 17 Mills (10.1016/j.ab.2022.114837_bib25) 2016; 24 Miwa (10.1016/j.ab.2022.114837_bib18) 2013; 18 Gallí (10.1016/j.ab.2022.114837_bib2) 2010; 70 Belenky (10.1016/j.ab.2022.114837_bib1) 2007; 32 Wang (10.1016/j.ab.2022.114837_bib7) 2016; 22 Yoshino (10.1016/j.ab.2022.114837_bib22) 2013; 1077 Kimata (10.1016/j.ab.2022.114837_bib19) 1995; 67 Alpert (10.1016/j.ab.2022.114837_bib15) 1990; 499 Wolcott (10.1016/j.ab.2022.114837_bib20) 1999; 17 Turowski (10.1016/j.ab.2022.114837_bib17) 2001; 911 Trammel (10.1016/j.ab.2022.114837_bib23) 2013; 4 Picciotto (10.1016/j.ab.2022.114837_bib11) 2016; 15 Ruta (10.1016/j.ab.2022.114837_bib16) 2010; 1217 Belenky (10.1016/j.ab.2022.114837_bib24) 2007; 129 Irie (10.1016/j.ab.2022.114837_bib9) 2020; 67 |
References_xml | – volume: 5 start-page: 227 year: 2020 ident: bib4 article-title: NAD publication-title: Signal Transduct. Targeted Ther. – volume: 499 start-page: 177 year: 1990 end-page: 196 ident: bib15 article-title: Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds publication-title: J. Chromatogr. – volume: 70 start-page: 8 year: 2010 end-page: 11 ident: bib2 article-title: The nicotinamide phosphoribosyltransferase: a molecular link between metabolism, inflammation, and cancer publication-title: Cancer Res. – volume: 1648 year: 2021 ident: bib14 article-title: Analytical characterization of DNA and RNA oligonucleotides by hydrophilic interaction liquid chromatography-tandem mass spectrometry publication-title: J. Chromatogr. A – volume: 17 start-page: 406 year: 1999 end-page: 410 ident: bib20 article-title: LC troubleshooting on-line with chromatography forum publication-title: LC GC – volume: 42 start-page: 130 year: 2019 end-page: 213 ident: bib12 article-title: Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: a review based on the separation characteristics of the hydrophilic interaction chromatography phases publication-title: J. Separ. Sci. – volume: 4 year: 2013 ident: bib23 article-title: Targeted, LCMS-based metabolomics for quantitative measurement of NAD publication-title: Comput. Struct. Biotechnol. J. – volume: 24 start-page: 795 year: 2016 end-page: 806 ident: bib25 article-title: Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice publication-title: Cell Metabol. – volume: 1077 start-page: 203 year: 2013 end-page: 215 ident: bib22 article-title: Accurate measurement of nicotinamide adenine dinucleotide (NAD⁺) with high-performance liquid chromatography publication-title: Methods Mol. Biol. – volume: 911 start-page: 177 year: 2001 end-page: 190 ident: bib17 article-title: J. Selectivity of stationary phases in reversed-phase liquid chromatography based on the dispersion interactions publication-title: J. Chromatogr. A – volume: 22 start-page: 431 year: 2016 end-page: 439 ident: bib7 article-title: Targeting nicotinamide phosphoribosyltransferase as a potential therapeutic strategy to restore adult neurogenesis publication-title: CNS Neurosci. Ther. – volume: 67 start-page: 2556 year: 1995 end-page: 2561 ident: bib19 article-title: High-capacity stationary phases containing heavy atoms HPLC separation of fullerenes publication-title: Anal. Chem. – volume: 67 start-page: 153 year: 2020 end-page: 160 ident: bib9 article-title: Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men publication-title: Endocr. J. – volume: 1643 start-page: 1 year: 2016 end-page: 9 ident: bib8 article-title: Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death publication-title: Brain Res. – volume: 14 start-page: 528 year: 2011 end-page: 536 ident: bib6 article-title: Nicotinamide mononucleotide, a key NAD publication-title: Cell Metabol. – volume: 15 start-page: 522 year: 2016 end-page: 530 ident: bib11 article-title: Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice publication-title: Aging Cell – volume: 10 start-page: 477 year: 2020 ident: bib5 article-title: The role of nicotinamide in cancer chemoprevention and therapy publication-title: Biomolecules – volume: 32 start-page: 12 year: 2007 end-page: 19 ident: bib1 article-title: NAD publication-title: Trends Biochem. Sci. – volume: 129 start-page: 473 year: 2007 end-page: 484 ident: bib24 article-title: Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD publication-title: Cell – volume: 5 start-page: 307 year: 2018 end-page: 316 ident: bib13 article-title: Method optimization of hydrophilic interaction chromatography separation of nucleotides using design of experiment approaches I: comparison of several zwitterionic columns publication-title: J. Pharm. Biomed. Anal. – volume: 24 year: 2019 ident: bib10 article-title: Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice publication-title: Redox Biol. – volume: 18 start-page: 5163 year: 2013 end-page: 5171 ident: bib18 article-title: Retention of halogenated solutes on stationary phases containing heavy atoms publication-title: Molecules – volume: 33 start-page: 1438 year: 2014 end-page: 1453 ident: bib3 article-title: SIRT2 induces the checkpoint kinase BubR1 to increase lifespan publication-title: EMBO J. – volume: 1217 start-page: 8230 year: 2010 ident: bib16 article-title: A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography publication-title: J. Chromatogr. A – volume: 17 start-page: 574 year: 1979 end-page: 579 ident: bib21 article-title: The sorption behavior of alkyl bonded phases in reverse-phase, high performance liquid chromatography publication-title: J. Chromatogr. Sci. – volume: 67 start-page: 2556 year: 1995 ident: 10.1016/j.ab.2022.114837_bib19 article-title: High-capacity stationary phases containing heavy atoms HPLC separation of fullerenes publication-title: Anal. Chem. doi: 10.1021/ac00111a010 – volume: 1077 start-page: 203 year: 2013 ident: 10.1016/j.ab.2022.114837_bib22 article-title: Accurate measurement of nicotinamide adenine dinucleotide (NAD⁺) with high-performance liquid chromatography publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-637-5_14 – volume: 5 start-page: 307 year: 2018 ident: 10.1016/j.ab.2022.114837_bib13 article-title: Method optimization of hydrophilic interaction chromatography separation of nucleotides using design of experiment approaches I: comparison of several zwitterionic columns publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2018.05.014 – volume: 499 start-page: 177 year: 1990 ident: 10.1016/j.ab.2022.114837_bib15 article-title: Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(00)96972-3 – volume: 4 year: 2013 ident: 10.1016/j.ab.2022.114837_bib23 article-title: Targeted, LCMS-based metabolomics for quantitative measurement of NAD+ metabolites publication-title: Comput. Struct. Biotechnol. J. doi: 10.5936/csbj.201301012 – volume: 32 start-page: 12 year: 2007 ident: 10.1016/j.ab.2022.114837_bib1 article-title: NAD+ metabolism in health and disease publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2006.11.006 – volume: 911 start-page: 177 year: 2001 ident: 10.1016/j.ab.2022.114837_bib17 article-title: J. Selectivity of stationary phases in reversed-phase liquid chromatography based on the dispersion interactions publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(00)01193-6 – volume: 1648 year: 2021 ident: 10.1016/j.ab.2022.114837_bib14 article-title: Analytical characterization of DNA and RNA oligonucleotides by hydrophilic interaction liquid chromatography-tandem mass spectrometry publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2021.462184 – volume: 22 start-page: 431 year: 2016 ident: 10.1016/j.ab.2022.114837_bib7 article-title: Targeting nicotinamide phosphoribosyltransferase as a potential therapeutic strategy to restore adult neurogenesis publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.12539 – volume: 17 start-page: 406 year: 1999 ident: 10.1016/j.ab.2022.114837_bib20 article-title: LC troubleshooting on-line with chromatography forum publication-title: LC GC – volume: 10 start-page: 477 year: 2020 ident: 10.1016/j.ab.2022.114837_bib5 article-title: The role of nicotinamide in cancer chemoprevention and therapy publication-title: Biomolecules doi: 10.3390/biom10030477 – volume: 70 start-page: 8 year: 2010 ident: 10.1016/j.ab.2022.114837_bib2 article-title: The nicotinamide phosphoribosyltransferase: a molecular link between metabolism, inflammation, and cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-2465 – volume: 33 start-page: 1438 year: 2014 ident: 10.1016/j.ab.2022.114837_bib3 article-title: SIRT2 induces the checkpoint kinase BubR1 to increase lifespan publication-title: EMBO J. doi: 10.15252/embj.201386907 – volume: 1643 start-page: 1 year: 2016 ident: 10.1016/j.ab.2022.114837_bib8 article-title: Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death publication-title: Brain Res. doi: 10.1016/j.brainres.2016.04.060 – volume: 24 year: 2019 ident: 10.1016/j.ab.2022.114837_bib10 article-title: Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101192 – volume: 14 start-page: 528 year: 2011 ident: 10.1016/j.ab.2022.114837_bib6 article-title: Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice publication-title: Cell Metabol. doi: 10.1016/j.cmet.2011.08.014 – volume: 18 start-page: 5163 year: 2013 ident: 10.1016/j.ab.2022.114837_bib18 article-title: Retention of halogenated solutes on stationary phases containing heavy atoms publication-title: Molecules doi: 10.3390/molecules18055163 – volume: 17 start-page: 574 year: 1979 ident: 10.1016/j.ab.2022.114837_bib21 article-title: The sorption behavior of alkyl bonded phases in reverse-phase, high performance liquid chromatography publication-title: J. Chromatogr. Sci. doi: 10.1093/chromsci/17.10.574 – volume: 24 start-page: 795 year: 2016 ident: 10.1016/j.ab.2022.114837_bib25 article-title: Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice publication-title: Cell Metabol. doi: 10.1016/j.cmet.2016.09.013 – volume: 67 start-page: 153 year: 2020 ident: 10.1016/j.ab.2022.114837_bib9 article-title: Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men publication-title: Endocr. J. doi: 10.1507/endocrj.EJ19-0313 – volume: 129 start-page: 473 year: 2007 ident: 10.1016/j.ab.2022.114837_bib24 article-title: Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+ publication-title: Cell doi: 10.1016/j.cell.2007.03.024 – volume: 15 start-page: 522 year: 2016 ident: 10.1016/j.ab.2022.114837_bib11 article-title: Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice publication-title: Aging Cell doi: 10.1111/acel.12461 – volume: 42 start-page: 130 year: 2019 ident: 10.1016/j.ab.2022.114837_bib12 article-title: Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: a review based on the separation characteristics of the hydrophilic interaction chromatography phases publication-title: J. Separ. Sci. doi: 10.1002/jssc.201801074 – volume: 5 start-page: 227 year: 2020 ident: 10.1016/j.ab.2022.114837_bib4 article-title: NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-020-00311-7 – volume: 1217 start-page: 8230 year: 2010 ident: 10.1016/j.ab.2022.114837_bib16 article-title: A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2010.10.106 |
SSID | ssj0011456 |
Score | 2.43773 |
Snippet | Nicotinamide adenine dinucleotide, a coenzyme involved in the activation of sirtuins, contributes to various regulations in vivo. However, highly hydrophilic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114837 |
SubjectTerms | high performance liquid chromatography High sensitivity HPLC Hydrophilic compounds hydrophilicity hydrophobic bonding LC-MS metabolites NAD (coenzyme) nicotinamide Nicotinamide metabolites PBr column silica gel sirtuins tomatoes |
Title | Separation of nicotinamide metabolites using a PBr column packed with pentabromobenzyl group modified silica gel |
URI | https://dx.doi.org/10.1016/j.ab.2022.114837 https://www.proquest.com/docview/2702187491 https://www.proquest.com/docview/2718346250 |
Volume | 655 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QEuCFoQ5VEZCSFxCJs4dh7HZUW1sKJCQEVvlh-TKrDrrLrpoRz47czkUQmE9sApSmQriWc075mPsZdZikojd0Xk89xF0gkXFSKpojj1IgdLE8MpNPDxLFucyw8X6mKPzcdeGCqrHGR_L9M7aT08mQ6nOd3UNfX4xmh7lLkQHQKT3GcHIi0zNWEHs_fLxdltMiGRHYgrrY9ow5Ct7Mu8jEUnUQiamVsQGPq_tdNfcrpTPqf32b3BauSz_sMesD0Ih-xoFtBjXt_wV7yr4-wC5IfsznzEcDtimy_Qz_ZuAm8qHpDsbU0Q9B74GlpkAGpB3nKqfr_khn96e8UdyavA0Zf-AZ5TnJZvqMDcUuGehfDzZsW7XhC-bnxdoQnLtzWF_vglrB6y89N3X-eLaMBYiJwo4zbKvHGygKQAD5RjtCCtFeDzRBqRSq_QnUtzbwz6KRUUsnJ5DKZKVSmUKCBOH7FJaAI8ZrxCfkCDxZZo0kgoFVrCqkpByEw4Ghx3zKbj2Wo3DCAnHIyVHivNvmtjNVFD99Q4Zq9vd2z64Rs71qYjufQfDKRRN-zY9WKkrEbSULLEBGiut5r69AivsEx2rUGBiL-n4if_9fan7C7dkSpM1DM2aa-u4TnaOK09YftvfiUnAyfTdfn52_I3XEL74Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQLghZEKQ8jISQOYRPHXifHsqJaoK2QaKXeLD8mVWDXWXXTQ3vgtzOTRyUQ2gPXZKIkHmte_mY-xt5Oc3Qa2hdJ0Non0gufFCKrkjQPQoOjieFUGjg5nc7P5ZcLdbHFZmMvDMEqB9vf2_TOWg9XJsNqTlZ1TT2-KcYepRaiY2CS99h9qXJNuL4Pv-5wHhjvdxSuJJ2Q-HBW2YO8rMMUUQiamFsQFfq_fdNfVrpzPUeP2MMhZuSH_Wc9ZlsQd9neYcR8eXnD3_EOxdmVx3fZzmxkcNtjq-_QT_ZuIm8qHlHpbU0E9AH4ElpUPzUgrzlh3y-55d8-XnFP1ipyzKR_QuBUpeUrgpc7gu05iLc3C951gvBlE-oKA1i-rqnwxy9h8YSdH306m82TgWEh8aJM22QarJcFZAUEoBNGB9I5AUFn0opcBoXJXK6DtZilVFDIyusUbJWrUihRQJo_ZduxifCM8Qp3A4YrrsSARkKpMA5WVQ5CToWnsXH7bDKurfHD-HFiwViYEWf2w1hnSBum18Y-e3_3xKofvbFBNh_VZf7YPgY9w4an3oyaNagaOiqxEZrrtaEuPWIrLLNNMmgO8fdU-vy_3v6a7czPTo7N8efTrwfsAd0hp5ipF2y7vbqGlxjttO5Vt5t_A6KH-wk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Separation+of+nicotinamide+metabolites+using+a+PBr+column+packed+with+pentabromobenzyl+group+modified+silica+gel&rft.jtitle=Analytical+biochemistry&rft.au=Ozaki%2C+Makoto&rft.au=Shimotsuma%2C+Motoshi&rft.au=Hirose%2C+Tsunehisa&rft.date=2022-10-15&rft.issn=0003-2697&rft.volume=655+p.114837-&rft_id=info:doi/10.1016%2Fj.ab.2022.114837&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2697&client=summon |